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Abstract. Dynamic Contrast Enhanced-Magnetic Resonance Imaging
(DCE-MRI) is gaining popularity as a complementary diagnostic method
for early detection and diagnosis of breast cancer. However, due to the
large amount of data, DCE-MRI can hardly be inspected without the use
of a Computer Aided Diagnosis (CAD) system. Among the major issues
in developing CAD for breast DCE-MRI there is the classification of
regions of interest according to their aggressiveness. For this task newer
hand-crafted features are continuously proposed by domain experts. On
the other hand, deep learning approaches have gained popularity in many
pattern recognition tasks, being able to outperform classical machine
learning techniques in different fields, by learning compact hierarchical
representations of an image which well fit the specific task to solve. The
aim of this work is to explore the applicability of Convolutional Neural
Networks (CNN) in automatic lesion malignancy assessment for breast
DCE-MRI data. Our findings show that while promising results in treat-
ing DCE-MRI can be obtained by using transfer learning, CNNs have
to be carefully designed and tuned in order to outperform approaches
specifically designed to exploit all the available data information.

Keywords: Deep convolutional neural network · DCE-MRI · Breast ·
Cancer

1 Introduction

Breast cancer represents about 12% of all tumour new cases and about the 25%
of all cancers in women. With these numbers, it is the most common women
tumour worldwide and the second overall, with almost 2 million new diagnosed
cases/year [5]. The key factor to improve the breast neoplasm prognosis is early
detection, especially for cancer (malignant tumours). The world health organ-
isation indicates the x-ray mammography as the standard diagnostic tool [26],
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for its high resolution and low operational costs. However, among its main dis-
advantages, there is the use of ionising radiations (x-rays) and its low specificity,
especially for radiographically dense breast tissue (as in under-forty women) or
when the patients have scars or breast implants.

In recent years, Dynamic Contrast Enhanced-Magnetic Resonance Imaging
(DCE-MRI) has demonstrated a great potential in screening different tumours
tissues, gaining an increasing popularity as an important complementary diag-
nostic methodology for early detection of breast cancer [12]. DCE-MRI advan-
tages include its ability to acquire 3D high resolution dynamic (functional) infor-
mation, not available with conventional RX imaging [23] and its limited inva-
siveness, since it does not make use of any ionising radiations or radiocontrast. It
has been successfully used for under-forty women and for high-risk patients [4],
both for assessing therapy effects and for staging newly diagnosed breast cancer
[17].

DCE-MRI consists of 4-dimensional data, obtained by combining different
3D volumes acquired before (pre) and after (post) the intravenous injection
of a paramagnetic contrast agent (usually Gadolinium-based), as depicted in
Fig. 1a. Each voxel is associated with a Time Intensity Curve (TIC) representa-
tive of the temporal dynamics of the acquired signal (see Fig. 1b) that reflects
the absorption and the release of the contrast agent, following the vascularisation
characteristics of the tissue under analysis [22].

t1

t2

tT

X

Y

Z

I(x,y,z,t1)

I(x,y,z,t2)

I(x,y,z,tT)

(a) (b)

Fig. 1. DCE-MRI and time intensity curves. (a) A representation of the four dimensions
(3 spatial + 1 temporal) of a typical breast DCE-MRI scan; (b) some examples of time
intensity curves.

While the use of DCE-MRI has proved to improve breast cancer diagnosis
[14], it is a very time-consuming and error-prone task that involves analysis of a
huge amount of data [16]. A visual assessment of the lesion malignity could be
performed referring to the Fig. 1b. Type I corresponds to a straight (Ia) or curved
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(Ib) line where the contrast absorption continues over the entire dynamic study
(typical of healthy tissues or benign neoplasms); Type II represents a plateau
curve with a sharp bend after the initial upstroke (typical of probably malignant
lesions); finally, Type III shows a washout time course (typical of malignant
lesions). It follows that radiologists can hardly inspect DCE-MRI data without
the use of a Computer Aided Detection/Diagnosis (CAD) system designed to
reduce such amount of data, allowing them to focus attention only on regions of
interest.

In particular, in this paper we focus on a CAD system for the automatic
lesion diagnosis in order to better assist the physician decision by reducing the
inter/intra-operator variability.

When lesion diagnosis is performed by means of classifier systems [8], many
features have been proposed so far, roughly grouped in Clinical [9] (as age,
parental and history), Dynamic [7,9] (directly extracted from the TIC), Tex-
tural [6] (as variance, kurtosis and skewness), Pharmacokinetic [15] (extracted
by means of mathematical models of contrast agent and tissue), Spatio-temporal
[25] (as DFT coefficient map, margin and radial gradients) and Morphological
[7] (as lesion eccentricity, compactness and perimeter).

While newer hand-crafted features are continuously proposed by domain
experts, in the last years deep learning approaches have gained popularity in
many pattern recognition tasks, being able to outperform classical machine learn-
ing techniques in different fields [10]. Among these approaches, we can cite Con-
volutional Neural Networks (CNN) that are composed of different convolutional
layers stacked in a deep architecture (as in Fig. 2) meant to automatically learn
the best data representation as composed by simpler concepts. They usually
perform better than classifiers trained on hand-crafted features because are able
to learn a compact hierarchical representation of an image which well fits the
specific task to solve.

Deep approaches have been used in brain DCE-MRI, both for lesion and
anatomical segmentation [18,24], in prostate tissues analysis, by using deep
auto-encoders for tumours grading and diagnosis [13,20], while breast DCE-MRI
cancer lesion detection was never faced.

In a recent publication, Antropova et al. [2] first proposed to apply Deep
Learning for the breast cancer lesion diagnosis task, by feeding a pre-trained
CNN with the ROI extracted from DCE-MRI slices containing a lesion. They
adopted the AlexNet architecture pre-trained on the ImageNet dataset [11] as
feature extractor, by using a Support Vector Machine (SVM) for the malig-
nant/benignant classification task. To the best of our knowledge, it is the first
time that a Deep Learning approach was used in breast DCE-MRI analysis. This
notwithstanding, the results reported in [2] refer to a single training modality
(the CNN used as feature extractor); moreover, they are given by using cross-
validation (CV) for performance evaluation, which can provide in this case an
overestimation of the actual performance. Finally, no comparisons with other
approaches on the same data are reported.
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The aim of this work is then to assess CNN capability for automatic lesion
classification in breast DCE-MRI, in order to have broader results on its applica-
bility and effectiveness for a very specific task such as the considered one. In
addition to the training modality proposed in [2], we also explored the fine-
tuning of a pre-trained AlexNet and the complete training from scratch of the
same net. All the results have been also compared with those achieved by other
proposals, by using a Leave-One-Patient-Out CV evaluation in order to ensure
fair and more reliable findings.

This rest of the paper is organized as follows: Sect. 2 gives some information
on the proposed methodology and on the literature proposals used to validate the
approach considered in this study and presents the dataset used for comparing
the results. In Sect. 3, we present the results obtained by the different CNN-based
approaches, together with those achieved by other methods under comparison.
Finally, in Sect. 4, we discuss these results, by providing some conclusions.

2 Materials and Methods

2.1 Dataset

Patients. The dataset is constituted of 42 women breast DCE-MRI 4D data,
(average age 40 years, in range 16–69) with benign or malignant lesions
histopathologically proven: 42 regions of interest (ROIs) were malignant and
25 were benign for a total of 67 ROIs.

Data Acquisition. All patients underwent imaging with a 1.5 T scanner (Mag-
netom Symphony, Siemens Medical System, Erlangen, Germany) equipped with
breast coil. DCE T1-weighted FLASH 3D coronal images were acquired (TR/TE:
9.8/4.76 ms; flip angle: 25◦; field of view 370× 185 mm×mm; matrix: 256× 128;
thickness: 2 mm; gap: 0; acquisition time: 56 s; 80 slices spanning entire breast
volume). One series (t0) was acquired before and 9 series (t1-t9) after intravenous
injection of 0.1 mmol/kg of a positive paramagnetic contrast agent (gadolinium-
diethylene-triamine penta-acetic acid, Gd-DOTA, Dotarem, Guerbet, Roissy
CdG Cedex, France). An automatic injection system was used (Spectris Solaris
EP MR, MEDRAD, Inc., Indianola, PA) and injection flow rate was set to 2 ml/s
followed by a flush of 10 ml saline solution at the same rate.

Gold Standard. An experienced radiologist (A.P.) delineated suspect ROIs
using T1-weighted and subtractive image series. Starting from DCE-MRI
acquired data, the subtractive image series is defined by subtracting t0 series
from t4 series. In subtractive images, any tissue that does not absorb contrast
agent is suppressed. Manual segmentation stage was performed in OsiriX [21],
that allows the user to define ROIs at a sub-pixel level. Per each ROI the lesion
was histopathologically proven. The evidence of malignity was used as Gold
Standard (GS) for the ROI Classification problem.
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2.2 Lesion Diagnosis in DCE-MRI

The breast lesion diagnosis issue has been mainly designed in the pattern recogni-
tion framework. The most recent literature proposals mostly differ in the feature
vector used to describe the classification subject. In the following we will briefly
review those we considered for comparison; then, in the next sub-section the
CNN-based approach is described. The choice of the comparing approaches is
motivated by the attempt of covering the most part of the feature taxonomy
presented in the introduction.

In [9] Glaßer et al. proposed to use a Decision Tree trained on Clinical and
Dynamic features in order to consider both the patient high-level information and
contrast agent perfusion parameters derived from the signal temporal dynamic.

Fusco et al. [7] suggested to use both Dynamic and Morphological features,
combining them by using a Multiple Classifier System, in order to take into
account the contrast agent concentration and the lesion shape.

In [19], trying to exploit both spatial and spatio-temporal information, a
Random Forest classifier (made up of 10 Random Trees each one using a random
subset of features with no limitation on its maximum depth) was trained on the
spatio-temporal version of Local Binary Pattern in Three Orthogonal Planes
(LBP-TOP [1]).

2.3 CNN for Lesion Diagnosis

As stated in the introduction, Antropova et al. [2] investigated deep learning for
the lesion diagnosis task using DCE-MRI data. They proposed to apply transfer
learning from a pre-trained CNN (see Fig. 2).

Fig. 2. The considered convolutional neural network.

Their approach can be summarised as follows:

1. Take only the second post-contrast series from the 4D DCE-MRI data.
2. Depending on the size of the tumour, a tile around the lesion is extracted from

each lesion slice. The tile size varies between 1 and 1.5 times the maximum
diameter of the observed lesion.
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3. Images are up-sampled to yield 256× 256 pixel ROIs.
4. AlexNet [11] pre-trained on the ImageNet [3] database is used to extract a

feature vector from the last internal convolutional layer (fc7 in Fig. 2). 4096
features per each slice are extracted.

5. Performance are evaluated using a 10-fold cross-validation, by considering an
SVM as a classifier (no information about kernel or others hyper-parameters
were provided).

To better investigate the capability of the Antropova et al. [2] proposal, we
also explored two other training modalities, i.e., fine-tuning and the training
from scratch of AlexNet.

Fine-tuning of a pre-trained CNN consists in replacing the last trained fully
connected layers with the same untrained ones. Retraining the so modified net-
work will softly adapt the weights of the pre-trained layers to the new task and
will strongly train the new fully connected layer according to the new findings.
Fine-tuning allows us to use a reduced number of training images and to achieve
a stable result in fewer epochs. We chose the best number of epochs needed
to avoid overfitting by considering the loss function values during the training
phase.

In order to perform training from scratch, we deployed exactly the same
network architecture proposed by AlexNet in [11], so performing a totally new
supervised training. This approach is, usually, higher demanding and needs a
greater amount of images to achieve a valuable solution.

2.4 Performance Evaluation

To obtain a fair performance evaluation, k-fold cross-validation (CV) is com-
monly used. In our case, however, even if each lesion is composed of differ-
ent slices, the lesion diagnosis task has to predict a single class for the whole
lesion. For this reason, it is very important to perform a Leave-One-Patient-Out
Cross-Validation (LOPO-CV) instead of a slice-based k-fold CV one, in order
to reliably compare different models by avoiding mixing intra-patient slices in
the evaluation phase. Therefore, in the next Section all the results are reported
by performing a LOPO-CV and comparing each described approach in terms
of Accuracy (ACC), Sensitivity (SEN), Specificity (SPE) and Area Under the
ROC Curve (AUC).

It is worth noting that, since classification is always performed at the slice
level, a combining strategy has to be applied in order to provide a unique class
label for each lesion. Among the possible combining strategies of the results
provided by the classifier at slice level, we chose to investigate the following
ones:

Majority Voting: The class of the lesion corresponds to the most voted class
over all the slices.

Weighted Majority Voting: As for the majority voting, but each slice con-
tribution is weighted by its class probability provided by the classifier.
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Weighted Majority Voting by Slice Area: As in the previous case, but each
slice contribution is proportionally weighted by using its area.

Näıve Bayes: Predicted classes of the slices are combined according to the
Näıve Bayes approach.

Max Prob. Value per Slice: The class of the lesion corresponds to the class
of the slice with the highest class probability values as provided by the classifier.

Biggest Slice: The class of the lesion is the same of the biggest slice.

3 Experimental Results

This Section shows the results obtained by applying deep approaches for lesion
diagnosis. All the results are here presented without any remark. A discussion
is reported in the next Section.

Table 1 compares all the CNN-based approaches so far presented, by perform-
ing the training to the best of our capability in order to achieve a fair comparison.
Antropova et al. [2], in fact, propose to use AlexNet as a feature extractor, but
do not provide enough information about the SVM hyper-parameters settings.
So, we performed an optimization of the classification stage: The best results
were obtained by using a SVM with a polynomial kernel of degree equal to 3
and C=1.

The fine-tuning of AlexNet has been performed as discussed in Sect. 2; in this
case, the best results were achieved with 75 epochs and a learning rate of 10−5.

Table 1. Comparing different AlexNet training modalities, by varying the slice combin-
ing strategy. Average values obtained in Leave-One-Patient-Out CV over 42 patients
are reported.

Training modality Combining strategy ACC [%] SEN [%] SPE [%] AUC [%]

Feature Extraction Majority voting 76.19 78.26 73.68 76.43

Weighted majority voting 73.81 78.26 68.42 75.97

WMV by slice area 76.19 78.26 73.68 76.20

Näıve Bayes 76.19 82.61 68.42 72.77

Max prob. value per slice 71.43 78.26 63.16 74.83

Biggest slice 76.19 73.91 78.95 76.43

Fine tuning Majority voting 71.43 82.61 57.89 72.65

Weighted majority voting 69.05 82.61 52.63 73.23

WMV by slice area 69.05 82.61 52.63 71.40

Naive Bayes 66.67 82.61 47.37 71.17

Max prob. value per slice 69.05 82.61 52.63 73.00

Biggest slice 73.81 86.96 57.89 72.43

Finally, we also investigate whether training by scratch of AlexNet could
improve the lesion diagnosis with respect to the previously described approaches.
In this case, we found that the learning rate strongly influences the learning
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Fig. 3. Training from scratch loss function values for different learning rates (LR), by
varying the number of epochs.

curve. Looking at the Loss function evaluation per each epoch (Fig. 3), we can
see that the network suffers from under-fitting. The loss function settles to a
certain value and, even if further training steps are performed, the net does not
learn more.

For the training from scratch approach in the considered case, a learning
rate of 10−2 and 100 epochs are enough to reach the best working point of the
net. Unfortunately, very poor results can be achieved, with an accuracy equal to
54.76% and an AUC value of 68.55%.

Table 2 compares the best results obtained by a deep approach with those
obtained by applying the methods proposed in [7,9,19].

Table 2. Comparison of the best results obtained by a CNN-based lesion diagnosis
approach with those achieved by other state-of-the-art approaches. Average values
obtained in Leave-One-Patient-Out CV over 42 patients are reported.

Methodology ACC [%] SEN [%] SPE [%] AUC [%]

LBP-TOP (Piantadosi et al. [19]) 83.33 95.14 66.67 88.41

Best CNN 76.19 73.91 78.95 76.43

Dyn. & Morph. + MCS (Fusco et al. [7]) 69.05 78.26 57.89 68.08

Decision trees (Glaßer et al. [9]) 64.29 95.65 26.32 60.98

Finally, in order to closely replicate the results reported in [2], we also per-
formed a slice based 10-fold CV of the SVM (using the same parameters that
gave us the results reported in the previous tables) fed with the 4096 features
extracted by using AlexNet, obtaining 91.75% and 96.90% in terms of Accuracy
and AUC, respectively.
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All the results have been obtained by using the MatLab Neural Network Tool-
box from Mathworks, over our University’s computing infrastructure (SCoPE -
www.scope.unina.it) where three DELL R720 are equipped with two Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 128GB RAM and a cluster of five NVIDIA
Tesla K20m GPU is available.

4 Discussion and Conclusions

The aim of this paper was to investigate automatic lesion malignancy classifi-
cation in breast DCE-MRI by means of Convolutional Neural Networks (CNN),
analyzing a literature proposal and comparing it with different training modal-
ity and combining strategies. The evaluations were performed on ROIs manually
segmented by an experienced radiologist (A.P.) for all the patients in our data-
base. Obtained results were compared with previous findings in the literature, by
using a Leave-One-Patient-Out cross-validation (LOPO-CV) in order to ensure
a fair comparison and more reliable findings.

Antropova et al. [2] presented the first use of deep learning for the lesion clas-
sification task in DCE-MRI data. They propose to apply transfer learning from
a pre-trained CNN. Results presented in table 1 show that a CNN pre-trained
on natural images (ImageNet dataset) used as a feature extractor performs bet-
ter than considering a fine-tuning modality, in terms of Accuracy, Sensitivity,
Specificity and AUC. The same table also shows that the most effective slice
combining technique is to consider as lesion class the one predicted by the slice
containing the biggest ROI. This is reasonable, since the biggest ROI in a lesion
is likely to bring the majority of the lesion malignancy information. Reported
results confirm that the training from scratch approach is not feasible with the
reduced number of biomedical images usually available.

Table 2 compares the best CNN-based approach with other approaches pre-
sented so far in the literature, showing that, even if deep learning can outper-
form two of them [7,9], it cannot overcome the method based on the LBP-TOP
descriptor [19]. This result seems to suggest that while CNNs show promis-
ing results in treating biomedical images, they have to be carefully designed
and tuned in order to outperform approaches specifically designed to suitably
exploit data information for the specific task. It is worth recalling, in fact, that
the presented CNN, differently from the LBP-TOP descriptor, do not use neither
dynamic nor spatio-temporal information. Moreover, training times of our best
CNN-based solution are about two orders of magnitude graeater with respect to
those needed by the other approaches.

Our results also confirm that it is important to compare all the approaches on
a patient base, in order to obtain a more reliable outcome. The results obtained
by using a 10-fold CV are in fact significantly higher when compared with those
obtained by using a LOPO-CV. The former are however intrinsically unfair
because of exploiting inter-patient knowledge, so biasing the cross-validation
results.

As a final remark, we would like to highlight that a problem concerning
the use of a CNN is that there is no clear physiological interpretation of the

www.scope.unina.it
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classifier operational mode, thus it can be very difficult to motivate results from
the physician point of view. Another limit of this study is the population size;
our findings should be then confirmed on a larger dataset. Future works will
focus on these aspects and on the study of net design choices that can be able to
suitably exploit dynamic or spatio-temporal information coming from DCE-MRI
data.

Acknowledgments. The authors gratefully acknowledge the availability of the Cal-
culation Centre SCoPE of the University of Naples Federico II and thank the SCoPE
academic staff for the given support.
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1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns:
application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–
2041 (2006)

2. Antropova, N., Huynh, B., Giger, M.: SU-D-207B-06: predicting breast cancer
malignancy on DCE-MRI data using pre-trained convolutional neural networks.
Med. Phys. 43(6), 3349–3350 (2016)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

4. El-Kwae, E.A., Fishman, J.E., Bianchi, M.J., Pattany, P.M., Kabuka, M.R.: Detec-
tion of suspected malignant patterns in three-dimensional magnetic resonance
breast images. J. Digit. Imaging: Official J. Soc. Comput. Appl. Radiol. 11, 83–93
(1998)
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