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Abstract. Optical Coherence Tomography (OCT) is affected by ubiqg-
uitous speckle noise that difficult the visualization and analysis of the
retinal structures. Any denoising strategy should be able to remove effi-
ciently the noise as well as preserves clinical information contained in
the images. This information is crucial to analyses the retinal layer tis-
sue that allows the posterior analysis and recognition of relevant diseases
as macular edema or diabetic retinopathy.

To address this issue, a method based on the Fourier Butterworth
filter combined with a contrast enhancement and a histogram regular-
ization was developed in order to reduce the speckle noise in OCT retinal
images. The proposed method was validated using 45 OCT retinal images
organized into 3 groups of noise degree, comparing the results with the
performance of representative methods of the state-of-the-art. The val-
idation and comparison were made through three quantitative metrics:
Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR) and aver-
age Effective Number of Looks (ENL).

The experimental results showed that the proposed method offered
satisfactory results, outperforming the results of the other methods by
the achievement of a SNR of 7.04 dB and a CNR of 14.08 dB better than
the second best filter, respectively, for the whole group of OCT retinal
images.
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1 Introduction

Optical Coherence Tomography (OCT) is an imaging technique for the analysis
of the eye fundus that provides a non-invasive and contactless cross-sectional
retinal visualization with high resolution. It has been widely used in biomedical
imaging, as in the extraction of medical information as spatial information but
also in the measurement of biological tissues such as retinal layers [1-3] and
other structures [4,5], in a micro scale way.
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In OCT, speckle noise can be introduced in the capture process by many
causes like the eye motion of the patient, multiple scattering or particular prop-
erties of each OCT system [6]. Therefore, the process of denoising of ophthalmic
OCT images is essential to obtain better quality images that may lead to a
better identification of the retinal structures as well as a better recognition and
quantification of different retinal diseases, thus aiding the diagnosis made by the
clinicians [7]. For speckle noise reduction, two major strategies are applied at dif-
ferent capture stages: (I) during image acquisition and (II) at a post-processing
stage. The first strategy is usually performed by the device at the moment of
the image capture, by the use of multiple uncorrelated recordings that are com-
bined to produce the final image. The second stage requires a post-processing
of the OCT scans based on computational algorithms [8]. A large variety of
post-processing methods have been proposed for speckle noise reduction of OCT
slices. In the literature, there are several OCT denoising techniques that are
being adapted from other domains as active radar, synthetic aperture radar
(SAR) or ultrasound, among others, since the granular noisy pattern is similar
to the noise that appear in OCT scans [8]. Therefore, a substantial amount of
signal processing research has been conducted to combat speckle noise and, in
the last years, new versions of standard denoising filters [9] were adapted to
the task of OCT image denoising [10,11]. Most of them were originally applied
to other domains, such as the Lee filter [12], Kuan filter [13] and Frost filter
[14], wavelet filter [15], general Bayesian filter [16] or anisotropic diffusion [17],
which are the most widely discussed as spatial adaptive filters noise attenua-
tion. Despite the efforts, it is being a challenge to develop an efficient speckle
noise reduction algorithm that simultaneously preserves details such as texture
and edge information, ensuring that the particular anatomy of those structures
are preserved, beyond the image quality metrics, as signal-to-noise-ratio (SNR),
contrast-to-noise-ratio (CNR) or average effective number of looks (ENL), that
are typically used to measure any denoising strategy.

In this paper, we propose a new method for speckle noise reduction in OCT
images based on the application of the Fourier Butterworth filter in combination
with an image enhancement and histogram regularization. The method ensures,
at the same time, image detail as well as preservation of particular morpholog-
ical structures, allowing the possible recognition of pathologies in the internal
retinal tissue. To validate the method, a comparative analysis with algorithms
of the state-of-art was developed and implemented for an automatic calcula-
tion of quality images metrics, such as SNR, CNR and ENL and using three
representative image sets of progressive noise complexity.

2 Methodology

To reduce the speckle noise in OCT retinal images the proposed method is based
on the Fourier Butterworth filter. This low pass filter minimizes high frequency
components which are essentially the aimed noise. Then, to enhance the image
contrast, a post-processing stage based on histogram correction was applied to
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highlight the morphological structures as retinal layers and pathological struc-
tures.

Moreover, in order to develop a systematic comparison between the pro-
posal with methods of the state-of-art, an automated iterative regions of inter-
est (ROIs) extraction was implemented, ensuring an independent and objective
process on the determination of quantitative metrics such as SNR, CNR and
ENL.

2.1 Fourier Butterworth Image Filtering

Fourier Butterworth filter is a low-pass filter where images are transformed from
the spatial to the frequency domain and vice-versa. It is characterized as a
smooth filter where the high frequencies are cutoff, reducing the noise while
preserving, simultaneously, the edges. The filter is governed by two main para-
meters: the critical frequency and the order filter [18]. The critical frequency
determines the transition zone where amplitude of the frequency drops from 1
down to 0, while the order determines its steepness, such that a higher order
produces a narrower transition zone [19].

Butterworth filter is applied in OCT images for speckle noise reduction fol-
lowing, as shown in the diagram of blocks in Fig. 1, the next steps: (1) fast Fourier
transform (FFT), (2) Transfer Function H(u,v), (3) inverse Fourier transform
(IFFT). Based on spatial information of the input noisy image, a meshgrid array
is created in order to process the information in frequency domain, which corre-
sponds to the first process block of the diagram.

[ I ]—> FFT —  G(u,v) IFFT —{ Il ]

Fig. 1. Basic flow diagram of speckle noise reduction for OCT images based on Fourier
Butterworth filter.

There, I is the input noise image and I, is the output Fourier Butterworth
filtered image. The second process block represents the transfer function H (u, v)
of the Butterworth low-pass filter of order n at a distance from the origin, defined
by:

1

D(u,v))Q (1)

H(u,v):?

where, D(u,v) is the distance from point (u, v) to the center of the filter and Dy
is the cutoff frequency. Having calculated H (u,v) a multiply operation is applied
with the Fourier transform of an original image, F'(u,v), as:

G(u,v) = H(u,v) X F(u,v) (2)

Finally, the resultant image, G(u,v) is returned from the frequency to the
spacial domain applying IFFT.
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2.2 Post Processing

The Fourier Butterworth filter minimizes the presence of noise, Fig. 2(b). How-
ever, it is necessary to enhance the visualization of the morphological structures
such as retinal layers that appear in the eye fundus in order to facilitate the pos-
terior analysis. In an attempt to enhance these structures, two main steps were
taken: a weighted multiplicative operation of the output Fourier Butterworth
filter by the original image and a histogram correction.

Firstly, the resultant image of the Fourier Butterworth filter is multiplied by
the original image with a weight w = 1.2, value empirically calculated based on
extensive experimentation to yield the best results enhancing the boundaries of
retinal layers, as well as preserving the details of the tissue of the morphological
structures, as shown in Fig. 2(c).

Then, as a second step, a histogram correction was introduced to regularize
the image contrast based on the histogram, as shown in Fig. 2(d), resulting in a
more detailed and clear image.

(a) (b) (c) (d)

Fig. 2. Example of the post-processing stage of the OCT retinal images. (a) Origi-
nal noisy image. (b) Output Fourier Butterworth filtered image. (c¢) Original image
correction using the Fourier Butterworth output filter. (d) Contrast enhancement and
histogram correction.

2.3 Automatic Validation Process

In order to validate and compare the proposed methodology with reference meth-
ods of the literature, quantitative image metrics were calculated, such as SRN,
CNR and ENL, as some of the most used metrics in other denoising approaches as
classification metrics for speckle noise reduction. However, the presence of patho-
logical structures in the OCT images makes the scenario of image denoise quan-
tification more complicated, since the pathological regions, black non-reflective
spaces [20], can alter erroneously this metrics. In order to minimize this limita-
tion, we implemented an automatic method for the extraction of a background
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and retinal layer ROIs that are needed for the calculation of the implemented
metrics. Two main steps were implemented: an automatic segmentation of the
retinal layers and the automatic ROIs extraction.

Automatic Segmentation of Retinal Layers: The calculation of the imple-
mented metrics needs the selection of ROI windows in the background and inside
the retinal layer tissue. To automatize this process, we need to identify the limits
of these retinal layers. Based on the work of Chiu et al. [21], we implemented the
identification of the boundaries of retinal tissues in OCT images. This automatic
approach for segmenting retinal layers uses graph theory and dynamic program-
ming to represent each OCT image as a graph of nodes, connecting optimum
paths from both sides of the image. Firstly, the algorithm calculates dark-to-light
gradient images, identifying adjacent layers and generating weights for the layer
segmentations. The minimum weighted paths are found by the Dijkstra’s algo-
rithm [22] to progressively identify the main layers of the retina. This approach
detects eight different layers. However, for this purpose, only the Inner Limiting
Membrane (ILM) and the Retinal Pigment Epithelium (RPE) layers were used,
as they delimit the retinal layer region.

Automatic ROIs Extraction: As second step, an iterative and random
process of seed generation and ROI construction was implemented. The seed
coordinates are needed to construct m*" ROI windows inside the retinal layers
as well as 1 background ROI window. Based on these seeds, which are obtained
from the original noisy image between the ILM and RPE retinal layers, it is pos-
sible to obtain the ROIs in exactly the same coordinates on the returned filtered
images to measure the degree of improvement before and after the denoising
process. In order to ensure that the quality metrics will not be influenced by
pathological structures, 50 random repetitions were executed in an automatic
way obtaining as a result the final quality metric means. Moreover, each set of
random positions is used with all the methods, certifying that the approaches
are all under the same conditions. The positions represent the upper left coor-
dinates of m*" ROIs, as shown in Fig. 3, and each ROI will be a window with a
size of 10 x 20 pixels. The background ROI is obtained from the upper left part
of the each OCT filtered image, having a total area equal to the sum of the m!*
ROIs areas, as:

A=Y Ap (3)
m=1

where, Ay is the background total area and A,, are the area of each m!* ROIs.

The quality metrics, SNR, CNR and ENL, provide relevant information
about the noise signal, contrast and homogeneity in images, respectively, and
are defined as:

SNR,, = 20- zogm(’57m ) (4)
b
CNR,, = _Hm — o (5)

N
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12

ENL,, ="~2 (6)
m

where, pp and o are the mean and standard deviation of the background ROI,

respectively, while y,, and o, are the mean and standard deviation, of the m®*

ROIs, respectively. For this purpose, 8 ROIs were selected as m value, for the

extraction of the retinal tissue regions, which is a representative and sufficient

value to estimate accurately, the quality metrics, having finally:

8 m=8 m=8
(Y SNRy,] CNR=([) CNR,] ENL=

m=1 m=1 m=1

m

—_

SNR =

| —
| —

200 400 600 800 1000 1200

Fig. 3. Example of retinal layers delimitation and ROIs construction. 1°* row, iterative
random seeds (+) between ILM and RPE layers. 2"¢ row, ROIs construction where:
1-8, retinal layer ROIs; 9, the background ROI.
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3 Results and Discussion

We used a dataset composed by 45 OCT retinal images acquired by two different
OCT devices: CIRRUS™ HD-OCT Zeiss OCT device and Spectralis® OCT
confocal scanning laser ophtalmoscope from Heidelberg Engineering, two of the
most representative and used of the market. We used these groups of images with
different levels of noise and, therefore quality, each one of them with 15 images:
(a) good quality images, (b) mid quality images and (c) bad quality images.
Figure 4 shows representative examples of images included in each group. The
vast majority, almost 90% of the images on the dataset belongs to unhealthy
retinal patients, increasing the difficulty of the validation process due to the
presence of dark regions, typically cystoid regions, that may influence in the
metric results.

Fig. 4. Example of classification groups of OCT retinal images. (a) Good quality. (b)
Mid quality. (c) Bad quality images.

In order to test the performance of the method and perform a fair comparison,
we also tested representative denoising methods for OCT images of the state-of-
the-art under the same conditions of the proposed methodology. These methods
[10,11] are: Frost filters, Kuan filter, Kuwahara filter, Lee filter and wavelet filter.
The proposed method was used with a cutoff frequency equal to 80 Hz and 5"
order, parameters that were empirically established.

The results are synthesized in Fig. 5 which allows to do a quantitative com-
parison between the original and the filtered images of each quality group. The
results show that the proposed method offers a better performance than the
rest of the tested methods for all the groups of images in the dataset, having
an increase of the SNR parameter from 22.9dB to 35.6dB in the group of good
quality images and 9.3 dB better than the second best filter, the Frost filter. This
demonstrates that the proposed filter suppresses noise in group (a) of images with
good quality, but also, similarly positive results were obtained from (b) and (c)
groups of images. Further, as expected in group (c) the proposed method have
an improvement of 7.5dB better than the next best filter, which is Kuan filter
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and 14.1dB higher than the original images. Regarding the CNR metric, the
proposed method also shows improvements of over 22.1dB, 6.5dB and 13.2dB
better than the second best method for (a) to (c), groups of images qualities,
respectively. It is also possible to conclude that the image quality classification
is coherent with the quantitative metrics, since the best group of original image
quality has the highest values for SNR and CNR while the worth group of image
quality has the lowest values.

Table 1 presents a general performance analysis and comparison using the
entire dataset of 45 images. The three SNR, CNR and ENL were calculated for
the original image, the state-of-the-art approaches and the proposed method.
The SNR metric of the proposed method increases over 12.74 dB more when
compared to the original noisy image and over 7.04dB than the second best
filter, the Kuan filter. Moreover, the proposed method also produced the best
image contrast (CNR), near 17.81 dB better than the original image from 4.77 dB
to 22.58 dB and 14.08 dB better than the Kuan filter (22.58 dB to 8.50dB) also
the second best method. This reinforces the effectiveness of the proposed method
in noise removal conditions with the contrast enhancement of the images and
the preservation of the retinal layer tissue details. Regarding the ENL metric,
despite the proposal offers a satisfactory score, it is not the best of all of them.
However, as this metric measures the homogeneity of the tissue, extremely high
values are not desired as they may be derived due to more blurred output filtered
images, losing, therefore, retinal tissue details (Fig. 6).
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Fig.5. Results of quality metrics for the tested denoising methods filters on the 3
groups of quality images: (a) Good quality, (b) Mid quality and (c) Bad quality images.
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Table 1. Results of the quality metrics SNR, CNR and ENL using the entire dataset.

Method All images
SNR (dB) | CNR (dB) | ENL

Original | 17.66 4.77 39.88
Proposed |30.41 22.58 92.57
Frost 22.47 8.34 115.42
Kuan 23.36 8.50 140.07
Kuwahara | 17.97 4.78 41.53
Lee 21.41 7.07 76.44
Wavelet 22.23 7.7 82.42

(a) (b) (c) (d) (e) ()

Fig. 6. Example of denoising results in OCT images. (a) Original good quality image.
(b) Filtered good quality image. (c¢) Original mid quality image. (d) Filtered mid quality
image. (e) Original bad quality image. (f) Filtered bad quality image.

4 Conclusions

In this paper, we present a new methodology for denoising OCT images based
on the Fourier Butterworth filter combined with an image contrast enhancement
and histogram regularization. The property of low-pass filter ensures the speckle
noise reduction that is present on the OCT images whereas the post-processing
with the histogram correction allows an improvement on the image contrast,
enhancing the retinal tissue details.

According to the visual assessment of the results before and after filtering
the OCT images, it is possible to conclude that the proposed method provides
an efficient noise suppression with a higher contrast enhancing of morphologi-
cal structures such as the boundaries of the different retinal layers, preserving
clinical details as cysts without blurring excessively the output image in all the
groups of original image qualities. Additionally, based on experimental quality
metrics as SNR, CNR and ENL, we can offer an accurate method for noise sup-
pression in comparison with other well-stated methods of the literature. The
proposed method returns the best results in SNR, improving over 12.74 dB and
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7.04dB when compared with the original and the second best filtered images,
respectively. Moreover, it has a great potential to improve the image contrast
(CNR) with 17.81dB better than original image and 14.08 dB better than the
Kuan filter, the second best filter. In this way, the method is capable to improve
the conditions of the OCT images, facilitating any posterior analysis of the reti-
nal characteristics in the diagnosis of different retinal diseases.
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