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Abstract. Person Re-Identification is an important task in surveillance
and security systems. Whilst most methods work by extracting features
from the entire image, the best methods improve performance by pri-
oritising features from foreground regions during the feature extraction
stage. In this paper, we propose the use of a Partial Least Squares Regres-
sion model to predict the skeleton of a person, allowing us to priori-
tise features from a person’s limbs rather than from the background.
Once the foreground area has been identified, we use the LOMO [9] and
Salient Colour Names [21] features. We then use the XQDA [9] Dis-
tance Metric Learning method to compute the distance between each
of the feature vectors. Experiments on VIPeR [4], QMUL GRID [12–14]
and CUHK03 [8] data sets demonstrate significant improvements against
state-of-the-art.

1 Introduction

Person Re-Identification, or simply ReID, is the process of automatically iden-
tifying someone from a gallery of images that has the same identity as a person
presented in an new image, and it has a number of important applications in
surveillance, people-monitoring and biometrics. Re-Identification is challenging
because often example images are taken with non-overlapping cameras, e.g. for
a CCTV network, and consequently the images will exhibit large variations in
person pose, illumination, and resolution. There are generally two main com-
ponents in most ReID systems, feature extraction and distance metric learning.
Feature extraction defines the process of obtaining a robust descriptor of the
person, using features such as colour and texture, often chosen because of their
robustness to varying illumination.

To overcome the problem of pose variation, many methods, such as [21],
split person images into several bands of stripes, and extract colour histograms
separately. This aims to maintain spatial information and enables matching to
be done area-by-area rather than image-by-image, improving results. However,
background information is also preserved, leading to some information irrelevant
to the matching process. In [21], a Gaussian distribution is used to weight pixels
according to their distance from the centre of the image where they are more
likely to represent a persons body, but is less successful when a person is walking
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perpendicular to the camera and has their legs spread widely apart. Symmetry-
Driven Accumulation of Local Features is proposed in [2], where the person image
is divided into three parts - the head, torso and legs, and a vertical axis of sym-
metry is found. This is achieved by finding vertical axes which separate regions
with strongly different appearances. Then, a HSV histogram, Maximally Stable
Colour Regions [3] and Recurrent Highly Structured Patches [2] are extracted.
The use of three parts as well as a vertical axis of symmetry maintains some
spatial information by allowing the system to partially know which areas rep-
resent a person’s body. However, it still assumes that foreground information is
always closer to the centre of the image.

Another method that has been used widely for foreground modelling is Stel
Component Analysis (SCA) [5] and attempts to capture the structure of images
of a given type, by splitting the image into small areas (stels) that have a com-
mon feature distribution [2,21]. However, if any single component of an image
has a wider feature distribution, or if its feature distribution is similar to the
background, both regions may be merged. This may lead to a significant por-
tion of the image being misclassified. For feature extraction, Yang et al. [21]
proposed Salient Colour Names, where pixels colours are quantised by their dis-
tance from sixteen named colours in the RGB space. The authors argue that
whilst the foreground information is highly important, background information
may also be important to give context, and extract features from both the fore-
ground and the background, but placing priority on the foreground regions. We
employ a similar approach to feature weighting, extracting features from the
entire image but giving a higher weighting to those from the foreground. In
LOMO [9], each person image is split into ten by ten pixel patches with an over-
lap of five pixels in each dimension. A HSV joint histogram and a Scale Invariant
Local Ternary Pattern (SILTP) texture histogram [11] is then extracted from
each patch. Afterwards, each row of patches is analysed, with the highest value
in each bin taken to form the final histogram descriptor across that row. The
histograms for each row are summed to form the descriptor. This helps achieve
some invariance to viewpoint changes. The image is then downscaled by a fac-
tor of two and four and the process is repeated. The feature descriptors are
then concatenated together. Our proposed foreground segmentation algorithm
is used with the LOMO and Salient Colour Names [21] features, extracting from
the entire image whilst weighting pixels more highly from the foreground.

In recent years, multi-layer convolutional neural networks (CNNs) have been
shown to be effective for the ReID matching problem, e.g. [8], in some cases
out-performing traditional feature extraction and matching learning methods.
Because CNNs consists of many millions of weight parameters which have to
be learned though training, they require many thousands of training samples,
which restricts their use on some limited gallery ReID data, and where they
are effective, the matching requires re-presentation of all the gallery data to
the network during matching, and thus can be inefficient to use. One way to
generalise training data is by data augmentation through warping, but the set
of transformations required allow for small view point changes, but pose changes
cannot easily be made without an appearance model of people.
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In this paper, we propose a person Re-Identification method which predicts
the skeleton and relative widths of the torso and limbs of a person prior to
the feature extraction stage. We use supervised learning in order to calculate
a regression between the appearance of an image and the skeleton landmarks
and is achieved through Partial Least Squares. We show using this method that
the Rank-1 rate can be significantly improved in a traditional ReID approach.
We detail the method and present comparative experimental results using the
VIPeR [4], QMUL GRID [12–14] and CUHK03 [8] data sets. In conclusion, we
make proposals of how our appearance model might be used for video ReID
and perhaps in conjunction with a CNN for data augmentation during network
training.

2 Method

In this section, we describe our method (Fig. 1) which uses a novel skeleton fitting
approach to model the image foreground, and then it is combined with robust
feature extraction and a distance metric learning to perform matching.
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Fig. 1. System diagram of the proposed method showing PLS model building, feature
extraction and matching.

2.1 Partial Least Squares Foreground Appearance Modelling

To predict the skeleton of each person, we learn a regression between the appear-
ance of a person image and a set of landmarks which define a persons skeleton:
head, torso and limbs. We use a Partial Least Squares Regression model to
compute the regression.

Let X = (x1,x2, . . . ,xn) be a matrix of image appearances, where each
column is a feature vector extracted from a set of n images. Each vector consists
of the concatenation of several local shape and texture features extracted from
different patches of an image. Similarly, Y = (y1,y2, . . . ,yn) is a matrix where
each column consists of a series of co-ordinates representing skeleton keypoints,
one for each corresponding image appearance. In constructing y, each skeleton
limb is specified by three points: (m,n,o), representing the ends of the limbs
along their centre line and the point located perpendicular to its axis, defining
the limb width.
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Fig. 2. Examples of PLS skeleton fitting. Each set of five images shows: original, input
HOG appearance features, ground-truth skeleton data, PLS fitted skeleton result, fore-
ground segmented mask.

Partial Least Squares [16,17] (PLS) is used to find a linear decomposition of
X and Y such that:

X = TPT + E, Y = UQT + F, (1)

where T and U are the score matrices, P and Q are the loading matrices, and E
and F represent residual matrices of X and Y respectively. Unlike PCA, the PLS
algorithm initially computes weight vectors w and c such that greatest variation
in X and Y is captured. It can be shown that, in this case, weight vector w is the
eigenvector corresponding to the largest eigenvalue of XTY Y TX, and similarly,
c is the principal eigenvector of Y TXXTY . X and Y are then deflated by

X
′
= X − tpT , Y

′
= Y − uqT , (2)

where p = XT t/(tT t) and q = Y Tu/(uTu). The process is repeated for X
′
and

Y
′
until the residuals are below a required threshold and all score vectors t and

u have been extracted.
Having calculated the score matrices, T and U , to predict a skeleton given a

test instance of an image appearance, xi, then

ŷi = P+Qxi (3)

where P = (TTT )−1TTX ′ and Q = (UTU)−1UTY ′ and P+ is the Moore-
Penrose inverse of P .

To learn the PLS regression, we take a set of training images and extract
HOG features on a regular grid across the image to form our appearances, and
regress them to corresponding landmarks by solving for P+Q. In our method, the
appearance X is represented by these Histogram of Oriented Gradients features.
Figure 2 shows examples of skeleton fitting on a trained PLS model. The PLS
skeleton fitting result can be used to create a image mask, which is applied to
the original image to produce a person silhouette. The method can be trained
to work with both frontal and sideways views.
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2.2 Foreground Feature Extraction and Feature Weighting

Having located the foreground regions (person) with the PLS skeleton fitting,
we apply a feature extraction stage and use weighted Local Maximal Occurrence
(LOMO) [9] and Salient Colour Names [21].

Weighted LOMO. We modify LOMO [9] such that foreground regions are
prioritised over background by feature weighting. LOMO begins by applying a
colour normalisation step using the Retinex algorithm [7] to make the images
of the same person from different cameras with different illumination condi-
tions appear more consistent. LOMO features are taken from overlapping image
patches across the image. HSV histograms and SILTP histograms over three
scales [11] are integrated in a combined feature. Then by taking the maximum
value in each bin, some invariance to viewpoint variations is gained.

In [18,21], the authors discuss the benefits of background in providing con-
text for the problem of People Re-Identification. However, both methods extract
not only from the entire image, but also from the foreground areas again, con-
catenating both to form the final feature. In our work, because the skeleton of
each person has been estimated, we use an image mask to weight the LOMO
features as they are accumulated by the percentage of predicted foreground in
each feature patch which overlaps with the foreground mask:

fw(B) =
|F ∩ B|

|B| f(B), (4)

where B is the set of pixels in the image patch and F is the set of pixels labelled
foreground. Once all patches in a row have been weighted, the maximum value for
each bin in that row can be taken towards the final descriptor. In the experiments
presented below, we use the code given by [9] to extract the LOMO features,
and alter them as described prior in order to prioritise the features from the
foreground.

Salient Colour Names. Salient Colour Names [21] define sixteen coordinates
in the RGB space of carefully chosen colours, e.g. fuchsia, blue, aqua, lime, etc.,
extending the Colour Names [19] method, which has only eleven. The RGB colour
space is then first quantized into 32×32×32 indexes, d, with each index having
512 quite similar colours, w. The set of colour names are defined as coordinates
in the RGB space, Z = {z1, z2, . . . , z16}, and a mapping (posterior probability)
from a given index colour d and a colour name distribution over Z is calculated.
The process is a form of vector quantisation, and similar to the concept of a Bag
of Words, and has the advantage for being able to assign multiple similar colours
to similar colour name distributions.

Then a mapping posterior probability distribution is factorised into two
terms:

p(z|d) =
512∑

j=1

p(z|wj)p(wj |d), (5)
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where the first term is a distribution of probabilities p(z|w) calculated as nor-
mally distributed variates of the closest K colour name given a quantized colours
wj (i.e. one of those that fall within a discretization bin di). Note that variance
of this distribution is estimated over K − 1 colours not in the nearest K nearest
neighbour set, 1

K−1

∑
zk �=z p(zk|zj):

p(z|wj) =
exp(−‖z − wj‖2/ 1

K−1

∑
zi �=z ‖zi − wj‖2)∑

k exp(−‖z − wk‖2/ 1
K−1

∑
zi �=z ‖zi − wj‖2)

(6)

The second term of Eq. 5, p(w|d), models the variance wj at sample di,
against its mean value, μ, capturing how likely many similar colours are being
captured at this position. The more similar colours that are present, the larger
this value.

p(wj |d) =
exp(−α|wj − μ|2)

∑512
k=1 exp(−α|wk − μ|2) . (7)

Together the two terms capturing how similar or salient colour names are, to
the sample colour indexes di. Multiple similar colours result in similar colour
name distributions and thus providing greater illumination variation. The salient
colour name colour distributions can be computed off-line, and so are computa-
tionally efficient when used.

Finally, similarly to the LOMO feature, a log transform is applied to the
Salient Colour Names features, and each histogram is normalised to a unit length.
This descriptor is concatenated with the weighted LOMO features to form our
final feature descriptor.

2.3 Distance Metric Learning

A metric for measuring the distance between feature descriptors is used at the
matching stage. KISSME [6] calculates the distance between two feature vec-
tors as:

τ2
M (fi, fj) = (fi − fj)T (Σ−1

I − Σ−1
E )(fi − fj). (8)

with the intra-personal, ΣI , and extra-personal, ΣE , scatter matrices. Here,
we use Cross-view Quadratic Discriminant Analysis (XQDA) [9], which extends
KISSME. With KISSME, it is possible to perform dimensionality reduction prior
to estimating ΣI and ΣE by performing PCA on the input vectors. XQDA how-
ever considers the metric learning and the dimensionality reduction together. If
D is the original dimensionality of the data and R the required reduced dimen-
sionality, XQDA learns a subspace W = (w1,w2, . . . ,wR) ∈ R

R, whilst simul-
taneously learning a distance function:

dw(fi, fj) = (fi − fj)TW (Σ
′−1
I − Σ

′−1
E )WT (fi − fj) (9)

where Σ
′
I = WTΣIW and similarly Σ

′
E = WTΣEW . Directly optimising dw is

not possible because of the presence of two inverse matrices. As the distribution
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of intra-personal and extra-personal distances have zero mean, a traditional LDA
cannot be used to determine W . Instead, for any projection direction w, which
is a column of W , it is possible to maximise the ratio of variances σ2

E(w)/σ2
I (w).

Since however, σ2
E(w) = wTΣEw and similarly σ2

I (w) = wTΣEw, the objective
function is the Generalised Rayleigh Quotient:

J(w) =
wTΣEw
wTΣIw

. (10)

We can solve for w by a generalised eigenvalue decomposition in the same way
as LDA is solved by maximising

max
w

wTΣEw, s.t. wTΣIw = 1. (11)

The columns of W are the R eigenvectors of Σ−1
I ΣE taken in decreasing order

of eigenvalue. Liao et al. [9], have advice on how to make the distance learning
calculation robust and computationally efficient. Features extracted from train-
ing images using the ground-truth skeletons can be passed to XQDA in order to
learn a distance metric.

3 Results and Discussion

In our experimentation, we define a skeleton of twenty-nine points representing
fourteen limbs, where each limb consists of two end-points, and a third point to
locate the limb edge. The bottom point of each limb is also the top point of the
following limb. For our PLS models, we extract the top fifteen components for
the Skeleton appearance models. We use three data sets for our experiments:

– VIPeR: VIPeR [4] contains 632 image pairs, each with a size of 128×48 pixels.
Images in the VIPeR data set are captured using two cameras, and have large
variations with pose and illumination, and also contain occlusion.

– QMUL GRID: QMUL GRID [12–14] consists of 250 person image pairs, taken
from eight disjoint cameras in an underground public transport station. In
addition, there are also 775 identities consisting of only one image. Images
come in varying sizes. This data set suffers from severe occlusion, as well as
variations in pose and illumination. Colour is not as vibrant as in the other
data sets, and significant noise is present in the images.

– CUHK03: CUHK03 [8] is the largest widely-used data set in this area, con-
sisting of 1360 identities across two cameras per identity. Each individual has
an average of about five images per camera view. Images are obtained by
taking stills from a video sequence over several months, and thus suffer from
varying illumination conditions. This data set also suffers from pose varia-
tions and occlusion. Images are cropped using both manual cropping and a
person detector.
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From all data sets, we extract Histogram of Oriented Gradients (HOG) fea-
tures from the standard, non-Retinex images, using a cell size of 6 pixels and a
block size of 2 pixels. From the VIPeR data set, we extract the HOG features
from the V channel of the HSV colour space, in order to build PLS regression
models. The VIPeR data set provides person orientation information for each
image, and thus we can split the images in to two partitions - perpendicular to
the camera or otherwise. We build separate PLS models for each partition and
learn a classifier for model selection. Examples of skeleton fits and the best and
worst fitting results on VIPeR are shown in Fig. 3. The fitting fails on the few
images where a person has their arms raised above their heads.

Fig. 3. Examples of the ground-truth and predicted skeletons from VIPeR: (a) A ran-
dom image with a RMSE of 3.8 pixels; (b) The image with the minimum RMSE of 1.8
pixels; (c) The image with the maximum RMSE of 16.0 pixels. The average RMSE is
5.2 pixels.

We use the experimental procedures used in various literature, e.g. [2,9]. The
training and testing sets are split randomly into even sized sets, with 316 identi-
ties used for each. We repeat our experiment ten times, averaging the scores to
produce our final result. From Table 1, we can see that by concatenating the orig-
inal LOMO features with features primarily from the foreground (PLSAM(v1)),
we can achieve an increase in all measured Rank scores and demonstrates that
our method produces a much more robust person descriptor. When concatenated
with Salient Colour Names features (PLSAM(v2)), the results increase further.
This is unsurprising, due to how distinct are the clothing colours in the VIPeR
data set. Overall, we can see a 4.0% increase when comparing our method to the
state-of-the-art. The CMC curve plots are given in Fig. 4.

For the QMUL GRID data set, we resize each image to 128 × 48 pixels.
PLS models are built from HOG features from the V channel of the HSV colour
model. Whilst we use two view PLS models for the VIPeR data set, only a single
model is used for the QMUL GRID data set because most people in this data set
are facing either towards or away from the camera. Examples of skeleton fits and
the best and worst fitting results on QMUL GRID are shown in Fig. 5. Again,
because of lack of sufficient training examples, the fitting fails on people with
raised arms. We use the experimental protocols used in various literature [9,
15]. The training and testing sets are split evenly, with 125 identities used for
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Table 1. A comparison of state-of-the-art methods: VIPeR [4] data set with 316 person
identities were allocated for training, and 316 for testing; QMUL GRID [12–14] data
set with 125 person identities were allocated for training, and 900 for testing, where
the testing identities contained 125 image pairs and 775 single images; CUHK03 [8]
data set with 1160 person identities were allocated for training, and 100 for testing. For
the test set, one image of each identity was taken to form the gallery set. Every probe
image in the test set was compared to every gallery image in the test set. PLSAM(v2)
is with weighted LOMO and Salient Colour Names features and XQDA; PLSAM(v1)
is with weighted LOMO and XQDA.

VIPeR QMUL GRID CUHK03

r=1 r=5 r=10 r=20 r= 1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

PLSAM (v2) 46.3 75.0 85.6 93.9 26.7 47.9 59.0 68.2 65.2 89.8 95.0 97.9

PLSAM (v1) 42.8 71.9 82.0 91.9 23.9 41.8 51.0 61.4 64.6 89.2 94.9 98.1

Null Space [23] 42.3 71.5 82.9 92.1 - - - - 58.9 85.6 92.5 96.3

MLAPG [10] 40.7 69.9 82.3 92.4 16.6 33.1 41.2 53.0 58.0 87.1 94.7 98.0

DeepList [20] 40.5 69.2 81.0 91.2 - - - - 55.9 86.3 93.7 98.0

LOMO+XQDA [9] 40.3 68.3 80.9 91.1 17.3 36.3 44.8 55.4 54.9 85.3 92.6 97.1

FPNN [8] - - - - - - - - 20.7 50.9 67.0 83.0
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Fig. 4. CMC on the VIPeR data set [4], QMUL GRID data set [12–14] and, CUHK03
data sets [8]. All of our CMC curves are single-shot results. Results are reproduced
from [8–10,22].

each. The 775 images which do not belong to an image pair are added to the
gallery set and we run our experiment ten times, averaging the scores to produce
the final result. Table 1 again shows that both PLSAM(v1) and PLSAM(v2)
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Fig. 5. Examples of the ground-truth and the predicted skeleton from the QMUL
GRID data set: (a) A random image with a RMSE of 3.9 pixels; (b) The image with
the minimum RMSE of 2.3 pixels; (c) The image with the maximum RMSE of 17.7
pixels. The average RMSE over the entire test is 5.3 pixels.

out-perform other methods. As the cameras are located in a busy station, this
data has a high level of occlusion and overlapping people in the background and
particularly benefits from foreground modelling, producing more representative
person descriptors. The CMC curve is plotted in Fig. 4.

For the CUHK03 data set, we use the manually cropped images for our
experiments. We resize all images to a resolution of 128 × 48 pixels. However, to
take advantage of the higher source resolution in some images in this data set, for
the feature extraction (LOMO and weighted LOMO) and orientation modelling
stages, we resize to 160 × 60 pixels. All images in the first camera of each
camera pair form one orientation, whilst the other forms the second orientation.
We extract HOG features from the Y channel of the YIQ colour model, rather
than the V channel of the HSV colour model. Whilst we build a CUHK03-specific
model for the orientation prediction, for the skeleton fitting stage, we re-used
the VIPeR PLS skeleton appearance models, i.e. we do not perform any separate
skeleton appearance model training on this data set. Visually the two data sets
are quite similar with regards to the camera viewpoints. Our experimentation
protocol follow [8,9] by splitting the images into a training set of 1160 identities
and a test set of 100 identities. We run our experiments twenty times, and
average to produce the final results. The results (Table 1), show PLSAM(v1)
gives an improvement in the Rank-1 score by 5.7%. With the addition of Salient
Colour Names features, PLASM(v2), the Rank-1 score instead improves by 6.3%.
The CMC curve can be seen in Fig. 4.

4 Conclusions

In this paper, we demonstrated the advantages of using a skeleton appearance
model to identify locations of torso and limbs from a person image. Partial
Least Squares regression is used on appearance features from training images,
and corresponding hand-marked skeleton data to build a model for predicting
the foreground region of an new image. We use the foreground to locate and
prioritise feature extraction to create a robust feature descriptor less sensitive to
background clutter and occlusion. Our comparative analysis, using state-of-art
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feature extraction (LOMO and Salient Colour Names) and XQDA distance met-
ric learning, demonstrate a superior matching accuracy when feature extraction
is weighted by our foreground estimation. Experiments on the VIPeR, QMUL
GRID and CUHK03 data sets show that the proposed method achieves an
improvement when vs. the LOMO feature of 6.0%, 9.4% and 10.3% respectively
in the Rank-1 matching rate. An improvement of 4.0%, 9.4% and 6.3% respec-
tively in the Rank-1 matching rate is observed vs. other state-of-the-art methods.

In the case of CUHK03, we show that the skeleton fitting foreground model
learnt on one data set, in this case VIPeR, generalises to a different camera view
without the need to retrain. For the orientation in VIPeR, we fitted two separate
foreground models: one for frontal views and one for sideways views. The model
selection process seems to work well in our experiments, and might be extended
to multiple views from a network of cameras.

Our further work is focused on using the skeleton fitting in the context of a
deep learning (CNN) architecture [1]. We are working on using the PLS model
to train a deconvolution CNN to perform foreground modelling and will com-
pare the performance. The non-linearities inherent in neural network regression
models might preclude the need to use multiple linear PLS models for varying
viewpoints. We also think the PLS models may prove useful in data augmenta-
tion for CNN training where the number of training examples is limited, which
might be achieved by synthesising appearance model instances from a PCA of
the learnt space of variation, e.g. [24].
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