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Abstract. Many approaches have been suggested for automatic pedes-
trian detection to cope with the large variability regarding size, occlu-
sion, background variability etc., among them deformable part models,
feature-based approaches (e.g. histograms of oriented gradients), and
recently deep learning-based algorithms. Current deep learning-based
frameworks rely either on a proposal generation mechanism (e.g. “Faster
R-CNN”) or on inspection of image quadrants/octants (e.g. “YOLO”),
which are then further analyzed with deep convolutional neural networks
(CNN). In this work, we analyze the Discriminative Generalized Hough
Transform (DGHT), which operates on edge images, for pedestrian detec-
tion. The analysis motivates to use the DGHT as an efficient proposal
generation mechanism, followed by accepting or rejecting the proposals
(based on image data) using a deep CNN. Due to the low false nega-
tive rate of the DGHT and the high accuracy of the CNN we obtain
competitive performance on several pedestrian detection databases.

Keywords: Pedestrian detection - Hough transform - Error analysis -
Proposal generation - Patch classification - Convolutional neural network

1 Introduction

In the last decades, automatic pedestrian detection has been a very important
and still challenging task [4] in computer vision exhibiting many sources of large
variability, i.a. regarding the object size and pose, occlusion and background.
A lot of detection approaches have been suggested, among them feature-based
detectors such as Viola-Jones [33] and Two-layer histograms of oriented gradients
(HOG) [36], deformable part models [12,18], Random Forest-based approaches
[25] and recently deep learning algorithms. The latter mainly consist of architec-
tures using region proposals and a subsequent patch analysis with convolutional
neural networks (CNN) as e.g. in Faster R-CNN [29]. Alternatively, approaches
with a constant trivial region generation scheme and a subsequent bounding box
regression or those that directly operate on full images have been proposed, e.g.
R-CNN minus R [24], YOLO [27,28] and SSD [35], respectively.
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The Discriminative Generalized Hough Transform (DGHT) [30] is an efficient
voting-based localization approach and has successfully been applied in single-
object localization tasks with limited variability, such as joint [30] and epiphyses
[15] localization in medical images or state-of-the-art iris localization [14].

In this work, we analyze in detail the performance of the DGHT in a pedes-
trian detection task with many sources of variability (background, object size,
pose etc.). In particular, we suggest to use the DGHT as an efficient proposal
generation mechanism, accepting or rejecting the generated candidates using a
deep convolutional neural network. We compare our approach to state-of-the-art
algorithms, obtaining competitive performance on three different databases.

2 Methods

2.1 Structured Edge Detection

We use the real-time edge detection approach of [10], which learns information on
the object of interest. Here, a Random Forest [5] maps an input image patch to an
output edge image patch using pixel-lookups and pairwise-difference features of
13 (3 color, 2 magnitude and 8 orientation) channels. The approach incorporates
ideas of Structured Learning [22] for handling the large amount and variability
of training patch combinations as well as for efficient training. While testing,
densely sampled, overlapping image patches are fed into the trained detector.
The edge patch outputs which refer to the same pixel are locally averaged. The
resulting intensity value can be seen as a confidence measure for the current pixel
belonging to an edge. Subsequently, a non-maximum suppression (NMS) can be
applied in order to sharpen the edges and reduce diffusion. For an example see
Fig. 1b; further details can be found in [10].

2.2 Discriminative Generalized Hough Transform

The Generalized Hough Transform (GHT) [2] is well-known as a general model-
based approach for object localization. Each model point m; of the shape model
M (Fig. 1c) is represented by its coordinates with respect to the reference point.
The Discriminative Generalized Hough Transform (DGHT) [30] extends the

a) Input image b) Structured edge image c) DGHT ‘,::d) Hough space ﬁx

model

e) SCM-weighted Hough space f) Result image
(after CNN Rejection)

d1) Irregular pattern d2) Regular pattern

Fig. 1. Application of structured edge detection (Sect. 2.1), DGHT (Sect. 2.2) and SCM
(Sect. 2.3) to an input image. Only a single image scale is shown.
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GHT by individual model point weights A; for the J model points, which are
optimized by a discriminative training algorithm that also accounts for auto-
matic generation of M. Using this shape model M, the DGHT transforms a
feature image X — in our work an edge image as outlined in Sect.2.1 — into
a parameter space H, called Hough space, by a simple voting procedure (see
Fig. 1d):

H(ci,X)= Y Xfi(e;, X) with (1)
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The Hough space H (we set the quantization parameter p = 2) consists of
discrete Hough cells ¢;, which accumulate the weighted number of matching
pairs of all model points m; (with corresponding weight A;) and feature points
er. f;j(ci, X) determines how often model point m; votes for Hough cell ¢; given
a feature image X. A vote, however, is only counted, if the absolute orientation
difference of the model and feature point, ¢;,; and e, respectively, is below
A¢. Each Hough cell ¢; represents a target hypothesis with its image space
coordinates given by |(¢; + 0.5) - p|. The number of weighted votes for each ¢;
corresponds to the degree of matching between model M and feature image X.

For ensuring good localization quality, a high correlation with the feature
image at target point locations and a small correlation at confusable objects is
desired. The DGHT achieves this by an iterative training procedure starting with
an initial model of superimposed annotated feature images at the reference point.
In each iteration, the model point weights \; are optimized using a Minimum
Classification Error (MCE) approach and, afterwards, the model is extended by
target structures from training images which still have a high localization error.
To reduce model size, those points with low absolute weights are eliminated. This
procedure is repeated until all training images are used or have a low localization
error. Further details on this technique can be found in [30].

2.3 Rejection of Proposals

Shape Consistency Measure (SCM). [14] suggested to analyze the model
point pattern voting for a particular Hough cell ¢;. More specifically, a Random
Forest [5] is applied to classify the model point pattern into a class “regular
shape” {2, (representing e.g. a frontal or a side view of a person) and a class
“irregular shape” (2; (see Fig.1(d1) and (d2)).

To train the Random Forest Classifier, the DGHT is applied to each training
image. Afterwards, the class labels {2, and (2; are assigned to the individual
Hough cells of the training images: Cells with a localization error <e; are labeled
as class 2, while those with an error >e5 are assigned to class (2;.

For a test image X, a DGHT model is applied to generate a Hough space
H. For each local maximum ¢; in H, the Random Forest Classifier is used to
calculate the probability p = p(£2,, ¢;) that the set of model points voting for ¢;
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has a regular shape. The obtained probability is used as an additional weighting
factor for the Hough space votes, i.e. S(c;, X) = H(c;, X) -p(£2-, ¢;) (see Fig. le).
The local maxima in H are now sorted according to decreasing S(c;, X) to
provide an ordered list C' = {¢;} of most probable object positions ¢;.

Deep Convolutional Neural Networks. Deep convolutional neural networks
(CNN) have been successfully used for image classification tasks achieving state-
of-the-art classification performance e.g. on the large-scale ImageNet classifica-
tion challenge [23,31,38]. In combination with a separate region proposal gener-
ation step, deep CNNs have been successfully applied in object detection taks,
e.g. R-CNN [19] or Fast R-CNN [20]. Furthermore, Faster R-CNN [29] combined
these two components into one network sharing convolutional features.

In this work, we use a deep CNN to individually accept or reject each proposal
¢; out of the list C' generated by the DGHT+SCM (see Sects.2.2 and 2.3).
Specifically, each candidate position ¢; € C (seen as a proposal) is transferred
from Hough space to image space. Then, a bounding box corresponding to the
mean object size (60 x 160 px) is centered around that position (Fig.1f), and
the image patch corresponding to the bounding box is rescaled to an input size
of 64 x 64. The patch pixel intensities of all three color channels are normalized
0 [0,1], and then used as input to a deep CNN. We use the standard VGG16
classifier as described in [31], pre-trained on ImageNet and fine-tuned on the
TAIR training corpus (see Sect.3.1). The output of the CNN is a softmax layer
with 2 classes, pedestrian and background. We use p = p(pedestrian, ¢;) for
candidate rejection (see Sect.3.2). With an appropriate rejection threshold 6,
any candidate ¢; is rejected if p(pedestrian, ¢;) < 6 (Fig. 1f).

3 Experimental Setup

3.1 Databases

IAIR-CarPed. We perform most experiments on the IAIR-CarPed [36] data-
base, because it has a reasonable amount of independent 2D images and addi-
tionally offers difficulty labels (e.g. occlusion, low contrast) for each annotation.
We use this additional information for our detailed error analysis. As suggested
in [36], we train on a random 50%-split of the available pedestrian images, i.e.
in total 1046 images containing 2341 pedestrians with an object height range
from 45 to 383 px (mean height: 160px). The remaining 1046 images (2367
pedestrians with a similar object height range and mean height) are used for
evaluation. Training and test corpus each contain all types of difficulties present
in the TAIR corpus.

INRIA Person. We also evaluate our approach on the well-known INRIA Per-
son [6] database. The test set contains 288 images which contain 561 annotated
persons with a height range from 100-788 px (mean height: 299 px).

TUD Pedestrians. Moreover, we apply our framework to the TUD Pedestri-
ans [1] dataset. The test set consists of 250 images containing 311 annotated
pedestrians with a height range from 71 to 366 px (mean height: 213 px).
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3.2 Experimental Setup and System Parameters

Our system setup for the single-frame detection of pedestrians in non-consecutive
2D RGB images is organized as follows:

Feature Image Generation: As input images for training and testing, we use
the output of the Structured Edge Detector (see Sect.2.1). We train this edge
detector specifically for pedestrians on the PennFudan database [34], because this
is the only database we were aware of providing segmentation information needed
to train the edge detector. The Structured Edge Detector suppresses most of the
background edges and thus significantly reduces background variability [13].

DGHT Model and SCM Training: In order to generate a DGHT pedestrian
model including a certain amount of size variability, we allow a size range of
144-176 px (mean object height +10%). All training images with pedestrians not
in this size range are scaled to a person size selected randomly from the allowed
range (uniform distribution), separately for each pedestrian in an image. To train
our DGHT shape model (see Sect.2.2), we only use those full training images
containing “simple” pedestrians (TIAIR difficulty type “S”, 1406 pedestrians/775
images). Having trained the DGHT shape model, we train the SCM on the full
TAIR training set comprising all difficulty types and all pedestrians scaled to the
range 144-176 px as described above (see also Sect.2.3). We set ¢; for class (2,
to 5 and &9 for class §2; to 15 Hough cells.

Testing: To handle the large range of object sizes, we scale each test image by
the following heuristic set of 10 scaling factors such that each pedestrian should
roughly fit into the expected object range (mean object height +10%):

50%, 62.5%, 75%, 100%, 150%, 200%, 225%, 250%, 275%, 300%.

The trained DGHT model is applied independently to each scaled image, i.e.
independent Hough spaces are generated for each image scale and, afterwards,
weighted by the SCM (Sect. 2.3). In each weighted Hough space, local maxima
C = {c¢;} are identified using a NMS with a minimum distance of 1/3 of the
model width, i.e. 20 px. To reduce the amount of candidates, we discard those
candidates ¢; with S(¢;, X) < maxS(X) - 0.2. To reject possible false positive
candidates e.g. due to inconsistent voting schemes [14], we investigate two rejec-
tion mechanisms:

SCM Rejection: For each image scale independently, a candidate is rejected if
p(£2,,¢;) < 0, see Sect. 2.3. This is a purely Hough-based rejection method.
Our results and error analysis (Sect.4) motivate an additional rejection step:

CNN Rejection: Here, any candidate position ¢; is transferred to (scaled)
image space, and a bounding box corresponding to the mean model size
is centered around that position. A deep CNN is then used to reject c¢; if
p(pedestrian, ¢;) < 6. This is an image-based rejection, as opposed to the SCM
rejection.

We use the standard Keras VGG16 model, which is initialized on ImageNet.
We fine-tune this model on our IAIR training corpus, using the annotated pedes-
trian bounding boxes scaled to (64 x 64 x 3) as positive samples and the same
candidates as for class §2; in the SCM training as negative samples, i.e. high
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scoring peaks with a minimum error of 15 Hough cells. For fine-tuning we use
the Adam optimizer [21] with categorical cross-entropy loss, a learning rate n of
0.001, which is reduced on plateaus, and an input dimension of (64 x 64 x 3).

Combining Scales and Post-processing: Subsequent to the rejection step,
the remaining candidate bounding boxes of all image scales are divided by the
respective scaling factor to match the original image dimensions. Afterwards,
the candidates are greedily grouped based on the mutual overlap' and finally a
NMS is applied to each group using S(¢;, X) (without CNN) or p(pedestrian, ¢;)
as criterion, respectively, in order to avoid double detections.

Analysis: As suggested in [39], we conduct a detailed error analysis including
oracle experiments: (a) localization oracle (all false positives (FP) that overlap
with the ground truth are ignored) and (b) background vs. foreground oracle
(all FP that do not overlap with the ground truth are ignored). In addition,
we conduct another oracle experiment (c): perfect rejection oracle (DGHT as a
proposal generator). For each ground truth annotation, the rejection oracle picks
the best matching candidate out of the set C generated by the DGHT (including
the SCM and post-processing over image scales) and rejects all other candidates.
Thus, we quantify the minimal miss rate for the DGHT as proposal generator,
assuming a perfect rejection mechanism.

3.3 Comparison to State-of-the-Art Approaches

We compare our approach against several state-of-the-art algorithms. For the
IAIR-CarPed database, we compare to the results for the Two-layer HOG and
the PASCAL deformable part model (DPM) published in [36]. We also down-
loaded the latest DPM release (DPMvb5) [18] trained on PASCAL, the pre-
trained YOLOv1 [27] full model as well as the pre-trained YOLOv2 [28] full
model (both pre-trained on ImageNet and fine-tuned on PASCAL) and evaluated
them on our TAIR-CarPed test corpus. Addtitionally, we used the pre-trained
YOLOv1 full model and fine-tuned it on our TAIR-CarPed training set. For
details on these state-of-the-art approaches see the respective references. For the
other databases, we use the benchmark results from [16] and [37], respectively.

3.4 Evaluation Metrics

We evaluate our detections using the intersection over union (IoU) measure.
According to [11], a detection of an object is correct if the IoU of the prediction
and the ground truth exceeds 50%. As suggested in [9], for single frame evaluation
we computed Detection Error Tradeoff (DET) curves plotting the miss rate
against the false positives per image (FPPI) on a log-log scale by modifying
the rejection threshold 6. For comparison, the miss rates at 0.5 and 1 FPPI are
shown. For the TUD Pedestrians database, we use the recall at equal error rate
(EER), as other groups have frequently used this measure. For measuring the
candidate quality, we use the Average Best Overlap (ABO) score from [32].

1 We set this parameter to 30%.
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4 Results

4.1 SCM Rejection

Table 1 compares the DGHT + SCM (without CNN) detection performance to
other approaches on the TAIR test corpus as described in Sect. 3.2.

As can be seen, the overall performance of the DGHT is comparable to the
Two-Layer HOG and the published original DPM result, but worse than the
current DPMv5, the fine-tuned YOLOv1 and the pre-trained YOLOv2.

Table 1. Comparison of detection results on the TATR-CarPed test corpus® S: Simple,
D1: Occlusion, D2: Low Contrast, D3: Infrequent Shape

Approach Miss Rate at 0.5 FPPI Miss Rate at 1 FPPI

S D1 |D2 |D3 |All |S D1 D2 |D3 |Al
DGHT + SCM 0.32 1 0.51 | 0.74 | 0.50 |0.44 | 0.22 |0.40  0.66|0.32|0.34
Two-Layer HOG [36] N/A|N/A|N/A N/A|N/A|0.25|0.47|0.44 | 0.50 | 0.35
DPM [36] N/A|N/A|N/A | N/A|N/A|0.29|0.37|0.45|0.36 | 0.34
DPMv5 [18] 0.18 1 0.37 | 0.47 | 0.45 |0.29 | 0.16 | 0.32]0.40 | 0.40 | 0.25
YOLOv1 Pre-trained [27] | 0.37 | 0.47 | 0.87 | 0.45 | 0.49 | 0.32|0.41|0.81|0.42|0.44
YOLOv1 Fine-tuned [27] | 0.06 |0.18 | 0.23 | 0.18 | 0.13 | 0.06 | 0.17|0.22 | 0.17 | 0.13
YOLOvV2 Pre-trained [28] | 0.13 | 0.28 | 0.31 | 0.23 | 0.21 | 0.12|0.25|0.28 | 0.20 | 0.19

aResults for Two-Layer HOG and DPM taken from [36], i.e. potentially different train-
ing/test split of the IAIR corpus. Results for DGHT, DPMv5, YOLOv1l and YOLOv2
obtained on our test split. For details on pre-training and fine-tuning see Sect. 3.3

4.2 SCM Rejection: Error Analysis

In this section, we analyze in detail all errors of the DGHT with SCM rejection
(without CNN), in comparison to the DPMv5. We specifically focus on the DPM
since the code is publicly available (such that we can perform own experiments
on the TAIR corpus) and since it is also a model-based approach operating on
feature images. We use a similar error analysis as described in [39].

Generally, there are two basic types of errors: (I) false positives (FP), i.e. a
false detection, e.g. because of confusable background structures, misaligned,
larger or smaller predictions (0% < IoU < 50%) or double detections; (II)
false negatives (FN), which are ground truth annotations that are not detected.
FN mostly occur because of the “well known difficulty of detecting small and
occluded objects” [39] as small persons are often over-/underexposed or blurry.
Besides, there might be a dataset bias, e.g. side-views or cyclists are under-
represented in the training set, which hampers the detection of such instances.

We manually evaluated all detection errors (FP and FN) of the DGHT and
DPMv5 [18] on the TAIR test corpus (see Sect.3.2) at 1 FPPI:

28% (DGHT)/31% (DPM) of all FP are due to localization errors,
mostly because of body part (DGHT) and double detections (DPM).
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For both approaches, the vast majority of FP are background detections (69%
(DGHT)/66% (DPM)) due to confusing vertical structures or trees. The DPM
often detects pedestrian groups as one detection. The remaining 3% are missing
annotations, which actually are true instead of false positives.

For the DGHT, 29% of all FN are due to low contrast, i.e. insufficient or
no feature representation at all. Another 20% are slightly below the rejection
threshold at 1 FPPI indicating that the SCM as a rejection mechanism could
still work more properly. The remaining 50% mainly consist of errors at small
scales (16%), localization errors (12%) and occluded pedestrians (11%).

For the DPM, the main reasons for FN are small scales (28%), occlusion
(26%) and low contrast (22%; mostly also at small scales). The remaining FN
mainly consist of localization errors (7%), side views (6%), and cyclists (3%).

The DPM has more FN because of small scales or occlusion. Low contrast
or missing edges are a problem for both approaches. Side views/cyclists are
better detected with the DGHT pipeline. Moreover, the DGHT FN often are
only slightly below 6 (with a lower 6, too many FP would have been generated).

4.3 SCM Rejection: Oracle Experiments

The results of the oracles (a), (b) and (c) (see Sect.3.2 “Analysis”) are shown
in Table 2. Since the localization oracle only reduces the miss rate at 1 FPPI by
0.03, it shows that the DGHT detections are usually quite accurate (except for a
few outliers). On the contrary, there is still much room for improvement regard-
ing background vs. foreground errors. If we would be able to reject FP in the
background (IoU=0%), the miss rate drops from 0.34 (current DGHT 4+ SCM
result at 1 FPPI) to 0.16 at only 0.3 FPPI. This again indicates that the DGHT
candidates are very accurate, but the rejection using only the model point vot-
ing pattern on structured edge images is not sufficient to properly overcome
the well-known problems of small-scale detections or those of confusable back-
ground structures (see Sect. 4.2). In case of perfect rejection of DGHT proposals,
we would obtain a miss rate of only 0.04 with an ABO score of 78.2% (perfect
rejection oracle). This clearly indicates that the main drawbacks of the DGHT
are (a) FP in the background and (b) non-optimal selection of candidates based
on S(c;, X). The low miss rate of the perfect rejection oracle motivates to use the
DGHT as a proposal generator, and to improve the proposal rejection. To this
end, we apply the CNN proposal rejection subsequently to the SCM rejection,
as outlined in Sect. 3.2.

Table 2. DGHT oracle results (at highest or max. 1 FPPI)

Experiment S D1 D2 D3 |Al

DGHT + SCM at 1 FPPI 0.22/0.40  0.66 | 0.32 | 0.34
DGHT Localization oracle at 1 FPPI 0.2010.35/0.49/0.30|0.31
DGHT BG vs. FG oracle at 0.3 FPPI 0.09/0.24 1 0.24 | 0.23 | 0.16
DGHT Perfect Rejection Oracle at 0 FPPI|0.01|0.01|0.20 | 0.00 | 0.04
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4.4 CNN Rejection: Detection Results

Table 3 shows the detection results using additional CNN proposal rejection on
top of SCM rejection (“DGHT 4+ SCM 4+ VGG16”) as introduced in Sect. 3.2 and
motivated in Sects. 4.2 and 4.3%2. Additionally, we show the results of this setup
on TUD Pedestrians and INRIA Person in Tables 4 and 5, respectively. Note that
no component of our system has been retrained on TUD or INRIA. We obtain
minimal miss rates of 0.04 (78.2% ABO) at 350 candidates per image, 0.01 (75.8%
ABO) at 55 candidates per image and 0.01 (76.8% ABO) at 102 candidates per
image on TAIR, TUD Pedestrians and INRIA Person, respectively.

Table 3. Comparison of detection results on the IAIR-CarPed test corpus S: Simple,
D1: Occlusion, D2: Low Contrast, D3: Infrequent Shape. Results of other state-of-the-
art algorithms are partly repeated from Table 1

Approach Training data Miss Rate at 0.5 FPPI

S D1 |D2 |D3 |Al
DGHT +SCM TIAIR 0.32]0.51/0.74/0.50 | 0.44
DGHT + SCM + VGG16 | ImageNet/TAIR 0.09/0.30|0.40 | 0.20 | 0.19
DPMv5 [18] PASCAL 0.180.37|0.47 | 0.45|0.29

YOLOv1 Pre-trained [27] | ImageNet/PASCAL |0.37|0.47 | 0.87|0.45 | 0.49
YOLOv1 Fine-tuned [27] | Im.Net/PASC./IAIR | 0.06 | 0.18 | 0.23|0.18 | 0.13
YOLOvV2 Pre-trained [28]  ImageNet/PASCAL |0.13]0.28 |0.310.23|0.21

Table 4. Recall at EER on TUD Pedestrians without retraining

Approach DGHT + SCM + VGG16 | PartISM [1] | HoughForests [17] | Yao et al. [37]
Training data | IAIR TUD/INRIA | TUD/INRIA TUD/INRIA
Recall at EER | 0.88 0.84 0.87 0.92

Table 5. Miss Rate at 1 FPPI on INRIA Person without retraining. Ours: DGHT +
SCM + VGG16

Approach Ours | HOG | ICF [7] | Yao [37] | FPDW [8] | VeryFast [3] | Spat.Pool. [26]
Training data | IAIR | INRIA | INRIA | INRIA |INRIA INRIA INRIA /Caltech
Miss rate 0.14 |0.23 0.14 0.12 0.09 0.07 0.04

5 Discussion
The experiments have shown that the DGHT in general is suitable for proposal
generation due to the low false negative rate and the comparably small number

2 Evaluation at 0.5 FPPI since this is the highest FPPI rate for DGHT+SCM+
VGG16.



Analysis of the Discriminative Generalized Hough Transform 113

of candidates. The trained DGHT pedestrian model for proposal generation also
generalizes well to other pedestrian databases without retraining any of the com-
ponents. Our pedestrian detection pipeline achieves comparable results to other
state-of-the-art approaches. In comparison to Selective Search [32] (2,000-10,000
candidates) or the region proposals of Faster R-CNN [29] (300+ candidates), the
DGHT outputs a smaller number of candidates (see Sect.4.4). Example detec-
tions are shown in Fig. 2.

Our approach still has some limitations: due to the edge feature images, we
intrinsically miss those objects which are of low contrast, since they do not gen-
erate well pronounced edges or no edges at all. This limitation can be seen in
Tables 2 and 3 at difficulty type D2. Additionally, we currently do not perform
any bounding box refinement step which might further improve detection accu-
racy. However, the ABO scores of >75% for all three databases indicate that the
candidates are already of good quality. Currently, our implementation does not
aim at real-time performance. However, due to the independent voting of model
points, the DGHT exhibits a high potential for parallelization.

Fig. 2. Example DGHT + SCM 4+ VGG16 detections on IAIR. (green): ground truth,
(yellow): correct detection, (blue): FP, (red): FN; best viewed in color

6 Conclusions

In this work, we applied the DGHT as a proposal generator - in combination
with proposal rejection by a deep CNN - to a real-world multi-object detection
task exhibiting many sources of variability, namely pedestrian detection. We
obtained comparable performance to state-of-the-art approaches on the TAIR-
CarPed, the TUD Pedestrians and the INRIA Person databases, demonstrating
that our framework (trained on IAIR) generalizes well also to other datasets.
The main advantages of the DGHT proposal generation are (a) the relatively low
amount of training images needed for training of DGHT and SCM (on the order
of 100 or less per variability class), (b) the low amount of resources needed at
test time, (c) the relatively low amount of proposals generated per image. Thus,
our framework could be useful especially for detecting specific object categories
with limited available training material.

Acknowledgement. This work was funded by the Department of Social Affairs,
Health, Science and Equality of Schleswig-Holstein, Germany. Thanks to Andrew J.
Richardson for providing the VGG16 framework.
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