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Abstract. This work introduces a new approach for face recognition
based on 3D scans. The main idea of the proposed method is that of
converting the 3D face scans into a functional representation, perform-
ing all the subsequent processing in the continuous space. To this end,
a model alignment problem is first solved by combining graph matching
and clustering. Fiducial points of the face are initially detected by analy-
sis of continuous functions computed on the surface. Then, the alignment
is performed by transforming the geometric graphs whose nodes are the
critical points of the representative function of the surface in previously
determined subspaces. A clustering step is finally applied to correct small
displacement in the models. The 3D face representation is then obtained
on the aligned models by functions carefully selected according to math-
ematical and computational criteria. In particular, the face is divided
into regions, which are treated as independent domains where a set of
functions is determined by fitting the surface data using the least squares
method. Experimental results demonstrate the feasibility of the method.
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1 Introduction

Models of the face acquired by 3D devices consist of dense point clouds, where
points correspond to coordinates of the face surface discretely sampled by the
capture device. For high resolution 3D scans, a very large number of points is
typically used to represent the face, and triangular mesh representations are
then derived to connect points in a structured way. However, this low level
representation cannot be used directly to compare faces in recognition tasks, but
appropriate descriptors that reduce the high dimensionality of points keeping,
at the same time, salient features of the face should be derived.

Face recognition using either high resolution or low-resolution 3D scans has
received an increasing interest in the last few years (for a thorough discussion of
existing methods we refer to the survey in [7] and the literature review in [3,18]).
In general, 3D face recognition approaches proposed in the literature can be
grouped as global (or holistic), and local (or region-based). Hybrid approaches
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that combine solutions in these two categories are also possible as well as mul-
timodal approaches that combine together 2D and 3D methods. Among the
aspects that still are critical for most state of the art methods, we can count
recognition across scans with different resolutions (high- or low-resolution as for
consumer cameras like Kinect [5]), and recognition of scans with large/extreme
pose variations or occlusions, which requires partial face matching. This is also
reflected by the few face datasets that include face scans with different reso-
lutions [5] or partial acquisitions [1,2,17]. Global 3D face representations for
partial face matching have been proposed in a limited number of works [8,14].
More successful and scalable solutions used local representations of the face. In
fact, one possible way to solve the problem of missing data in 3D faces is to detect
locally the absence of regions of the face and use the existing data to reconstruct
the missing parts (for example, exploiting the hypothesis of face symmetry to
recover missing data in the case of scans with large pose variations [15]). The
reconstructed scans can then be used as input to conventional 3D face recognition
methods [10]. Tackling the problem from an opposite perspective, some methods
divided the face into regions and tried to restrict the match to uncorrupted parts
of the face [11,12]. Most of these methods used landmarks of the face to identify
the regions to be matched; however, facial landmarks are difficult to detect when
the pose significantly deviates from the frontal one. In addition, since parts of
the regions can be missing or occluded, the extraction of effective descriptors
is hindered so that regions comparison is mostly performed using rigid (ICP)
or elastic registration (deformable models). Approaches that use keypoints of
the face solve some of these limitations. Rather than relying on the detection of
specific regions of the face that can fail in the presence of occlusions and missing
parts, they detect keypoints on the face surface and describe the face locally at
the keypoints. Matching keypoints can thus naturally account for occlusions and
missing parts of the face [4,13].

In this work, we propose an original solution to 3D face recognition that,
on the one hand, exploits keypoints for face alignment, on the other, accurately
represents locally the face surface. Our solution is robust to the presence of
scans acquired with large pose variations (and thus with missing parts), and
is based on two main original contributions: a graph-based solution to align
3D face scans with missing parts; a functional representation that provides a
locally continuous approximation of the face surface. The idea of approximating
the face surface with continuous functions is a well known and used techniques
in Computer Graphics. In that case, recovering the exact form of the surface
is important for visualization. Differently, in the case of recognition tasks, the
necessary optimization of the functional model must be able to obtain more
discriminative representations of the face with the least number of coefficients.
Indeed, the process of optimizing the functional model as well as the selection
of the set of base functions are crucial for this method [16]. Functional repre-
sentations are attractive for the recognition scenario because they show some
interesting aspects. First, they demonstrate great power in compacting the data
thanks to the small-dimensional vectors of used coefficients. In addition, they
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allow recovering the original continuous nature of biometric objects or their
parts. This representation also allows capturing the correlation between the dif-
ferent values of 2D pixels or 3D vertices. The ability to use the existing theory
of continuous functions often simplifies calculations and analysis. The represen-
tation of dynamic aspects of the original data and the possibility of extracting
some important features through the analysis of the properties of functions, such
as monotonicity, derivability and smoothness, makes attractive the use of func-
tions to represent data that naturally vary in space continuously. However, an
essential element to make functional representations comparable is that the ori-
gin of coordinates and the directions of the axes coincide across different objects.
To achieve this, a process of prior alignment of the 3D faces is necessary. To this
end, in this paper, we also propose a solution for aligning face scans with missing
parts. This relies on three steps: first, the face is divided in rectangular domains
and fiducial points of the face are detected as critical points of a local functional
representation of the face surface based on Local Thin Plate Bivariate Splines
(LTPBVS) [6]; then, a graph-like structure is constructed from the fiducial points
connections; finally, matching these graphs permits face alignment.
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Fig. 1. The proposed 3D face recognition approach in continuous space

The processing steps of the proposed solution are summarized in Fig. 1: first,
face scans are subdivided, approximated with LTPBVS and aligned using a graph
of critical points; then, a LTPBVS basis is selected to approximate the face sur-
face; finally, coefficients of the functional representation are used in the match.
The rest of the paper is organized as follows: in Sect. 2, the method used for the
detection of critical points of 3D faces is presented; the construction of a graph
based on these points and its use for face alignment are illustrated in Sect. 3;
the functional representation of the face is discussed in Sect. 4; experiments per-
formed to evaluate our proposed method are reported in Sect. 5; discussion and
conclusions in Sect. 6 close the paper.
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2 Detection of Characteristic Points in 3D Faces

For the detection of characteristic points in 3D faces, Principal Component
Analysis (PCA) was first performed to normalize the cloud of points of the
whole face in such a way that their coordinate axes coincide with the principal
components. To this end, given a set of points represented in the matrix A of
size N × 3, where each row is a point in space, it was necessary to calculate
the covariance matrix. The eigenvectors of this matrix were used as the new
coordinate axes: the z-axis captures the direction of the data with the smallest
variance, i.e., the eigenvector corresponding to the lowest eigenvalue (this axis
is also an estimate of the actual normal vector of the face surface corresponding
to the points cloud); the y-axis corresponds to the vector of greatest variance
and, finally, the x-axis corresponds to the vector associated with the eigenvalue
of intermediate value.

The surface of the face is divided in rectangular domains, and a non-
polynomial function is fitted to the surface of each domain. These rectangles have
the same size determined according to the mesh size, and are represented as:

Dij = {(x, y, z) : (x, y) ∈ [xi, xi + d] × [yj , yj + t]} , (1)

with i, j = 1, 2, 3, and where x1 and y1 are the minima of the column vectors
X and Y of A, respectively; the other values of xi and yi are, respectively,
x2 = x1 + d, x3 = x2 + d, and y2 = y1 + t, y3 = y2 + t. Values of d and t are
obtained as: (

d
t

)
=

1
3

(
xmax − x1

ymax − y1

)
, (2)

where xmax and ymax are the respective values of X and Y .
The surface that approximates the point cloud in each region (sub-domain)

is obtained by a non-polynomial function. To this end, first the centroid of each
region Dij is considered as the origin of the local coordinate system, and the
coordinate axes are calculated as the local eigenvectors of each sub-domain. The
smallest of the three eigenvectors corresponds to the normal direction of each
sub-domain. This ensures that the local z-axis is perpendicular to the surface.
Then, the function that approximates the region of the points cloud has the
form of a scattered translates, namely, a Bivariate Thin-Plate Spline. It uses
arbitrary or scattered translates ψ(. − cj) of one fixed function ψ, in addition to
some polynomial terms. Explicitly, such a form describes a function:

f(X) =
n−3∑
j=1

ψ(X − cj)aj + p(X), where X = (x, y), (3)

where the basis function is ψ(X) = ϕ(‖X‖2), with ‖·‖ the Euclidean norm,
and ϕ(t) = t log t; cj , a sequence of sites called centers, and aj a correspond-
ing sequence of n coefficients with the final three coefficients involved in the
polynomial part:

P (X) = an−2 · x + an−1 · y + an. (4)
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1: Procedure classifyPoints()
2: for j = 1 to 8 do
3: if (xj , yj) isReal then
4: if det(hj) > 0 then
5: if hj [0, 0] > 0 then
6: (xi, yi) → minimum
7: else if hj [0, 0] < 0 then
8: (xi, yi) → maximum
9: end if

10: else if det(hj) < 0 then
11: (xi, yi) → saddle
12: end if
13: end if
14: end for
15: return

Fig. 2. Procedure classifyPoints()

(a) Front capture (b) Side capture

Fig. 3. Results of the detection process.

The critical points (maxima, minima, and saddles) of the polynomial P corre-
spond to the characteristic points of the face. These points are found with a
subsequent inverse transformation to reach the points of the original face. To
this end, the gradient G of the polynomial P is computed:

G(P ) =
(

∂P

∂x
(x, y),

∂P

∂y
(x, y)

)
. (5)

solving the following system:
{ ∂P

∂x (x, y) = 0
∂P
∂y (x, y) = 0 . (6)

As result, the eight possible solutions {(xj , yj)}8j=1 for the system are found. An
evaluation of every real solution is performed on the Hessian matrix H of P .
This evaluation is denoted as hj = H(P )(xj , yj). In this way, each real solution is
classified according to its type (minimum, maximum or saddle) by following the
procedure described in Fig. 2. As can be seen in this procedure, the classification
is performed by computing the determinant of hi and evaluating its first element
(Fig. 3 shows some detected critical points).

On the other hand, when the determinant of h turns out to be zero, the point
(xi, yi) in the polynomial function is evaluated, and its behavior is analyzed in
such a way that: if P (xi, yi) < P (x, y) it is a maximum; if P (xi, yi) > P (x, y) it
is a minimum; and if P (x, y)(x,y)<(xi,yi) < P (xi, yi) < P (x, y)(x,y)>(xi,yi) it is a
saddle point.

Some automatic adjustments of the position of windows or sub-domains were
made to achieve greater efficacy of the method. These adjustments were executed
starting by placing the first sub-domain in the approximate area of the nose
(usually located in the center of the face for D22), where in almost 100% of the
cases there is a detectable maximum. Given the windows:
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Vi2 = {(x, y, z) : (x, y) ∈ [xi, xi + d] × [y2, y2 + t]} , (7)

with i = 2, 3, . . . , making shifts of five units to the right x2 = x1 + 5, x3 =
x2 + 5, . . . , and to the left xi = x1 − 5, xi+1 = x2 − 5, . . . . Until to lose the
maximum in both directions and find points of minima and saddles at the end
of the nose; it is obtained an intermediate sub-domain that is used like reference
for the rest of the windows of the face. The length d of this intermediate window
in the x-axis is given by xd

1+xd
2

2 − xi
1+xi

2
2 , where xd

1,2 and xi
1,2 are the respective

lower and upper boundaries of the final windows given the right and left shifts.
Then, being x1 = xi

1+xi
2

2 , x2 = xi
1+xi

2
2 and x3 = xd

1+xd
2

2 − d, and the remaining
windows would be as follows:

Vij = {(x, y, z) : (x, y) ∈ [xi, xi + d] × [yj , yj + t]} . (8)

3 Alignment of Two Faces

Before performing the recognition step between two faces, an alignment must
be performed. Let P1 = {p1, p2, . . . , pn} and P2 = {p1, p2, . . . , pn} be the sets of
fiducial points extracted from the representations of two 3D faces. Each point of
these sets can be represented by the tuple pi = (xi, yi, zi, li), where xi, yi and zi

are the coordinates of the described point in R3, and li is a label that can take
three values depending on the kind of fiducial point detected (i.e., maximum,
minimum or saddle).

The proposed alignment is based on finding a labeled geometric graph for
each set of points. This is performed by computing Delaunay triangulation in
3D of the sets P1 and P2, denoted by DT3(P1) and DT3(P2). This triangulation
is a generalization of the classic Delaunay triangulation in which no point in Pi

is inside the circum-hypersphere of any simplex (tetrahedron) in DT3(Pi). It is
known that DT3(Pi) is unique if Pi is a set of points in general position. This
means that the affine hull of Pi is 3-dimensional and no set of 5 points in Pi lie
on the boundary of a ball whose interior does not intersect Pi [9]. In this way,
DT3(Pi) can be decomposed in simplexes, each one conformed by four facets.
The main objective of computing DT3(P1) and DT3(P2) is to find a tolerant to
distortions and unique geometrical structure for each Pi.

On the other hand, a labeled geometric graph can be defined as follows:

Definition 1 (Geometric graph). A geometric graph is a 4-tuple, G =
(V,E, I,K), where V is a set of vertexes, E ⊆ {{u, v} | u, v ∈ V, u �= v} is
a set of edges (the edge {u, v} connects the vertexes u and v), I : V → LV is
a function that assigns labels to vertexes where L is the domain of labels and,
finally, K : V → R3 is a function that assigns coordinates to vertexes, R repre-
sents the set of real numbers, and K(u) �= K(v) for each u �= v.

Using the previous definition and the triangulations DT3(P1) and DT3(P2),
the labeled geometric graphs G1 = (V1, E1, I1,K1) and G2 = (V2, E2, I2,K2) are
obtained, respectively, from P1 and P2. It results that:

– Vi represents the points of Pi;
– Ei contains all the edges generated by DT3(Pi);



3D Face Recognition in Continuous Spaces 9

1: Procedure alignPoints(P1, P2)
2: G1(V1, E1, I1,K1) ← buildGraph(P1)
3: G2(V2, E2, I2,K2) ← buildGraph(P2)
4: H ← {∅}
5: for all face vi, vj , vk ∈ G1 do
6: for all face vl, vm, vn ∈ G2 do
7: sortV ertexes(vi, vj , vk)
8: sortV ertexes(vl, vm, vn)
9: if I1(vi) == I2(vl) and I1(vj) == I2(vm) and I1(vk) == I2(vn) then

10: addTrans(H,E1(vi, vj), E2(vl, vm))
11: addTrans(H,E1(vj , vk), E2(vm, vn))
12: addTrans(H,E1(vk, vi), E2(vn, vl))
13: end if
14: end for
15: end for
16: TM ← getMaxRepTrans(H)
17: applyTransformation(P2, TM )
18: return

Fig. 4. Procedure alignPoints(P1, P2)

– Ii is a function that assigns labels from LV = {1, 2, 3} depending on the type
of the point represented (i.e., maximum, minimum or saddle);

– K assigns coordinates to the vertexes.

In Fig. 6 a geometric graph generated with this procedure is shown. After
this step, a graph matching technique between G1 and G2 is done. With this
technique, the geometric transformation T that best aligns G1 with G2 is found.

In Figs. 4 and 5 the procedures used for aligning two sets of points P1 and P2

are shown. In lines 2–3 of the procedure alignPoints(), the graphs are created.
Then, a map structure H is initialized. In lines 5–15, the faces of each simplex of
G1 are compared with those contained in G2. For this, the vertexes of the faces
are sorted according to the lengths of its segments. After this, if the analyzed pair
of faces have the same labels, the procedure addTrans() is called. In this latter
procedure, the transformation matrix T used to convert the second segment into
the first one is computed. Then, if T or a similar transformation is contained
in H, the respective counter is augmented; otherwise a new entry is added with
the counter set to 0. Finally, the transformation TM with higher counter in H is
used to rotate and translate P2 with respect to P1.

The main idea of this algorithm is based on finding the geometric transfor-
mation TM that aligns the highest number of edges belonging to G1 and G2.
This algorithm assumes that the fiducial points extracted from all the 3D faces
have a similar geometric disposition and labeling. As an example, Fig. 6 shows
the representation as geometric graphs and the alignment of two faces.

In order to refine the geometric graphs alignment, a posterior clustering pro-
cedure is performed. First of all, the PCA algorithm is applied to the whole
model to determine the z-axis, as the direction of lower variance. Then, a
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1: Procedure addTrans(H,E1(vi, vj), E2(vl, vm))
2: s1 ← sizeofSegment(E1(vi, vj))
3: s2 ← sizeofSegment(E2(vl, vm))
4: if abs(s1 − s2) then
5: T ← getTransMatrix(E1(vi, vj), E2(vl, vm))
6: if isContained(H,T ) then
7: H(T ).counter + +
8: else
9: H ← {T, 1}

10: end if
11: end if
12: return

Fig. 5. Procedure addTrans(H,E1(vi, vj), E2(vl, vm))

Fig. 6. (a)–(b) Two graphs of faces; (c) alignment of the graphs in (a) and (b)

(a) Segmentation of the frontal part
of the face

(b) Alignment of two meshes

Fig. 7. Refinement of the alignment process

k-means clustering is applied to the z values, in order to segment the frontal
part of the face (see Fig. 7a). Finally, PCA is applied again, using as origin the
maximum value of the z coordinates found. In this way, the y-axis is given by
the direction of lower variance. In Fig. 7 the results of this process are shown.
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The main advantages of the proposed method over other state of the art
approaches [16] are the following:

– The localization of specific fiducial points in the faces, like pronasal points,
are not needed.

– The use of a point set registration algorithm, like ICP is avoided. These
algorithms are computationally expensive.

– Our proposal performs the alignment process with high precision, between
lateral and frontal views of the faces. This is not possible in previous works.

4 Functional Representation

Once aligned, the next step is to obtain the representation of the points cloud
as a surface corresponding to a function z = f(x, y) over a spatial domain. The
appropriate domain in terms of its dimensions and geometry must correspond
to the completion of the functional representation. As base functions, we use
the LTPBVS (see (3)), but adjusted to the surface of the new regions obtained
after the alignment of the faces. In this way, the representation is constructed
by the same procedure used to detect the points for alignment, which simplifies
the implementation of the process. The decision to use LTPBVS is supported
by the well known advantages of these functions. Among them, we can mention
that LTPBVS produces smooth surfaces, which are infinitely differentiable. Also,
they do not have free parameters that need manual tuning.

The matching step is performed by comparing the coefficients of the corre-
sponding representative functions of the faces, in a way similar to [16]. However,
in this work we obtain one functional representation for each one of the m
regions in which the face is divided. Given two faces F and G, their distance can
be computed as in (9), where fi and gi are the corresponding functions of the
i-th region, defined on a common domain [a, b] × [c, d] for the norm Ln:

d(F,G) =
m∑

i=1

n

√∫ b

a

∫ d

c

|fi(x, y) − gi(x, y)|ndxdy. (9)

5 Experimental Results

The proposed 3D face recognition approach has been evaluated on the 2D/3D
Florence dataset [2]. This dataset includes 3D faces acquired with different
devices and challenges (i.e., non-frontal pose, presence of hair, neck, shoulders).
For the whole dataset, the representations were constructed based on local thin
plate bivariate splines (LTPBVS) defined, respectively, on twelve disjoint regions
oriented by the normals to the origin and over the correspondent control grid.
Thus, in the case of side faces, they contain six disjoint rectangular regions. The
face recognition problem was modeled as a classification task, using a k-NN clas-
sifier with Euclidean distance. Results are reported in Table 1. For each one of
the disjoint regions found, 39 coefficients were computed.
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Table 1. Rank-1 recognition accuracy on the 2D/3D Florence face dataset

Method # coef. Frontal Left Right

Our proposal 468 98% 97.1% 97.2%

GBVS [16] 4096 100% 96.2% 96.4%

LBVS [16] 4608 100% 96.3% 96.7%

It can be noted, the results do not outperform those obtained in a previous
approach on the frontal case, but it reports better results on lateral cases. This
feature makes the proposal of this work more suitable for environments in which
occlusions are common. Also, the number of coefficients used on this approach is
lesser than previous works, which reduces the dimension of the data and improves
the efficiency of the method.

6 Discussion and Conclusions

Recognizing faces from 3D scans is becoming a problem of increasing interest,
with applications in several practical contexts. Though effective solutions exist
for the cooperative case, where faces are acquired in frontal pose, the recogni-
tion is much more difficult when acquisitions include facial expressions or pose
variations (missing parts).

In this paper, we have presented an original 3D face recognition solution,
which is capable of recognizing faces also in the case of expressions and miss-
ing parts. The proposed method relies on the idea of constructing a functional
representation of the face locally. First, keypoints of the face are detected using
surface analysis, and they are used to partition the face into local rectangu-
lar domains, which are subsequently aligned. Then, the surface is approximated
locally to each domain using Local Thin Plate Bivariate Splines (LTPBVS). The
LTPBVS provide a descriptive and compact representation of the face, where
coefficients of the functions are used for effective and efficient face matching. On
the other hand, the proposed alignment method is very robust in presence of
position variation or omission of fiducial points. This occurs because the align-
ment can be performed by using only a small subset of fiducial points, which
allows a higher degree of tolerance. The proposed method has good performance
even when a certain amount of spurious fiducial points are located. Recogni-
tion results obtained on the UF-3D [2] database show performances, which are
comparable or superior to state of the art solutions.
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