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Abstract. Lots of damages, losses, and costs have been the major concern, why
handling natural disasters of tornados is very important. Several attempts using
different approaches have been carried out, but up to now the results are not yet
satisfactory. More promising approaches through a kind of artificial intelligent
forecaster have been started for a while, but the results are still not satisfactory
either. The capability of mHGN as a pattern recognizer has opened up a new
possibility of recognizing a pattern of tornado many hours earlier. Therefore, it
can be used to forecast a tornado more efficiently. The results taken from a
simulated circumstances of a multidimensional pattern recognition have shown,
that the 91% of accuracy can be regarded as satisfactory. Though, several
modifications related to the data representation within the mHGN architecture
need to be implemented. The deployment of mHGN in several risky areas of
tornados can then be expected as a tool for reducing those damages, losses, and
costs.

Keywords: Graph neuron � Hierarchical Graph Neuron � mHGN � Natural
disaster forecast � Tornado forecast

1 Introduction

Different types of natural disasters have struck many countries since millions of years
and caused various problems. Natural disasters have caused not only financial problems
but also casualties. Yet, people living in those hit areas have not found effective and
efficient ways how to cope with it. Developed countries such as USA [1] and Japan [2]
are not excepted. Those countries face natural disasters every year [3] and suffer from
them. The situation is worse in some developing countries, such as Nepal and Tahiti,
where people generally do not know what to do before, during, and after a natural
disaster has occurred.

The most difficult part to handle natural disasters is that they come in random times.
Although some natural disasters such as volcano eruptions, earthquakes are not coming
every day or every month, people cannot prepare the best way to face them. Two
tsunami disasters in 2004 (Indonesia) and in 2011 (Japan) are two evidences that
people are not adequately nor properly prepared. Due to the randomness of occurrences
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of natural disasters, it becomes more difficult to handle those frequent ones like tor-
nados, landslides, and flooding. Not only handling natural disasters is difficult, pre-
dicting how bad the damages and costs is still a very challenging task.

To reduce damages, losses, and costs after such unpredictable occurrences people
have tried to be prepared as good as possible. Disaster management is the general
terminology researchers use for the activity of preparing a number of things before,
during, and after a natural disaster has occurred. Additionally, since a few centuries
back, researchers have been interested in discovering ways to forecast the upcoming of
a natural disaster. Some of them are still at the stage of now-casting [4–8], not yet
forecasting. According to their methodologies, the most difficult part of forecasting
natural disasters lies in the mathematical formulas. At the moment, the success-rate of
such forecasters is around up to 80%.

As it is still difficult to have a measure of disaster forecast based on mathematical
formulas, it is a great opportunity to figure out other solving methods, such us through
utilizing artificial intelligent technologies. Although mathematical functions that can
determine the condition of a natural disaster are not yet discovered, air-temperature,
wind-speed, wind-direction, and air-pressure that constitute a natural disaster, such as
tornado, are all caused by physical states [9]. It means that the condition of a tornado is
generally determined by particular physical patterns. So, time-series of several physical
values of air-temperature, wind-speed, wind-direction, and air-pressure will determine
particular tornado condition.

Multidimensional Hierarchical Graph Neuron (mHGN) has been proven to be
capable of working as a pattern recognizer. The latest architecture to prove its capa-
bility was the one that uses five-dimension 5 � 5 � 5 � 15 � 15 neurons. The
architecture has been tested to recognize 26 patterns of five-dimensional alphabetical
figures. Despite of 10% of distortion of the figures, the architecture was able to rec-
ognize in average more than 90% of those distorted patterns. This experiment result is a
positive indication that mHGN has a potential to be developed as a disaster forecaster.
The architecture can then be used as an additional tool for reducing the number of
damages, losses, and costs when a tornado strikes.

2 Natural Disaster Forecast

Several countries have faced natural disasters more than the others. Every year, the US
suffers from tornado more than other countries do. The number of tornados occurred
within a year varies, so is the severity of damages, losses, and costs. However, this does
not mean that only the US must concern with the occurrence of tornados. When the
circumstances of developing a tornado in an area have reached, it is very likely that the
area will be hit by a tornado. The likelihood of the occurrence of a natural disaster
varies, but the possibility is still there in most parts of the world. For instance, the
tsunami that hit Indonesia in 2004 had never been experienced by Indonesians for
hundreds of years. This situation applies for other natural disasters.

Many countries under the coordination of the United Nation’s UNISDR have
worked together to handle natural disasters around the world. This means that any
disaster that strikes a country is no longer the concern of the country itself, but it is
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automatically the world’s concern. Such situation has helped researchers in gaining
data from various sensors spread around the world. Many researchers have started
investigating new approach in forecasting natural disasters. Several issues related to
this need to be discussed further.

The randomness of the occurrence of a natural disaster is not only in terms of the
location, but also of the time and the severity. Two obvious examples are the tsunami in
Indonesia in 2004 and the blizzard in Afghanistan in 2008. A number of researchers in
opinion that the severity and the average magnitude of natural disasters have increased
since the last decade. However, it is still not clear how severe future natural disasters
might be. The impossibility to measure, or to predict the severity of natural disasters,
that potentially will occur in the future, has been the major cause of the difficulties in
anticipating their occurrences. Several other researchers have come up with the idea
that, one way to deal with the randomness of the occurrence of natural disasters is
through a disaster forecaster.

Several researchers have investigated natural disaster forecasting through a kind of
early warning system [3] and now-casting [1, 4, 6, 7, 9, 10]. The forecasting approach
that they [2, 5, 8] have attempted is able to forecast the disaster within one hour time
frame. SuzukiI et al. [8] have shown their success in predicting Haneda’s gust wind
disaster of April 18, 2008. Despite the difficulties in finding appropriate equations,
Sorensen [3] admits that his early warning system has been built utilizing a number of
fields of science. He [3] further advises that early warning systems will be effective if
they integrate the subsystems of detection of extreme events, management of hazard
information, and public response.

It seems to be that researchers have tried to find an appropriate approach for
working on three areas: natural disaster forecaster, now-casters, or early warning
systems. However, they [3, 9, 11] also still integrate their system with disaster man-
agement systems. Even Doong et al. [11] suggest that the success of a disaster miti-
gation concept lies in the quality of the disaster management. This shows that their
approach alone is not yet adequate to handle natural disasters. The potential reason to
this case is the fact that a system for handling natural disaster requires very complicated
mathematical analysis. So many parameters and values need to be considered and
included in their calculation [1, 5, 6], and it is time consuming [10], but the system
must run fast [1]. The other thing that needs to be considered when deploying such
systems is the cost of using high quality sensors [5]. This causes the condition that
gaining important measured data in several important areas is challenging [5].

Despite those efforts of researchers, Sorensen [3] argues that in terms of prediction
and forecasting, no radical breakthroughs have occurred in the past twenty years. Most
natural disaster researchers are working on current technologies that are not focusing
on the forecasting techniques. Rather, they are concerned with how natural disaster
alerts can be disseminated to the public [3]. While investigating natural disaster issues,
special attention has been taken for people with disabilities. Most difficult part in facing
a natural disaster is about how to handle people when a natural disaster occurs.
Additionally, most common recommendation for an early warning system is “how to
evacuate.”

Although the randomness of the occurrences of a natural disaster has caused dif-
ficulties in handling it, the development of every natural disaster still follows natural

Forecasting Natural Disasters of Tornados Using mHGN 157



science characteristics and rules. Each part of a natural disaster—for example a tornado
—owns specific patterns and characters. For instance, a tornado develops its twist
through hot and cold winds that move from the opposite directions. Not only the
opposite winds play a role in developing a tornado, specific air pressure and air tem-
perature are also significant contributors for a tornado’s development.

The steps that a tornado builds its strong winding wind can be treated as a pattern.
So, the recorded data from previous tornado disasters must be kept properly. The data
is the important source of clue for researchers to analyse the pattern of a tornado. When
patterns of tornados can be recorded, it is a strong possibility that when one of the
patterns turns up, a system that can recognize patterns can be used to recognize a
tornado early before it becomes a strong and destructive one. Such patterns are the most
important part of mHGN for forecasting tornados hours before they strike.

3 Multidimensional Hierarchical Graph Neuron (mHGN)

The need to solve multidimensional problems has been discussed since a long time ago.
People are aware that to handle complex problems, values taken from numerous
dimensions must be considered and calculated. Otherwise, the result that comes up
after the calculation analysing just a few parameters cannot be considered correct. In
most cases, such a condition has produced very high false positive and true negative
error rate. Another issue related to solving multidimensional problems is the solving
method that will be implemented. In a complex system, not only the number of
dimensions is large, but how all the dimensions are interrelated to each other, or
independent on one another, is often not clear.

Natural disaster system is a good example as a multidimensional system. Therefore,
forecasting natural disasters is also a type of solving a multidimensional problem. Not
only the location or the latitude determines the condition of natural disasters,
air-temperature, air-pressure, air-humidity, wind-direction, and wind-speed also play a
big role in causing natural disasters of tornados. A problem that still exists is the
interdependency amongst those tangible and intangible values (industrial development,
people movement, etc.). It is cto figure out a formula that constitutes such interde-
pendency. This is a strong indication that such multidimensional problems may be
solved using artificial intelligent approaches such as mHGN.

3.1 Experiment Results

For the experiment, each GN is operated by a thread. Various 2D-, 3D-, 4D- and
5D-pattern recognition have been scrutinized. The compositions used in the experiment
are: 15 � 15 mHGN, 5 � 15 � 15 mHGN, 5 � 5 � 15 � 15 mHGN, and 5 � 5
5 � 15 � 15 mHGN respectively. For instance, in the 15 � 15 pattern recognition
the composition requires: 225 + 195 + 165 + 135 + + 105 + 75 + 45 + 15 + 13 +
11 + 9 + 7 + 5 + 3 + 1 = 1009 neurons per value of data. As for creating patterns,
binary data is used, then two values (i.e. 0 and 1) of data are required. Therefore, 2018
neurons are deployed in the 15 � 15 mHGN composition. So, 2018 threads have been
run in parallel during this 2D pattern recognition. By using threads, the activity of

158 B.B. Nasution et al.



neurons is simulated so that the functionalities are close to the real neuron
functionalities.

The experiment has worked on all the patterns of 26 alphabetical figures. Following
the composition of the neurons, the alphabet patterns consist of 15 � 15 pixels. For the
training purpose, the mHGN is first fed one-cycle with all the 26 non-distorted patterns.
The order of the patterns during the training phase has been determined randomly.
Then, to acquire the recognition results the mHGN is fed with a lot of randomly
distorted patterns of alphabets. The recognizing accuracy is taken by calculating the
average value of the results.

For the sake of the experiment, 20 distorted patterns for each alphabetical figure
have been prepared. After acquiring the results, the experiment is repeated 10 times
with the same steps, but each time the mHGN is trained with 26 patterns of alphabetical
figures with randomly different order. So, for each alphabetical figure for particular
percentage of distortion, in total 200 distorted patterns have been prepared as testing
patterns.

There are 7 levels of distortion that have been tested, they are: 1.3%, 2.7%, 4.4%,
6.7%, 8.0%, 8.9%, and 10.7%. These levels have been so chosen based on the number
of distorted pixels. The sizes of pixels represent the factor and the non-factor of the
dimension of the patterns. By doing so, we can observe all the possibilities of dis-
tortion. So, in total there are 5200 (26 � 20 � 10) randomly distorted testing patterns.
The following Fig. 1 shows 5 samples of different orders of the patterns:

The following shows some results taken from testing 4.4% randomly distorted
patterns, and the mHGN was previously stored with alphabetical figure patterns, and
the order was IEFXMQYJHPDKTORZCUALBGVWNS. The value on the right side
of each alphabet show the portion (percentage) of the pattern that is recognizable as the
corresponding alphabet (see Fig. 2.).

The following shows 10 samples of distorted patterns of the alphabetical figure of
“A” taken from the experiment t of recognizing 5.8% randomly distorted patterns (see
Fig. 3.).

After collecting the results taken from testing 5200 patterns we can summarize how
accurate the mHGN is, in recognizing different levels of distortion of 26 alphabets. The
summary is taken based on the average accuracy values from all the steps. The fol-
lowing shows the summarized result taken from testing distorted patterns using
five-dimensional 5 � 5 � 5 � 15 � 15 mHGN (see Fig. 4.).

Fig. 1. Five different randomly ordered alphabets.
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It can be seen from Fig. 4 in the last column that the mHGN is able to recognize
91% of the 10.7% distorted patterns of 26 alphabetical figures. Some alphabetical
figures of A, C, E, G, I, J, L, O, S, T, U, V, X, Y, Z, are even 100% recognizable. Other
patterns of alphabetical figures of H, K, M, N, are not very well recognized because
they are visually and physically very similar. In fact, if this architecture is used to
recognize different states of the same alphabet, such as regular-A, bold-A, and italic-A
as the same alphabet, then mHGN will be able to gain better accuracy values.

The following figure shows the differences of recognition accuracy amongst
15 � 15, 5 � 15 � 15, 5 � 5 � 15 � 15, and 5 � 5 � 5 � 15 � 15 mHGN
architectures when recognizing 10.7% distorted patterns of alphabets (see Fig. 5.).

Fig. 2. The result of al the 26 alphabetical patterns that are twenty times 4.4% randomly
distorted.

Fig. 3. Ten different randomly 5.8% distorted patterns of alphabetical figure of “A”
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1.3 2.7 4.4 6.7 8.0 8.9 10.7
A 100 100 100 100 100 100 100
B 100 100 100 100 98 97 94
C 100 100 100 100 100 96 100
D 100 100 100 100 100 100 98
E 100 100 100 100 100 100 100
F 100 99 94 89 83 85 74
G 100 100 100 100 100 100 100
H 100 100 89 67 48 50 55
I 100 100 100 100 100 100 100
J 100 100 100 100 100 100 100
K 100 100 98 81 70 72 67
L 100 100 100 100 100 100 100
M 100 100 93 76 55 66 49
N 100 100 97 77 63 60 55
O 100 100 100 100 100 100 100
P 100 99 87 79 80 81 81
Q 100 100 100 100 100 94 99
R 100 100 100 95 100 99 95
S 100 100 100 100 100 100 100
T 100 100 100 100 100 100 100
U 100 100 100 100 100 100 100
V 100 100 100 100 100 100 100
W 100 100 100 100 99 98 92
X 100 100 100 100 100 100 100
Y 100 100 100 100 100 100 100
Z 100 100 100 100 100 100 100

100 100 98 95 92 92 91

Recognition 
Accuracy for 

Each Pattern (%)

Average

Distortion (%)5X5X5X15X15 Patterns

Fig. 4. The summary of the result using 5 � 5 � 5 � 15 � 15 mHGN [12].

15X15 5X15X15 5X5X15X15 5X5X5X15X15
A 99 100 100 100
B 58 69 92 94
C 67 93 94 100
D 78 92 94 98
E 85 80 100 100
F 61 71 81 74
G 87 98 100 100
H 23 63 69 55
I 95 100 100 100
J 77 95 100 100
K 68 59 84 67
L 50 80 100 100
M 38 36 35 49
N 53 42 63 55
O 100 100 100 100
P 61 59 75 81
Q 63 73 73 99
R 79 90 95 95
S 78 97 100 100
T 93 95 100 100
U 89 84 85 100
V 100 100 100 100
W 75 82 98 92
X 85 100 100 100
Y 100 100 100 100
Z 99 100 100 100

75 83 90 91

Comparison Result Distortion = 10.7 %

Recognition 
Accuracy for 

Each Pattern (%)

Average

Fig. 5. Differences of recognition accuracy amongst four different architectures
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3.2 Time-Series in Pattern Recognition

Recognizing patterns of time series problem utilizes data that have previously been
recorded regularly in timely manner [12]. For instance, if the parameter that needs to be
recorded is a single value, and the recording step is every six hours, then there will be 4
values recorded every day. In order to constructs the recorded values as a pattern, the
data representation of the recorded values need to be developed so, that they can fit into
a pattern recognition architecture. The following Fig. 6 shows two ways of repre-
senting recorded data for 8 levels of measurement.

It can be seen from Fig. 6 that the data is represented using binary values. The bit
difference (distance) between adjacent levels is 1. Additionally, the number of bit
differences between any two levels is linear with the value difference between the two
levels. However, such data representation will not maximally utilize the binary com-
bination. With 3-bit data, only 3/8 or 0.375 is the occupation rate. For 4-bit data is the
occupation rate 4/16 or 0.25. The occupation rate is 5/32 or 0.15625 for 5-bit value.
This shows that the above data representation will produce less occupation rate, the
more bits is used. This is an indication that due to such an occupation rate the pattern
recognizer will have less recognition accuracy the more bits in it is used. The following
is a better data representation.

In Fig. 7 it is shown that the number of bit differences between adjacent levels is 1.
Between any two levels the bit difference is 2, and 3 between any three levels. This data
representation is cyclic. It means that, if it is required the order of binary representation
can be modified circularly without affecting the bit differences (distances). Using such a
better data representation, for any bit data is the occupation rate constantly 0.75. With
such a constant occupation rate the pattern recognizer will have constant recognition
accuracy, any number of bits in it is used. The following figure shows an example of
recorded data taken from a single value measurement and each value has 8 levels.

It can be seen from Fig. 8 that the recorded values from parameter of 8 levels data
construct a two-dimensional pattern of 30 � 8 architecture. Utilizing these recorded
data, the pattern recognizer can forecast a tornado 6 h earlier. when the same tornado

0 00000000
1 10000000
2 11000000
3 11100000
4 11110000
5 11111000
6 11111100
7 11111110
8 11111111

0 00000000
1 00000001
2 00000011
3 00000111
4 00001111
5 00011111
6 00111111
7 01111111
8 11111111

Fig. 6. Two examples of data representation for 8-bit value
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will occur again. It means that if values have been recorded and the same pattern is
recognized by the pattern recognizer, then the tornado is forecasted to occur again
within 6-h time.

So, to predict what will occur in 6-h time using 30 � 8 mHGN architecture, the
recognizer need to be fed with data measurement recorded from 7 days and 6 h ago
until now. Not only forecasting something that will occur in 6-h time, the 30 � 8
mHGN architecture can also be used to forecast something that will occur in 12-h time.
But, for this purpose the recognizer is fed with data measurement recorded from 7 days
only. In this case, the pattern is not fed with 30 � 8 binary data, but with only 29 � 8
binary data. This is the same case when a pattern recognizer is fed with incomplete data
(only 97% data), but the recognizer still has the capability to recognize the pattern.
Similarly, to forecast something that will occur in 18-h time, the recognizer is fed with
data measurement recorded from 6 days and 18 h ago (only 93% data). This case is
shown in Fig. 4, that after stored with 26 patterns, 5 � 5 � 5 � 15 � 15 mHGN
architecture is able to recognize 89% incomplete/distorted patterns with 91% of suc-
cessful rate.

1 010
2 011
3 001
4 101
5 100
6 110

1 0010
2 0011
3 0001
4 0101
5 0100
6 0110
7 1110
8 1111
9 1101
10 1001
11 1000
12 1010

1 10001
2 10000
3 10010
4 00010
5 00011
6 00001
7 00101
8 00100
9 00110
10 01110
11 01111
12 01101
13 01001
14 01000
15 01010
16 11010
17 11011
18 11001
19 11101
20 11100
21 11110
22 10110
23 10111
24 10101

Fig. 7. Three examples of a better data representation for 3-, 4-, and 5-bit value
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4 Multidimensional Graph Neuron for Tornado Forecasting

In the previous section, time series value is described and represented so, that it can be
forecasted through utilizing a pattern recognition, such as mHGN. In case of tornado
forecasting, single parameter in a location, such as air-pressure, is not the only value
that determine the occurrence of a tornado in the location within 6-h time. Several other
parameters, such as air-temperature, wind-speed, wind-direction, and air-humidity, play
a big role in the occurrences as well. It means that the number of levels or a measured
value will increase according to the number of parameters. In case 5 parameters need to
be measured and each value contains 8 levels, the required pattern structure would be
30 � 40.

Also described in the previous section that measuring a parameter at particular
point of location for several periods of time will generate a two dimensional pattern. If
a series of points of the location need to be measured for several period of time, then
the measured values will become a three dimensional pattern. The following Fig. 9
depicts how some part of it will look like.

Fig. 8. Data of 8 level value build a 2D-Pattern

Fig. 9. A row of data of 8 level value build a 3D-Pattern
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Also described in the previous section that measuring parameters at particular point
of location for several periods of time will generate a two dimensional pattern. If a
series and linear of locations need to be measured for several periods of time, then the
measured values will become a three dimensional pattern. If the location that need to be
measured is an 2D area, then the measured values will generate a 4D pattern. Fur-
thermore, if the location that need to be measured is a 3D area, then the measured
values will generate a 5D pattern.

4.1 The Architecture of mHGN for Time-Series Tornado Data

The utilization of mHGN has introduced a new approach that a local tornado forecast
can be operated using small and cheap components. The values of air-temperature,
air-humidity, air-pressure, wind-speed, and wind-direction can be gained through
ordinary sensors. The area that is covered by those sensors can be a 3D area, because
such small sensors can be easily mounted in valleys or hills, or even vehicles. The
sensors can be embedded in a tiny computer, such as Raspberry Pi. The tiny computer
will be responsible to run several GNs. The values taken from the sensors will then be
worked out within the GNs. The connectivity of neurons is developed within a tiny
computer and through the interconnectivity of the tiny computers.

During mHGN experiments, each neuron and its functionalities is operated by a
thread. However, the number of thread will be tremendous, especially when the mHGN
is used to work on multidimensional patterns. For example, 15 � 15 architecture of
mHGN requires 2018 neurons. This means that the number of threads that need to be
run is also 2018. Such a number of threads would be difficult to be run if the computer
used for the project is a Raspberry Pi. The new approach to run neurons is through
utilizing threads in which the number of threads is only the same as the size of neurons
on the base level. The following Fig. 10 shows that instead of utilizing 25 threads the
new approach to implement mHGN architecture only requires 9 threads.

In short, to build a tornado forecast for particular location, five parameters need to
be measured. They are: air-temperature, air-humidity, wind-speed, wind-direction, and
air-pressure. So, if one parameter is represented through 8-bit binary data, then for the
measurement of 5 parameters 41-bit data is needed (the dimension must be odd

Fig. 10. The number of threads (dashed line) is the same as the neuron size on the base level
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number). For the time series, 21 series of measurement will be carried out. For an area
that needs to be protected by mHGN, 3 � 3 � 3 measurement points will be deployed.
So, the mHGN dimension will be 3 � 3 � 3 � 41 � 21.

The positions of the 3 � 3 � 3 GNs will form a cylinder shape. In the cylinder,
there will be three layers of circles. Each layer contains 9 GNs, in which 8 GNs will be
on the border of the circle, and one GN will be located in the centre of the circle. The
following Fig. 11 shows the architecture of the positions of the sensors.

The cylinder shape of the architecture has been chosen so, that mHGN still has an
ability to recognize the same tornado pattern but developed with the direction different
from the ones already stored. For the purpose of training, patterns from the previous
tornados will be stored in the mHGN. Each pattern of a tornado will then be stored in
mHGN eight times, following the number of eight major compass directions. It will
look like as if the mHGN has stored 8 patterns of tornados. By having eight patterns for
each tornado stored in mHGN, whenever the same characteristics of a tornado turn up
but from different direction from the already stored ones, mHGN will be able to
recognize it.

4.2 Case Studies: Joplin’s and Hackleburg–Phil Campbell’s Tornados

Two deadliest tornados occurred quite recently are the tornado that struck Joplin,
Missouri on May 22, 2011 and the one in Hackleburg–Phil Campbell, Alabama on
April 27, 2011. To store the circumstances, several parameters in these areas need to be
stored in mHGN. Fortunately, the National Oceanic and Atmospheric Administration
(NOAA) provides lots of data of: air-temperature, air-humidity, air-pressure,
wind-speed, wind-direction in most areas of the US. These data will be the major
source for mHGN to store previous occurrences of tornados. In the case of Joplin, the
following are several locations of stations that have recorded those data from their
sensors including the map in the state of Missouri (see Figs. 12 and 13).

Fig. 11. The architecture of 3 � 3 � 3 sensors
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Fig. 12. Several weather stations in the state of Missouri

Fig. 13. The locations (bold circles) of several weather stations in the state of Missouri

Hourly Obs 
Month/Year: 05/2011 
Station Location: JOPLIN REGIONAL AIRPORT (13987) 
Lat: 37.146 
Lon: -94.502 
Elev: 980 ft. above sea level 
WBAN,Date,Time,StationType,SkyCondition,SkyConditionFlag,Visibility,VisibilityFlag,WeatherType,WeatherTypeFlag,DryBulbFarenheit,DryBulbFaren
heitFlag,DryBulbCelsius,DryBulbCelsiusFlag,WetBulbFarenheit,WetBulbFarenheitFlag,WetBulbCelsius,WetBulbCelsiusFlag,DewPointFarenheit,DewP
ointFarenheitFlag,DewPointCelsius,DewPointCelsiusFlag,RelativeHumidity,RelativeHumidityFlag,WindSpeed,WindSpeedFlag,WindDirection,WindDire
ctionFlag,ValueForWindCharacter,ValueForWindCharacterFlag,StationPressure,StationPressureFlag,PressureTendency,PressureTendencyFlag,Pres
sureChange,PressureChangeFlag,SeaLevelPressure,SeaLevelPressureFlag,RecordType,RecordTypeFlag,HourlyPrecip,HourlyPrecipFlag,Altimeter,Al
timeterFlag 
13987,20110521,0053,11,OVC038, ,10.00, , , ,64, ,17.8, ,62, ,16.4, ,60, ,15.6, , 87, ,10, ,160, , , ,28.74, , , , , ,29.76, ,AA, , , ,29.78,  
13987,20110521,0130,11,BKN025 OVC032, ,10.00, , , ,64, ,18.0, ,62, ,16.7, ,61, ,16.0, , 90, , 9, ,160, , , ,28.72, , , , , ,M, ,SP, , , ,29.77,  
13987,20110521,0153,11,OVC023, ,10.00, , , ,65, ,18.3, ,62, ,16.6, ,60, ,15.6, , 84, ,10, ,170, , , ,28.71, , , , , ,29.74, ,AA, , , ,29.76,  
13987,20110521,0253,11,BKN023, ,10.00, , , ,63, ,17.2, ,61, ,16.2, ,60, ,15.6, , 90, ,10, ,180, , , ,28.72, , , , , ,29.75, ,AA, , , ,29.77,  
13987,20110521,0324,11,SCT023, ,10.00, , , ,63, ,17.0, ,62, ,16.5, ,61, ,16.0, , 93, , 8, ,180, , , ,28.74, , , , , ,M, ,SP, , , ,29.78,  
13987,20110521,0353,11,CLR, ,10.00, , , ,61, ,16.1, ,60, ,15.4, ,59, ,15.0, , 93, , 5, ,170, , , ,28.72, , , , , ,29.75, ,AA, , , ,29.77,  
13987,20110521,0453,11,CLR, ,10.00, , , ,60, ,15.6, ,59, ,14.9, ,58, ,14.4, , 93, , 5, ,150, , , ,28.74, , , , , ,29.76, ,AA, , , ,29.78,  
13987,20110521,0553,11,CLR, ,10.00, , , ,60, ,15.6, ,59, ,15.2, ,59, ,15.0, , 97, , 6, ,150, , , ,28.75, , , , , ,29.78, ,AA, , , ,29.80,  
13987,20110521,0653,11,BKN012, ,10.00, , , ,64, ,17.8, ,62, ,16.7, ,61, ,16.1, , 90, ,15, ,180, ,22, ,28.75, , , , , ,29.78, ,AA, , , ,29.80,  
13987,20110521,0753,11,OVC014, ,10.00, , , ,67, ,19.4, ,64, ,17.7, ,62, ,16.7, , 84, ,15, ,190, , , ,28.76, , , , , ,29.79, ,AA, , , ,29.81,  
13987,20110521,0812,11,OVC016, ,10.00, , , ,68, ,20.0, ,65, ,18.2, ,63, ,17.0, , 84, ,13, ,200, ,25, ,28.77, , , , , ,M, ,SP, , , ,29.82,  
13987,20110521,0853,11,OVC018, ,10.00, , , ,69, ,20.6, ,65, ,18.1, ,62, ,16.7, , 79, ,14, ,190, ,24, ,28.78, , , , , ,29.80, ,AA, , , ,29.83,  
13987,20110521,0926,11,SCT018, ,10.00, , , ,72, ,22.0, ,66, ,19.0, ,63, ,17.0, , 73, ,16, ,210, ,23, ,28.78, , , , , ,M, ,SP, , , ,29.83,  
13987,20110521,0953,11,FEW021, ,10.00, , , ,73, ,22.8, ,66, ,18.9, ,62, ,16.7, , 69, ,16, ,200, , , ,28.78, , , , , ,29.80, ,AA, , , ,29.83,  
13987,20110521,1053,11,CLR, ,10.00, , , ,75, ,23.9, ,67, ,19.6, ,63, ,17.2, , 66, ,14, ,190, , , ,28.77, , , , , ,29.80, ,AA, , , ,29.82,  
13987,20110521,1153,11,CLR, ,10.00, , , ,79, ,26.1, ,70, ,21.0, ,65, ,18.3, , 62, ,14, ,190, ,18, ,28.76, , , , , ,29.78, ,AA, , , ,29.81,  
13987,20110521,1253,11,CLR, ,10.00, , , ,80, ,26.7, ,70, ,20.8, ,64, ,17.8, , 58, ,18, ,180, ,23, ,28.74, , , , , ,29.77, ,AA, , , ,29.79,  

Fig. 14. An excerpt of the data taken from a weather station in the state of Missouri
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In order to collect the suitable data that fit with the architecture of mHGN, the
locations of the chosen weather stations that the data will be taken from, must build a
figure like a circle, and the middle weather station must be located in the area in which
a tornado has hit. The following is an excerpt of the data taken from a weather station
Joplin in the State of Missouri (see Fig. 14).

5 Discussion

As is the case with pattern recognition of alphabets, patterns are more or less different
to one another. However, in time series measurement data patterns, which are con-
structed from the measured values of the sensors, can be very similar to one another.
Therefore, data representation of measured values before data is fed to the architecture
of mHGN plays a big role in having very accurate results. False positive and true
negative rate will also be indications to determine the quality of mHGN in forecasting
natural disastesr.

The data that will be used to validate this work will be the data taken from different
cities and different countries. As mHGN is trained one-cycle only, it is a challenge to
choose which data is the right data for the training purpose, or the data is the con-
solidated data from a number of occurrences. When the appropriate training data has
been applied, mHGN will then have a capability to forecast the tornado.

6 Conclusion

From the experiment results it is shown that mHGN has the capability to recognize
multidimensional patterns. For simulating a tornado forecast, we have presented results
of up to 5D architecture. As already discussed in [13, 14] there is no modification
required if the architecture needs to be extended to bigger sizes of patterns. In the future
this capability will be improved to the extent so, that multi oriented of multidimen-
sional patterns will also be recognizable. At this stage it is also observed that mHGN
still use a single cycle memorization and recall operation. The scheme still utilizes
small response time that is insensitive to the increases in the number of stored patterns.
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