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Abstract. The tree edit distance (TED), defined as the minimum-cost
sequence of node operations that transform one tree into another, is a
well-known distance measure for hierarchical data. Thanks to its intu-
itive definition, TED has found a wide range of diverse applications like
software engineering, natural language processing, and bioinformatics.
The state-of-the-art algorithms for TED recursively decompose the input
trees into smaller subproblems and use dynamic programming to build
the result in a bottom-up fashion. The main line of research deals with
efficient implementations of a recursive solution introduced by Zhang in
the late 1980s. Another more recent recursive solution by Chen found lit-
tle attention. Its relation to the other TED solutions has never been stud-
ied and it has never been empirically tested against its competitors. In
this paper we fill the gap and revisit Chen’s TED algorithm. We analyse
the recursion by Chen and compare it to Zhang’s recursion. We show
that all subproblems generated by Chen can also origin from Zhang’s
decomposition. This is interesting since new algorithms that combine
the features of both recursive solutions could be developed. Moreover,
we revise the runtime complexity of Chen’s algorithm and develop a new
traversal strategy to reduce its memory complexity. Finally, we provide
the first experimental evaluation of Chen’s algorithm and identify tree
shapes for which Chen’s solution is a promising competitor.

1 Introduction

Data featuring hierarchical dependencies are often modelled as trees. Trees
appear in many applications, for example, the JSON or XML data formats;
human resource hierarchies, enterprise assets, and bills of material in enterprise
resource planning; natural language syntax trees; abstract syntax trees of source
code; carbohydrates, neuronal cells, RNA secondary structures, and merger trees
of galaxies in natural sciences; gestures; shapes; music notes.

When querying tree data, the evaluation of tree similarities is of great inter-
est. A standard measure for the tree similarity, successfully used in numerous
applications, is the tree edit distance (TED). TED is defined as the minimum-
cost sequence of node edit operations that transform one tree into another. In
the classical setting [16,18], the edit operations are node deletion, node insertion,
and label renaming. In this paper we consider ordered trees in which the sibling
order matters. For ordered trees TED can be solved in cubic time, whereas the
problem is NP-complete for unordered trees.

© The Author(s) 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 156-170, 2017.
DOI: 10.1007/978-3-319-68474-1_11



A New Perspective on the Tree Edit Distance 157

In 1989, Zhang and Shasha proposed a recursive solution for TED [18]. The
recursion decomposes trees into smaller subforests. New subforests are generated
by either deleting the leftmost or the rightmost root node of a given subforest. A
good choice (left or right) is essential for the runtime efficiency of the resulting
algorithm. We call Zhang decomposition an algorithm that implements Zhang
and Shasha’s recursive formula.

Most TED algorithms, including the following, are dynamic programming
implementations of the Zhang decomposition and differ in the strategy of left
vs. right root deletion. Zhang and Shasha’s own algorithm [18] runs in O(n?)
time and O(n?) space for trees with n nodes. Klein [11] proposes an algorithm
with O(n3logn) time and space complexity. Demaine et al. [7] further reduce
the runtime complexity to O(n®) (O(n?) space), which is currently the best
known asymptotic bound for TED. The same bounds are achieved by Pawlik
and Augsten in their RTED [13] and AP-TED* [14] algorithms. According to a
recent result [2] it is unlikely that a truly subcubic TED solution exists.

Although TED is cubic in the worst case, for many practical instances the
runtime is much faster. For example, Zhang and Shasha’s algorithm [18] runs
in O(n?log?n) time for trees with logarithmic depth. Pawlik and Augsten [13]
dynamically adapt their decomposition strategy to the tree shape and show
that their choice is optimal. They substantially improve the performance for
many practically relevant tree shapes. AP-TED™ [14] is a memory and runtime
optimized version of RTED and is the state of the art in computing TED.

In this paper we study an algorithm that does not fall into the mainstream
category of Zhang decompositions, namely the TED algorithm introduced by
Chen in 2001 [6]. Chen proposes an alternative recursive solution for TED and
provides a dynamic programming implementation of his recursion. In terms of
asymptotic runtime complexity, Chen’s algorithm is known to be more efficient
than all other algorithms for deep trees with a small number of leaves. Unfor-
tunately, this algorithm has received little attention in literature. In particular,
its relation to Zhang decompositions has never been studied. Further, we are
not aware of any implementation or empirical evaluation of the algorithm. We
revisit Chen’s algorithm and make the following contributions:

— We perform the first analytical comparison of the decompositions by Chen and
Zhang. Although the decompositions seem very different at the first glance,
we show that all subproblems resulting from Chen’s recursion can also be
generated in a Zhang decomposition. Chen mainly differs in the way solutions
for larger subproblems are generated from smaller subproblems. This is an
important insight and opens the path to future research that unifies both
decompositions into a single, more powerful decomposition.

— We revise the runtime complexity of Chen’s algorithm. In the original paper, a
significant reduction of the runtime complexity is based on the assumption of
a truly subcubic algorithm for the (min,+)-product of quadratic-size matrices.
Unfortunately, there is no such algorithm and even its existence remains an
open problem. We adjust the asymptotic bounds accordingly and discuss the
impact of the change.
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— Memory is a major bottleneck in TED computations. We propose a new
technique to reduce the memory complexity of Chen’s algorithm from O((n+
12)min{l,d}) to O((n+1%)log(n)) for trees with [ leaves and depth d. This is
achieved by a smart traversal of the input trees that reduces the size of the
intermediate result. Our technique is of practical relevance and is used in our
implementation of Chen’s algorithm.

— We implement and empirically compare Chen’s algorithm to the state-of-the-
art TED solutions. We identify tree shapes for which Chen outperforms all
Zhang decomposition algorithms both in runtime and the number of interme-
diate subproblems. To the best of our knowledge, we are the first to implement
Chen’s algorithm and experimentally evaluate it.

The remaining paper is organised as follows. Section 2 analyses the relation-
ship between Chen’s algorithm and Zhang decompositions. In Sects. 3 and 4 we
revise the runtime complexity and improve the memory complexity of Chen’s
algorithm, respectively. We experimentally evaluate Chen’s algorithm in Sect. 5.
Section 6 draws conclusions and points to future research directions.

2 Chen’s Algorithm and Zhang Decompositions

In this section we analyse the relation of Chen’s algorithm to the mainstream
solutions for TED, namely Zhang decompositions. At the first glance, Chen’s
and Zhang’s approaches seem very different and hard to compare. We tackle
this problem in three steps: (1) We represent all subforests resulting from Chen’s
decomposition in the so-called root encoding, which was developed by Pawlik and
Augsten [13] to index the subforests of Zhang decompositions. (2) We rewrite
Chen’s recursive formulas using the root encoding and compare them to Zhang’s
formulas. (3) We develop a Zhang decomposition strategy that always generates
a superset of the subproblems resulting from Chen decomposition. These results
lead to the important conclusion that Chen and Zhang decompositions can be
combined into a single new decomposition strategy. This is a new insight that
may lead to new, more powerful algorithms in the future. We refer to the end of
this section for more details.

Trees, forests and nodes. A tree I' is a directed, acyclic, connected graph
with labeled nodes N(F') and edges E(F) C N(F) x N(F'), where each node
has at most one incoming edge. A forest F' is a graph in which each connected
component is a tree; each tree is also a forest. We write v € F for v € N(F). In
an edge (v, w), node v is the parent and w is the child, p(w) = v. A node with no
parent is a root node, a node without children is a leaf. Children of the same node
are siblings. A node z is an ancestor of node v iff x = p(v) or x is an ancestor
of p(v); x is a descendant of v iff v is an ancestor of z. A subforest of a tree F
is a forest with nodes N’ C N(F') and edges E' = {(v,w) : (v,w) € E(F),v €
N',w € N'}. F, is the subtree rooted in node v of F iff F, is a subforest of F’
and N(F,) = {x:x =wv or z is a descendant of v in F}.
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Node traversals. The nodes of a forest F' are strictly and totally ordered such
that (a) v < w for any edge (v,w) € E(F), and (b) for any two nodes f, g, if
f < gand f is not an ancestor of g, then f’ < g for all descendants f’ of f. The
tree traversal that visits all nodes in ascending order is the left-to-right preorder.
The right-to-left preorder visits the root node first and recursively traverses the
subtrees rooted in the children of the root node in descending node order.

Ezample 1. In tree F in Fig. 1, the left (right) subscript of a node is its left-to-
right (right-to-left) preorder number.

2.1 Representing Relevant Subproblems

All TED algorithms are based on some recursive solution that decomposes the
input trees into smaller subtrees and subforests. Distances for larger tree parts
are computed from the distances between smaller ones. A pair of subtrees or sub-
forests that appears in a recursive decomposition is called a relevant subproblem.
To store and retrieve the distance results for relevant subproblems they must
be uniquely identified. Pawlik and Augsten [13] developed the root encoding to
index all relevant subproblems that can appear in a Zhang decomposition.

Definition 1 (Root Encoding). [13] Let the leftmost root node lp and the
rightmost root node rg be two nodes of tree F, lp < rp. The root encoding
Fi,rp defines a subforest of F with nodes N(Fj ) ={lp,rr} U{z: 2z € F, z
succeeds Ly in left-to-right preorder and x succeeds rp in right-to-left preorder}
and 6dg€5 E(FZF,TF) = {(v,w) € E(F) ‘v e EF,TF ANw € EF,TF}'

Ezample 2. In tree F in Fig. 1(a), subforest F}, ; in root encoding (black nodes)
is obtained from F' by removing all predecessors of b in left-to-right preorder and
all predecessors of j in right-to-left preorder.

Chen [6] also uses a recursive formula, but the decomposition rules are differ-
ent from Zhang’s rules. The result of Chen’s decomposition are subtrees and sub-
forests. The subforests can be of two different types (using the original notation).
@r(I',1") is a subforest of tree F' composed of all maximum-size subtrees having
their leaf nodes between leaves I’ and !” in left-to-right preorder. g (v[1..p))
is a subforest of tree F' composed of the subtrees rooted in the first p children
of node v (left-to-right preorder). Interestingly, all subtrees and subforests in
Chen’s decomposition are expressible in the root encoding.

Ezample 3. Subforest ¥r(c,j) in Fig.1(a) (root encoding Fy, ;) consists of the
largest subtrees having all leaves between ¢ and j. .#p(a[l..2]) in Fig. 1(b) (root
encoding Fj f) consists of the subtrees rooted at the first two children of a.

Theorem 1. Every subtree and subforest that results from Chen’s recursive
decomposition can be represented in root encoding.

Proof. A subtree F, is represented as F; , in root encoding. We show that both
subforest types, (a) ¥r(I’,1"”) and (b) .Zr(v[l..p]), also have a root encoding.
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Fig. 1. Subforests of an example tree F' in Chen’s and root encodings.

: Let a and b be the leftmost and rightmost root nodes of the forest ¥z (I',1").

Then, the leftmost leaf of F, is I’ and the rightmost leaf of F, is I”. We
show that ¥p(I',1"”) = F,4. The proof is by contradiction. (i) Assume a
node x € F,; such that ¢ 9p(I',1"). Since © ¢ ¥p(I',1"), the subtree F,
rooted in & must have a leaf [ outside the range I’ to I” (by the definition of
Grp(I',1")), i.e,, L <1 or I >1". This, however, is not possible since I’ is the
leftmost leaf node of F, and I” is the rightmost leaf node of F;. (ii) Assume
a node y € 9p(l',1") such that y ¢ F, ;. Then, by Definition 1, y precedes
a in left-to-right preorder or y precedes b in right-to-left preorder. Consider
y < a in left-to-right preorder: all nodes that precede a in left-to-right
preorder are either to the left of a or are ancestors of a. However, the nodes
to the left of a are not in ¥x(1’,1"”) since they have leaf descendants to the
left of I’, and ancestors of a are not in ¥p(I',1"”) since a is the leftmost
root node in ¥g(I’,1"). Similar reasoning holds for y and b in right-to-left
preorder. Thus y must be in Fj, 3, which contradicts our assumption.

: Zr(v[l..p]) is a subforest composed of the subtrees rooted in the first p

children of node v. Let ci,...,c, be the first p children of node v. Then,
according to the definition of the root encoding, Fp(v[l.p]) = F,, .,. &1
is the leftmost root node and ¢, is the rightmost root node of Fg(v[1..p]).
Let I; be the leftmost leaf of ¢; and I, be the rightmost leaf of ¢,. All nodes
in the subtrees rooted at nodes cy,...,c, have their left-to-right preorder
ids between these of ¢; and I, and their right-to-left preorder ids between
these of ¢, and Iy. Thus, by Definition 1, Fp(v[l.p]) = F¢, - O

2.2 Comparing Recursions

Thanks to Theorem 1, which allows us to express all subforests of Chen’s decom-
position in root encoding, we are able to rewrite Chen’s recursive formulas with
root encoding. This makes them comparable to Zhang’s recursion, which also
has a root encoding representation.

The tree edit distance between two forests is denoted §(F,G). The trivial

cases of the recursion are the same for both Chen and Zhang: §(0,0) = 0,
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§(F,0) = 6(F — v,0) + cq(v), 6(0,G) = 6(0,G — w) + ¢;(w), where F and G
may be forests or trees, and () denotes an empty forest. c4(v), ¢;(w), ¢ (v, w) are
the costs of deleting node v, inserting node w, and renaming the label of v to the
label of w, respectively. F' — v is the forest obtained from F' by removing node v
and all edges at v. By F' — F), (v is a root node in forest F') we denote the forest
obtained from F' by removing subtree F,. Given forest F' and its subforest F’,
F — F' is a forest obtained from F' by removing subforest F’.

Zhang. The recursion by Zhang and Shasha [18] distinguishes two cases.

(a) Both F, and G,, are trees.

0(Fy —v,Gy) + cq(v)
0(Fy, Gw) =min < 6(F,, Gy — w) + ¢;(w) (1)
O0(Fy —0,Gy — w) + (v, w)

(b) Fip.rp is a forest or Gy, r is a forest.

6(EF77'F —lr, GlG,TG) + Cd(lF)
6(FZF77’F7GZG’/"G) = min 6(EF,T'F7 Glg,’r'c - ZG) + Ci(lG)
J(EFa Glc) + 5(EF,TF - F‘lzﬂGlcﬂ’G - Glc)
(2)

In Eq. 2, instead of removing the leftmost root nodes and their subtrees (I,
lg, Fis, Gi;) we can also remove their rightmost root node counterparts (g,
rGy Fra, Gre ), respectively. The choice of left vs. right in each recursive step has
an impact on the total number of subproblems that must be computed.

Chen. The recursion by Chen [6] distinguishes four cases. roots(Fy, ,,.) and
leaves(Fy,. r..) denote the set of all root resp. leaf nodes in forest Fj, ..

(a) Both F, and G, are trees. In this case, Chen’s recursion is identical to Eq. 1.
(b) Fi e is a forest and Gy, is a tree.

. 5('FlF,TF7 Gw — w) + Cl(w)
0(Fiprp, Gu) = min min  {8(Fy,Go) + 0(Fiprp — Fs,0)) O
s€roots(Fip rp)

(c) F, is a tree and Gy ., is a forest.

6(Fv -, GlG,TG) + Cd(v)
5(FU7 Glc,’r‘g) = min 6(F’U7 GlG,TG - Grg) + 6(®7 G’r‘c) (4)
§(Fy,Gre) +6(0,Gig e — Gre)
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(d) Both Fj, ,. and G . are forests.

6(Fip.rp,Gigrg) =
6(F1F77‘F ) GZGJ‘G - GTG) + 6(0? GTG)
6(FlFsTF ) GTG) + 6(07 Gigre — GTG)
min min {5(F1F,r}:7 Gigrg — Grg) + 5(Fl;g

llgleaves(FlF,,.F

Gry) (B)

STE?
+ 5(-FlF,TF - -Flp,r%, - FZII;,TFVQ)}

The nodes 7% and % in Eq.5 are defined as follows. Let {” be the next leaf
node after I’ in Fy, ,. and lca(l’,1”) € F the lowest common ancestor of the two
leaves I’ and I” (not necessarily lca(l’,l"”) € Fi, ). Then, ri (I%) is the first
descendant of lca(l',1") in Fy, ., that is on the path to I’ (I").

Fiprp = Fip vy, — Fiy oy is a path from lea(l',1”) to a root node (node without
a parent) in Fj, . if lca(l',l") € F, ., or it is an empty forest () otherwise.
While this term cannot be expressed in root encoding, the distance in Eq.5 can
be rewritten as follows: 6 (Fiy.,rp — Fip pr. = Firr rpy 0) = 6(Fipo e, 0)- 0(F1p 1, 0) =
6(Fl;i,rp,®)' Simﬂaﬂy’ 5(EF,TF - Fsa @) = 5(BF,TF7®) - 5(Fsa Q)) in Eq 3.

The correctness of Chen’s recursion has only been shown for forests Fj, ,.
that are expressible in the form ¥ (I, 1), where I’ (I") is the leftmost (rightmost)
leaf descendant of Iy (rp); and forests Gy ., that are expressible in the form
Zc(v[l..p]), where v is the parent of lg, and r¢g is the p-th child of v [6]. Other
forests shapes, although they may have root encoding, are not allowed.

Satisfying this restriction and thanks to the unified notation, we can observe
that the recursions by Zhang and Chen can be alternated. Since Chen’s decom-
position is more efficient for some tree shapes, combining the two formulas may
lead to better strategies and new, more efficient algorithms.

2.3 Comparing Relevant Subproblems

The choice of left vs. right in Zhang’s decomposition has an impact on the
number of relevant subproblems that must be computed (cf. Sect. 2.2). This has
first been discussed by Dulucq and Touzet [8]. The RTED algorithm by Pawlik
and Augsten [12] computes the optimal strategy and guarantees to minimize the
number of subproblems in the class of path decompositions. Path decompositions
constitute a subclass of Zhang decompositions that includes all currently known
Zhang decomposition algorithms. We design a path decomposition algorithm
ChenPaths that mostly resembles that of Chen and show that the subproblems
resulting from ChenPaths are a superset of Chen’s subproblems. We evaluate
the difference in the subproblems count (ChenPaths vs. Chen) in Sect. 5.

A path decomposition algorithm requires two ingredients [13]: a path strat-
egy that assigns a root-leaf path to each subtree pair (F,,G,) (v € F,w € G)
and a single-path function that is used to reassemble the results for larger sub-
forests from smaller ones (using dynamic programming). A path decomposition
algorithm works as follows: (step!) For the input trees (F,G), a root-leaf path
is looked up in the path strategy. (step2) The algorithm is called recursively
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for each subtree pair resulting from removal of the root-leaf path from the cor-
responding input tree. (step3) A single path function is executed for the input
trees. The single-path function decomposes a forest Fj,, ,.. such that, if the right-
most root 7 is on the root-leaf path assigned to F', then the leftmost root nodes
are used in Eq. 2, otherwise the rightmost root nodes are used. The path choice
affects the relevant subproblems resulting from (step2) and (steps3).

We design ChenPaths with a path strategy that maps each subtree pair
(F,,Gy) to the left path in F, and A4 single-path function [13]. Note that for
left paths we could apply A’ single-path function that results in less subproblems
but possibly a subset of Chen’s subproblems.

Theorem 2. The subproblems resulting from ChenPaths algorithm are a super-
set of the subproblems resulting from Chen’s algorithm.

Proof. As discussed in [13], the subproblems of a path decomposition algorithm
are those encountered by all single-path functions executed for subtree pairs
resulting from (step2). For ChenPaths the subproblems are F(F, 't (F)) x A(G),
where F(F, ' (F)) (A(G)) is the set of all subtrees of F' (G) and their subforests
obtained by a sequence of rightmost (leftmost and rightmost) root node dele-
tions. The subproblems of Chen’s algorithm are .# (F) x 4(G), where .Z (F) is
the set of all subtrees of F' and their subforests of the form % (v[1..p]), and
“(Q) is the set of all subtrees and subforests of the form ¥ (!’,1”). To show the
inclusion of the subproblems it is enough to show the following;:

(a) F(F) C F(F,I'"(F)). Every subtree F,, v € F, is in both sets. Every
subforest of the form .#(v[l..p]) can be obtained from the subtree F, by a
sequence of rightmost root node deletions that delete root node v and v’s
children (and all their descendants) from the last child to p + 1-st. Every
subforests obtained this way is in F(F, 't (F)).

(b) 49(G) C A(G). Every subtree G,,, w € G, is in both sets. Due to Theorem 1,
every subforest of the form %5 (I’,1"”) can be represented in root encoding.
A(Q) is the set of all subforest of G that can be represented in root encoding.
O

In this section we showed that there are path decompositions — a subclass
of the more general class of Zhang decompositions — that can generate all sub-
problems of Chen’s algorithms. This brings Chen’s algorithm even closer to the
mainstream TED algorithms. It seems likely that the results of Chen may be
used to develop a new single-path function that, together with the results of [14],
can be used to reduce the number of subproblems needed for TED algorithms.
Furthermore, the cost of such a function can be used to compute the optimal-cost
path strategy for a given input instance. See [13] for the input/output require-
ments of a single-path function and [14] for a discussion on how to leverage costs
of new single-path functions for optimal strategies.
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3 Revisiting the Runtime Complexity

Chen [6] derives for his algorithm a runtime of O(n? + ?n + [3®) for two trees
with 7 nodes and [ leaves. In his analysis, Chen uses a so called (min,+)-product
of two [ x [ matrices, which has a trivial O(I3)-time solution. In order to achieve
the term /3 in the runtime complexity, the (min,+)-product must be solved in
time O(I2%). Without that improvement, the respective term becomes 4, and
the overall runtime complexity of Chen’s algorithm is O(n? + I?n + [4).

Chen interpreted a result by Fredman [10] towards the existence of an effi-
cient (min,+)-product algorithm that runs in O(I?%). Unfortunately, as recent
works point out [3,9], it is still a major open problem whether a truly subcu-
bic algorithm (an O(n®~€)-time algorithm for some constant ¢ > 0) exists for
the (min,+)-product. Fong et al. [9] analyse the related difficulties, Zwick [19]
summarizes (in line with Fredman’s discussion [10]) that for every n, a separate
program can be constructed that solves the (min,+)-product in O(n?%) time,
but the size of that program may be exponential in n. As Fredman points out,
these results are primarily of theoretical interest and may be of no practical use.

Summarizing, with the current knowledge on (min,+)-product algorithms,
the runtime complexity of Chen’s algorithm is O(n? + (?n + [*). This is also
the complexity of our implementation, which does not use the (min,+)-product
improvement. Interestingly, even without that improvement, Chen’s algorithm is
an important competitor for some tree shapes. We discuss the details in Sect. 5.

4 Reducing the Memory Complexity

In this section we reduce the worst-case space complexity of Chen’s algorithm.
This is an important contribution for making the algorithm practically relevant.

Chen’s algorithm uses dynamic programming, i.e., intermediate results are
stored for later reuse. The space complexity of Chen’s algorithm is O((I? +
n)min{l,d}) for two trees with n nodes, ! leaves, and depth d. The complexity
is a product of two terms. The first term, (I2 + n), is the size of arrays used to
store intermediate results. The second term, min{l, d}, is the maximum number
of such arrays that have to be stored in memory concurrently throughout the
algorithm’s execution. We observe, that there are tree shapes for which Chen’s
algorithm requires |%] arrays, for example, a right branch tree (a vertically
mirrored version of the left branch tree in Fig. 2(a)). Then, the space complexity
has a tight bound of O((I2 + n)n), which is worse than O(n?) achieved by other
TED algorithms. In this section, we reduce the number of arrays that must be
stored concurrently from min{l, d} to loga(n).

By thoroughly analysing Chen’s algorithm we make a few observations.
(a) The algorithm traverses the nodes in one of the input trees, say F, and
executes one of two functions. These functions (called by Chen combine and
upward) take arrays with intermediate results as an input and return arrays as
an output. (b) Due to internals of the functions combine and upward, the tra-
versal of nodes in F' must obey the following rules: children must be traversed
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before parents, and siblings must be traversed from left to right. These rules
resemble the so-called postorder traversal. (c) After a node v € F is traversed,
exactly one array has to be kept in memory as a result of executing the necessary
functions for v and all its descendants. This array must be kept in memory until
the algorithm traverses the right sibling of node v.

Observations (b) and (c) suggest that the number of nodes that cause mul-
tiple arrays to be kept in memory concurrently, i.e., the nodes waiting for their
right siblings to be traversed, strongly depends on the tree shape. For example,
in left branch trees at most one node at a time is waiting for its right sibling,
whereas in right branch trees all leaf nodes are waiting for their right siblings
until the rightmost leaf node is traversed. Our goal is to minimise the number of
such nodes. Our solution is based on the so-called heavy-light decomposition [15]
which introduces a modification to the postorder traversal in observation (b).

We divide the nodes of a tree F' into two disjoint sets: heavy nodes and light
nodes. The root of F' is light. For each non-leaf node v € F, the child of v that
roots the largest (in the number of descendants) subtree is heavy, and all other
children are light. In case of ties, we choose the leftmost child with the largest
number of descendants to be heavy. The heavy-light traversal is similar to the
postorder traversal with one exception: the heavy child is traversed before all
other children. The remaining children are traversed from left to right.

Theorem 3. Using the heavy-light traversal for tree F', the mazimum number
of nodes that cause an additional array to be kept in memory concurrently is at
most [logyn].

Proof. We modify observation (c) for the heavy-light traversal. An array has
to be kept in memory for a heavy node until its immediate left and right light
siblings (if any) are traversed. For a light node an array has to be kept in memory
until its right light sibling is traversed. Nodes never wait for their heavy siblings
because the heavy sibling is traversed first.

Consider a path « in tree F'. The number of arrays that have to be kept
in memory concurrently is proportional to the number of light nodes on ~. Let
L(v) be all light nodes on path ~, and W (y) be all immediate siblings waiting
for nodes in L(y). The array for a node in W(~v) must be kept in memory
until its sibling in L() is traversed. That brings us to the conclusion that the
maximum number of arrays that have to be kept in memory concurrently equals
the maximum number of light nodes on any path in F.

Let |F| = |N(F)| denote the size of tree F'. For any light node v, its heavy

sibling has more nodes than v. It holds that |Fj,| > 2|F,[, and |F,| < %

Then, each light node v on a path ~ decreases the number of consecutive nodes
on v to be at most ‘F’“Qﬂ Hence, the maximum number of light nodes on any
path in F is at most [log, |F|]. O

For example, consider left and right branch trees. The heavy-light traversal
causes at most one node at a time to wait for its sibling to be traversed. Thus,
at most one additional array has to be stored in memory at any time.
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With Theorem 3 we reduce the space complexity of Chen’s algorithm to
O((I24n)logn). For trees with O(y/n) leaves the complexity becomes O(nlogn).
This is remarkable since all other TED algorithms require O(n?) space indepen-
dently of the tree shape. So far, space complexities better than O(n?) were
achieved only by approximations (for example, O(n)-space pg-gram distance by
Augsten et al. [1]), algorithms computing an upper bound for TED (for exam-
ple, O(nlogn)-space constrained tree edit distance by Wang et al. [17]), and
algorithms computing the lower bound for TED (for example, O(n)-space string
edit distance by Chan [4]). Trees with the number of leaves in O(y/n) are charac-
terised by long node chains, for example, tree representations of RNA secondary
structures [5].

5 Experimental Evaluation

In this section we experimentally evaluate Chen’s algorithm and compare it to
the classical algorithm by Zhang and Shasha (ZS) [18] and the state-of-the-art
algorithm AP-TED™ by Pawlik and Augsten [14]. All algorithms were imple-
mented as single-thread applications in Java 1.7. and executed on a single core
of a server machine with 8 cores Intel Xeon 2.40 GHz CPUs and 96GB of RAM.
The runtime results are averages over three runs.

(a) left branch tree (LB)  (b) zig-zag tree (ZZ) (c) full binary tree (FB)

Fig. 2. Shapes of the synthetic trees

Implementation. We implemented the original algorithm by Chen without
the matrix multiplication extension (cf. Section 3). During the implementation
process we discovered some minor bugs in Chen’s algorithm that we fixed in
our implementation. We further extended the implementation with our new tra-
versal strategy to reduce the memory complexity (cf. Section4). Our tests (not
presented due to space limitations) show that the memory usage reduction is
significant, for example, in the case of zig-zag trees we reduce the number of
arrays concurrently stored in memory from linear to constant. That translates
to a reduction of the memory footprint by one order of magnitude already for
small trees with 200 nodes. The improvement ratio grows with the tree size.

Datasets. Similar to Pawlik and Augsten [13], we generated trees of five different
shapes and varying sizes. Left branch (LB), zig-zag (ZZ), and full binary trees
(FB) are shown in Fig.2. In addition, we created thin and deep trees which
favor Chen’s algorithm. Thin and deep left branch trees (TDLB) are obtained



A New Perspective on the Tree Edit Distance 167

from LB trees by inserting node chains (of equal length) to the left child of
every node. Thin and deep zig-zag trees (TDZZ) are obtained from long node
chains by attaching leaf nodes at random positions (alternating between left and
right such that the resulting tree resembles a zig-zag tree). For thin and deep
trees, we vary the ratio of leaf nodes from 5% to 20%. It is worth mentioning
that LB/TDLB trees are the best-case input for ZS, while the performance of
AP-TED™ does not depend on the tree shape.
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Fig. 3. Number of relevant subproblems for different tree shapes.

Number of relevant subproblems. The complexity of TED algorithms is
proportional to the number of subproblems that an algorithm has to compute.
Figure 3 shows the number of subproblems for different tree shapes. For the LB,
FB, and TDLB shapes the leaders are AP-TED*" and ZS, while Chen must
compute many more subproblems. For the ZZ shape, the winners are Chen and
AP-TED™, ZS performs poorly. For TDZZ trees Chen outperforms its competi-
tors. For TDZZ trees with the leaves ratio of 5% the difference is one order of
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magnitude (Fig.3(f)). We vary the leaves ratio and observe that Chen results in
the smallest number of subproblems for all tested leave ratios between 5% and
20% (Fig.3(e)). ZS and AP-TED™ require only a constant number of operations
for each relevant subproblem, while Chen must evaluate the minimum over a
linear number of options (see Egs.3 and 5). We count the overall number of
elements in the minima and report the result as ChenOP in Fig.3. Although
the number of constant time operations is much larger then the number of sub-
problems in Chen’s algorithm, Chen remains the winner for TDZZ trees with
leaves ratio of 5%. With more than 10% leaf ratio Chen looses in favour of AP-
TED™, but is better than ZS for all ratios. Additionally, we mark the number
of subproblems of ChenPaths introduced in Sect.2.3. The results confirm that
ChenPaths results in more subproblems than Chen and ZS. The latter is caused
by the path strategy and single-path function used in ChenPaths.
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Fig. 4. Runtime for different tree shapes.
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Runtime. We compare the runtime of the algorithms for different tree shapes
(Fig.4). The trend is consistent with the results for the number of subproblems.
Chen wins only for TDZZ trees with 5% leaf ratio (Fig. 4(f)); the runtime differ-
ence to the runner-up AP-TED™ is marginal. Chen’s runtime quickly increases
with the leaf ratio.

6 Conclusion

In this paper we analysed and experimentally evaluated the tree edit distance
algorithm by Chen [6]. We revised the runtime and improved the space com-
plexity of Chen’s algorithm to O(nlog(n)) for trees with O(y/n) leaves. Our
experiments showed that Chen beats its competitors for thin and deep zig-zag
trees with few leaves. Our analytic results suggest that the recursions of Chen
and Zhang can be combined. For the future work, it is interesting to develop new
dynamic programming algorithms that can leverage both recursive decomposi-
tions. This requires a cost formula for combined Chen and Zhang strategies, and
an efficient bottom-up traversal for the dynamic programming implementation
of the combined strategy.
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