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Preface

This volume contains the papers presented at the 10th International Conference on
Similarity Search and Applications (SISAP 2017) held in Munich, Germany, during
October 4–6, 2017. SISAP is an annual forum for researchers and application devel-
opers in the area of similarity data management. It focuses on the technological
problems shared by numerous application domains, such as data mining, information
retrieval, multimedia, computer vision, pattern recognition, computational biology,
geography, biometrics, machine learning, and many others that make use of similarity
search as a necessary supporting service.

From its roots as a regional workshop in metric indexing, SISAP has expanded to
become the only international conference entirely devoted to the issues surrounding the
theory, design, analysis, practice, and application of content-based and feature-based
similarity search. The SISAP initiative has also created a repository (http://www.sisap.
org/) serving the similarity search community, for the exchange of examples of
real-world applications, source code for similarity indexes, and experimental test beds
and benchmark data sets.

The call for papers welcomed full papers, short papers, as well as demonstration
papers, with all manuscripts presenting previously unpublished research contributions.
At SISAP 2017, all contributions were presented both orally and in a poster session,
which facilitated fruitful exchanges between the participants.

We received 53 submissions from authors based in 17 different countries. The
Program Committee (PC) was composed of 43 international members. Reviews were
thoroughly discussed by the chairs and PC members: Each submission received at least
three reviews. Based on these reviews as well as the subsequent discussions among PC
members, the PC chairs accepted 23 full papers to be included in the conference
program and the proceedings.

The proceedings of SISAP are published by Springer as a volume in the Lecture
Notes in Computer Science (LNCS) series. For SISAP 2017, as in previous years,
extended versions of five selected excellent papers were invited for publication in a
special issue of the journal Information Systems. The conference also conferred a Best
Paper Award, as judged by the PC co-chairs and Steering Committee.

Beside the presentations of the accepted papers, the conference program featured
three keynote presentations from exceptionally skilled scientists: Christian S. Jensen,
from Aalborg University, Denmark, Reinhard Förtsch, from the Deutsches Archäolo-
gisches Institut, Germany, and Cyrus Shahabi, from University of Southern California,
USA.

We would like to thank all the authors who submitted papers to SISAP 2017. We
would also like to thank all members of the PC and the external reviewers for their
effort and contribution to the conference. We want to express our gratitude to the
members of the Organizing Committee for the enormous amount of work they did.

http://www.sisap.org/
http://www.sisap.org/


We also thank our sponsors and supporters for their generosity. All the submission,
reviewing, and proceedings generation processes were carried out through the
EasyChair platform.

August 2017 Christian Beecks
Felix Borutta
Peer Kröger

Thomas Seidl
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The Power of Distance Distributions:
Cost Models and Scheduling Policies

for Quality-Controlled Similarity Queries

Paolo Ciaccia and Marco Patella(B)

DISI, University of Bologna, Bologna, Italy
{paolo.ciaccia,marco.patella}@unibo.it

Abstract. Approximate similarity queries are a practical way to obtain
good, yet suboptimal, results from large data sets without having to
pay high execution costs. In this paper we analyze the problem of under-
standing how the strategy for searching through an index tree, also called
scheduling policy, can influence costs. We consider quality-controlled sim-
ilarity queries, in which the user sets a quality (distance) threshold θ and
the system halts as soon as it finds k objects in the data set at distance
≤ θ from the query object. After providing experimental evidence that
the scheduling policy might indeed have a high impact on paid costs,
we characterize the policies’ behavior through an analytical cost model,
in which a major role is played by parameterized local distance distri-
butions. Such distributions are also the key to derive new scheduling
policies, which we show to be optimal in a simplified, yet relevant, sce-
nario.

1 Introduction

The challenge of any approximate query processing (AQP) technique is to yield
the best possible result given a certain amount of resources (CPU time, disk
accesses, etc.) to be spent or, conversely, minimize the number of used resources
for a given quality level.

A fundamental observation which is relevant for the purpose of this paper
is that good (possibly optimal) strategies for delivering exact results are not
necessarily good (optimal) when coming to consider AQP. For instance, classical
join algorithms (e.g., nested loops) used in relational databases perform poorly
for approximate aggregate queries, for which ad-hoc algorithms, such as ripple
joins [HH99], have been developed.

Based on above observation, in this paper we study the problem of search
strategies for approximate similarity queries. As also acknowledged in [PC09,
CP10], most of the existing approaches to approximating the resolution of simi-
larity queries have concentrated on aggressive pruning strategies, underestimat-
ing the problem of early delivering good results. Notice that, for the case of
index-based query processing, this translates to consider the order under which
index nodes are visited (which we call scheduling policy) as a first-class citizen.
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 3–16, 2017.
DOI: 10.1007/978-3-319-68474-1 1



4 P. Ciaccia and M. Patella

Indeed, albeit the so-called MinDist scheduling policy is known to be optimal
for k-NN queries [BB+97,HS03], its performance for approximate queries has
been proven inferior to other strategies [BN04,PC09]. Previous studies on alter-
native scheduling policies, however, have only provided empirical results, and
a thorough analysis of the behavior of such policies for approximate similarity
search is still lacking.

With the aim of filling this gap, in this paper, after confirming the different
behaviors observed with different scheduling policies, we validate the observed
results using information-theoretic arguments (Sect. 2). Then, in Sects. 3 and 4
we introduce two cost models for approximate similarity queries, both based
on the concept of distance distribution [CPZ98]. Clearly, being able to estimate
the cost of an approximate query is a fundamental step for understanding what
influences processing costs. Finally, in Sect. 5 we introduce optimal scheduling
policies, which again exploit distance distributions.

1.1 Preliminaries

The problem we consider in this paper can be precisely defined as follows: Given
a metric space M = (Ω, d), where Ω is a domain, also called the object space,
and d : Ω × Ω → �+

0 is a non-negative and symmetric binary function that also
satisfies the triangle inequality, and a data set of objects X ⊆ Ω, retrieve the
object(s) in X which are closest, according to d, to a user-specified query object
q ∈ Ω [CN+01,ZA+06]. The queries we consider here are quality-controlled k-
NN queries, i.e., k nearest neighbor queries where the user specifies a quality
(distance) threshold θ and the search stops as soon as k objects are found at
a distance not higher than θ from the query object q. The value of θ can be
obtained from either knowledge from the domain (e.g., “give me the three closest
gas stations within 10 Km”) or by recurring to probabilistic considerations, like
those proposed by the PAC technique [CP00]. Indeed, although in [CP00] only 1-
NN queries were considered, the definition of rq

δ,ε given therein (which coincides
with the notion of threshold θ used in this paper) can be appropriately extended
to the case k > 1 (see Appendix A).

The scenario we consider includes an index tree T built over the data set
X ⊆ Ω, where each node Ni corresponds to a data region, Ωi ⊆ Ω. Node Ni

stores a set of entries: entries in internal nodes consist of (at least) a pointer
to a child node Nc and a description of Ωc, with Ωc ⊆ Ωi; entries in leaf nodes
are (pointers to) indexed objects. The set Xi of all the objects reachable from
(a path starting from) node Ni is guaranteed to be contained in the data region
Ωi, i.e., Xi ⊆ Ωi. Index trees satisfying the above definition provide a recursive
decomposition of the space [HNP95], so that objects reachable from a node are
obtained as the union of objects reachable from its children nodes. For the case
of M-tree [CPZ97], which we consider here, regions are balls, i.e.:

Ωi = {p ∈ Ω | d(ci, p) ≤ ri} (1)

where ci is the routing object of node Ni and ri its covering radius.
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2 Performance of Schedules

The goal of quality-controlled queries is to minimize the cost (measured as the
number of accessed nodes) to return the result; as also argued in [BN04], the
strategy used to decide which index node to visit first, which we call scheduling
policy, can influence costs, because different scheduling policies can lead to find
earlier objects close to the query point q.

Implementing a specific scheduling policy might require that, besides the
geometric description of the region of a node Ni, also available is some infor-
mation on the actual data indexed by the node itself. For instance, the DBIN
method [BFG99] organizes objects into clusters and assumes that they are sam-
ples of a mixture of Gaussian distributions (one per cluster), whose parameters
(means, variances, and weights) are off-line estimated and stored.

In the following, we collectively refer to all the information maintained about
a node Ni as the statistics of Ni, denoted stats(Ni). By exploiting statistics on
nodes, one can derive from them several indicators, ΨA, ΨB , etc., each assigning
to node Ni a value, ΨA (q, stats(Ni)) , ΨB (q, stats(Ni)) , . . ., that depends on the
specific query q. For simplicity, in the following we write, with a slight abuse of
notation, Ψ (q,Ni) in place of Ψ (q, stats(Ni)). We also assume that nodes with
a lower value of the chosen indicator will be accessed first.

The indicators we consider in this paper are:

– MinDist: the minimum distance between q and Ωi, MinDist (q,Ni) =
max{0, d(q, ci) − ri};

– MaxDist: The maximum distance between q and Ωi, MaxDist (q,Ni) =
d(q, ci) + ri;

– MinMaxDist: The distance between q and the center of Ωi,
MinMaxDist (q,Ni) = d(q, ci);

Note that MinDist (q,Ni) ≤ d (p, q) ≤ MaxDist (q,Ni) ∀p ∈ Xi, whereas
d (p, q) ≤ MinMaxDist (q,Ni) ∀p ∈ Xi only when no deletions occur (which
justifies the name for this indicator).

As a first step we show experimental results conducted on the real data sets
described in Table 1.

Table 1. Description of the data sets used in the experiments: d is the data set dimen-
sionality, N the cardinality of the data set and n the number of leaf nodes for an
M-tree built on the data set.

Name Feature description d N n

Corel Color histogram 32 68,040 4,389

Airphoto texture (Gabor filter) 60 274,424 18,386

EEG EEG electrode reads 64 2,824,483 174,429

Results included in Figs. 1, 2 and 3 show that the considered indicators
perform consistently over all the used data sets and values of k ∈ {1, 10, 50}.
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(a) (b) (c)

Fig. 1. Average query cost as a function of the quality threshold for different indicators
on the Corel data set: k = 1 (a), k = 10 (b), and k = 50 (c).

(a) (b) (c)

Fig. 2. Average query cost as a function of the quality threshold for different indicators
on the Airphoto data set: k = 1 (a), k = 10 (b), and k = 50 (c).

(a) (b) (c)

Fig. 3. Average query cost as a function of the quality threshold for different indicators
on the EEG data set: k = 1 (a), k = 10 (b), and k = 50 (c).

The MinDist policy, which is optimal for the case of exact k-NN
queries [BB+97], attains the worst performance, while MaxDist leads to the
lowest costs.

2.1 Understanding the Behavior of Scheduling Policies

The natural question that arises when looking at the results in Figs. 1, 2 and 3 is
the following: Why is MinDist such a bad indicator with respect to MaxDist
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and MinMaxDist? The approach we propose to understand the behavior of
scheduling policies based on indicator’s values is to shift the analysis on the
relationship existing between indicators’ values and probability of finding close-
enough objects. In doing this, however, we do not consider classical correlation-
based measures, since they would require us to hypothesize in advance the spe-
cific form of correlation to be sought (e.g., linear, quadratic). For the sake of
simplicity, we limit the analysis to the case of 1-NN search, although for gen-
eral k-NN queries a similar characterization can be provided using the results in
Appendix A.

In order to present our model, a few preliminary definitions are useful.
Let F () be the distance distribution corresponding to distance d, F (x) =
Pr {d (q,p) ≤ x}, where p and q are random points in Ω. We define dXi

(q)
to be the distance of the closest point to query q in Ni, i.e., the distance of the
NN local to Ni. We also denote with Gi (θ) the distance distribution of dXi

(q),
Gi (θ) = Pr {dXi

(q) ≤ θ}, i.e., the probability that a random query q would find
in Ni a point whose distance from q is not higher than θ.

By adopting an information-theoretic approach, we consider how much infor-
mation an indicator Ψ can provide us about the probability of finding a point at
distance ≤ θ from q. Then, one would choose, among all the available indicators,
the one that maximizes such information.

Consider now the probabilistic event of finding a result with distance not
higher than θ, foundi (θ), in node Ni, whose entropy is:

H (foundi (θ)) = −Gi (θ) log2 Gi (θ) − (1 − G1
i (θ)) log2(1 − Gi (θ)) = H(Gi (θ))

where H(s) is the entropy of a Bernoulli variable with probability of success s.
H (foundi (θ)) represents the uncertainty of the event “the termination thresh-
old is reached in node Ni” for a given value of θ. The use of an indicator Ψ
should allow us to reduce such uncertainty. If Ψ can assume m distinct val-
ues, ψ1, . . . , ψm, one can compute the conditional entropy of success assuming
Ψ , i.e.:1

H (foundi (θ) |Ψ) =
m∑

j=1

Pr(ψj) H
(
foundi (θ) |ψj

)
=

m∑

j=1

Pr(ψj) H(Gi

(
θ|ψj

)
)

(2)
where Gi

(
θ|ψj

)
= Pr

{
dXi

(q) ≤ θ|Ψ (q, Ni) = ψj
}

is the conditional distribu-
tion of NN in node Ni, given that for Ni we observed the indicator value ψj .

By considering a randomly chosen node (since scheduling policies are
not an issue at this point), we can finally define H (found (θ)) =∑n

i=1 H (foundi (θ)) /n and H (found (θ) |Ψ) =
∑n

i=1 H (foundi (θ) |Ψ) /n,
where n is the number of index nodes.

The mutual information I (foundi (θ) , Ψ) represents the information about
the termination event contained in the Ψ indicator, and is defined as:

I (found (θ) , Ψ) = H (found (θ)) − H (found (θ) |Ψ) (3)
1 Here we assume, for simplicity, that indicator Ψ is of discrete type. For continuous

types, our results still apply when density functions are used in place of probabilities.
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while the normalized mutual information is the ratio between I (found (θ) , Ψ)
and H (found (θ)):

NI (found (θ) , Ψ) =
I (found (θ) , Ψ)
H (found (θ))

= 1 − H (found (θ) |Ψ)
H (found (θ))

(4)

Since it is H (found (θ) |Ψ) ≤ H (found (θ)), it is I (found (θ) , Ψ) ≥ 0 and
NI (found (θ) , Ψ) ∈ [0,1].

The higher the value of I (and of NI) for a given indicator, the better the
estimation of the success probability given by the Ψ indicator, and the sooner
we are expected to reach the termination threshold for a query if we schedule
nodes according to values of Ψ . This suggests that the indicator that maximizes
I (NI) for a given data set is the one that provides the best schedule.

Figure 4 shows that MinDist is indeed a poor indicator for the probability of
stopping the query, since the information we gain is the worst (among considered
indicators) for almost all considered values of threshold θ (in the remainder of
the paper, for the sake of brevity we show results of our experimentation on the
Corel data set only, since results for other data sets are similar). This would
suggest that, even if MinDist is optimal for exact queries, its performance would
rapidly deteriorate when considering approximate queries. On the other hand,
the MaxDist indicator provides the maximum information and, consequently,
attains the best performance over all the considered range of θ values.

(a) (b)

Fig. 4. Mutual information I (a), and normalized mutual information NI (b) for dif-
ferent indicators on the Corel data set.

3 A Basic Cost Model for Quality-Controlled Queries

In this section, we introduce a first cost model based on distance distributions for
predicting the expected number of nodes to be fetched to find an object having
a distance from q not higher than θ.
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The model is valid for the case of 1-NN search and 2-levels trees, since
this is the scenario more amenable to be formally characterized. Then, the
index tree consists of a root and n leaf nodes, and any scheduling policy
can be viewed as a way to permute the set {1, . . . , n} obtaining a schedule
Π = (Π1,Π2, . . . , Πi, . . . , Πn), where NΠi

is the leaf that schedule Π will fetch
at step i.

To estimate the number of nodes read before the algorithm stops, in [PC09]
we considered the probability, pstop (c, θ;Π), that the search algorithm, using
schedule Π, will find in no more than c steps (1 ≤ c ≤ n) a point whose distance
from the query is not higher than θ:

pstop (c, θ;Π) = Pr
{

min
i≤c

{
dXΠi

(q)
}

≤ θ

}
= 1 −

c∏

i=1

Pr
{
dXΠi

(q) > θ
}

= 1 −
c∏

i=1

(
1 − Pr

{
dXΠi

(q) ≤ θ
})

= 1 −
c∏

i=1

(
1 − GΠi

(θ)
)

(5)

Note that, since the search stops after fetching all nodes, it is pstop (n, θ;Π) = 1.
The expected cost for processing a random query q with threshold θ using sched-
ule Π, E [Cost(q;Π, θ)], can then be derived by observing that the probability
of finding a result in exactly c steps is pstop (c, θ;Π) − pstop (c − 1, θ;Π):

E [Cost(q; Π, θ)] =
n∑

c=1

c · (pstop (c, θ; Π) − pstop (c − 1, θ; Π))

=

n∑

c=1

c · pstop (c, θ; Π) −
n−1∑

c=0

(c + 1) · pstop (c, θ; Π)

=

n∑

c=1

c · pstop (c, θ; Π) −
n−1∑

c=1

c · pstop (c, θ; Π) −
n−1∑

c=1

pstop (c, θ; Π)

= n · pstop (n, θ; Π) −
n−1∑

c=1

pstop (c, θ; Π) = n −
n−1∑

c=1

pstop (c, θ; Π)

= n −
n−1∑

c=1

(
1 −

c∏

i=1

(
1 − GΠi

(θ)
)
)

= 1 +

n−1∑

c=1

c∏

i=1

(
1 − GΠi

(θ)
)

(6)
Above cost model will largely overestimate query costs, since it does not con-

sider at all geometric pruning (GP), which for the case of M-tree arises whenever
MinDist (q,Ni) > θ. In order to take GP into account, in the above cost model
it is sufficient to discard all the c values for which NΠc

would be pruned, i.e.:

E
[
CostGP (q;Π, θ)

]
= 1 +

n−1∑

c=1
NΠcnot pruned

c∏

i=1

(
1 − GΠi

(θ)
)

(7)

The problem with the GP cost model is that its estimates are (almost)
independent of the particular query at hand. Indeed, the local NN distance
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Fig. 5. Performance of the GP cost model for the MinDist scheduling policy on the
Corel data set.

distributions Gi (θ) do not depend on the specific q, thus the model always
provides the same estimates for any value of θ; the relative positioning of the
query with respect to nodes is only taken into account when geometric prun-
ing is considered by Eq. 7. Also observe that for all queries q that lead to the
same schedule, for example according to the MinDist indicator, Eq. 6 yields
the same prediction regardless of the actually observed MinDist values. Thus,
even when considering geometric pruning, costs will be largely overestimated, as
demonstrated by Fig. 5, in which actual and predicted costs are shown.

4 The Query-Sensitive Cost Model

To improve the estimates with respect to the GP cost model, we again put
indicators into play. As we discussed in Sect. 2, indicators are values derived
from statistics of nodes and are used to schedule nodes during the search process.
Therefore, they represent what the query “knows” about an index node before
accessing it. The key idea to develop a query-sensitive cost model, i.e., a model
able to adapt its estimates to the specific query, is to make the local NN distance
distribution dependent on the values of indicators observed by the query at hand.

By looking at indicator’s values one can then estimate pstop (c, θ;Π) as:

pstop (c, θ;Π) = 1 −
c∏

i=1

(
1 − GΠi

(
θ|ψj

))
(8)

where now we explicit the use of conditional probabilities Gi(θ|Ψ(q, NΠi
) =

ψj). By substituting Eq. 8 into the GP cost model of Eq. 7, we obtain the new
query-sensitive (QS) cost model:

E
[
CostQS(q;Π, θ)

]
= 1 +

n−1∑

c=1

c∏

i=1

(
1 − GΠi

(
θ|ψj

))
(9)
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(a) (b)

Fig. 6. Performance of the QS cost model based on conditional probabilities on the
Corel data set for the MinDist (a) and the MinMaxDist (b) schedules.

Figure 6 shows the estimates of the QS cost model when the MinDist and
the MinMaxDist indicators are used. We immediately see that predicted costs
are indeed much better than those of the GP cost model for all considered values
of θ.

4.1 Storing the NN Distance Distributions

In order to obtain accurate predictions from the QS cost model, we should appro-
priately store the conditional probabilities in order to compute, for each node
Ni, the value of Gi

(
θ|ψj

)
given the actual value of θ and the observed value of

indicator Ψ . It is clear that, the more precisely such distributions are stored, the
more accurate the predictions of the cost model will be. We store the Gi

(
θ|ψj

)

probabilities as 2-dimensional histograms: to reduce the complexity of building
and maintaining such histograms, for each value of θ the conditional probability
is stored as an uni-dimensional equi-depth histogram. It follows that, for a given
value of θ, the accuracy of predictions only depends on the number of buckets
allocated for storing the ψj values. Figure 7 shows the relative error of the QS
cost model, i.e., the relative difference between actual and estimated costs, for
different values of θ and of the number of buckets for storing ψj .

Graphs for the MinMaxDist schedule confirm our intuition: increasing the
number of buckets leads to better estimations, until a limit is reached when
further increasing the number of buckets does not improve model predictions.
The optimal number of buckets is around 15 ÷ 20. Behavior of the QS cost
model for the MinDist scheduling policy is however somehow surprising, since
the quality of model estimates does not depend on the size of the histograms.
The reason for this performance is explained by Fig. 8(a), where we plot val-
ues of Pr {MinDist (q, Ni) = 0|dXi

(q) ≤ θ}, i.e., the probability that a node
solving the query has MinDist = 0. For all the considered range of θ values,
there is a high probability of finding the result in nodes having MinDist = 0,



12 P. Ciaccia and M. Patella

θ = 0.05

θ = 0.07

θ = 0.1

(a)

θ = 0.05

θ = 0.07

θ = 0.1

(b)

Fig. 7. Relative error of the QS cost model on the Corel data set with varying storage
size for the Gi

(
θ|ψi
)

distributions: (a) MinDist and (b) MinMaxDist schedule.

thus nodes for which MinDist > 0 are almost never accessed. Note also that,
on average, 70% of the nodes have MinDist = 0, i.e., their region includes
the query. The net result is that, no matter how many buckets we use to
store Gi

(
θ|MinDist (q, Ni) = ψj

)
, only the first bucket (i.e., the one for which

MinDist (q, Ni) = 0) will be accessed in most of the cases, thus 2 buckets are
enough for the MinDist indicator: one for nodes having MinDist = 0 and one
for those with MinDist > 0. We finally note that, as shown in Fig. 8(b), per-
formances of the cost model for the MinDist schedule actually degrade for high
values of θ, i.e., when the query gets easier (this is not the case, as shown in
Fig. 7(b), for the MinMaxDist indicator). This, again, is due to the fact that
the Gi (θ|MinDist (q, Ni) = 0) probability is decreasing with respect to values
of θ, thus it gets harder, for the model, to predict accurately when the query
will be stopped.

(a) (b)

Fig. 8. Probability that nodes solving the query have MinDist = 0 as a function of θ
(a) and relative error of the cost model for the MinDist schedule (b).
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5 Optimal Schedules

The QS cost model introduced in Sect. 4 allows us to accurately predict the cost
of an approximate similarity query, for any given scheduling policy. It is now
natural to consider, given a certain distance threshold, which is the scheduling
policy leading to the lowest cost.

We can partially answer this question as follows. From the examination of
Eq. 9, it is easy to derive that, for any fixed indicator Ψ , the optimal choice is
to choose, at each step of the schedule for answering query q, the node i for
which Gi

(
θ|ψj

)
is the maximum among yet-to-be-fetched nodes. To see why

this is the case, let xi = 1 − Gi

(
θ|ψj

)
. Then, the right-hand side of Eq. 9 equals

1 +
∑n−1

c=1

∏c
i=1 xi, that is:

1 + x1 + x1 · x2 + . . . + x1 · x2 · . . . · xn−1 (10)

which is minimized when x1 ≤ x2 ≤ . . . ≤ xn−1.
Each Ψ -optimal schedule should be contrasted to the corresponding Ψ -based

schedule: while the latter orders nodes by just looking at the observed values of
the indicator Ψ , the former uses such values to select from each node Ni the local
NN distance distribution to be used for the query at hand, and then order nodes
based on the value of such distribution for the specific distance threshold θ.

Figure 9 shows costs for Ψ -optimal and Ψ -based schedules for the MinDist
and MinMaxDist indicators.

(a) (b)

Fig. 9. Comparison between different schedules based on the (a) MinDist and (b)
MinMaxDist indicators on the Corel data set.

The schedule based on the MinDist (respectively, MinMaxDist) indicator
alone lead to costs that are about 10 (resp., 2) times higher than the correspond-
ing optimal schedule. In particular, for values of θ higher than 0.12 (resp., 0.1)
the optimal schedule is able to stop the search by visiting a single leaf node!
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By comparing the optimal schedules in Figs. 9(a) and (b), we see that Min-
MaxDist is again a better indicator than MinDist, since it leads to lower costs
with an average 50% difference in the interval [0.05,0.1]. This is consistent with
the analysis performed in Sect. 2.1; however, in the general case, one cannot
claim that the optimal schedule for indicator ΨA would lead to lower costs than
the optimal schedule for indicator ΨB for all possible data sets.

From a practical point of view, the choice of the indicator to be used for a
specific data set should be based on the mutual information analysis performed
in Sect. 2.1.

6 Conclusions

In this paper we have investigated the effect that different scheduling policies can
have on the costs of solving quality-controlled approximate similarity queries,
i.e., similarity queries that are stopped as soon as a “good-enough” result is
found, with index trees. In particular, any scheduling policy uses one indicator to
determine in which order the tree nodes have to be accessed. We have shown how,
for any given indicator Ψ , one can derive a corresponding Ψ -optimal schedule.
This has exploited a novel query-sensitive cost model for which each node of
an index tree needs to store statistical information about past queries.2 We
remark that maintaining statistics for predicting query processing costs and for
guaranteeing the quality of approximate queries is a common trend, as also
exemplified by the actual interest in database systems [CDK17].

In order to simplify our analysis, in this paper we have considered 1-NN
queries and two-level index trees, consisting of a root node and n leaf nodes.
Some of our results can be extended to the case of k-NN queries with k > 1
along the lines of what presented in Appendix A, while the extension of our
formal arguments to the case of general multi-level index trees requires further
investigation, the major obstacle being that of “lifting” the distributions of leaf
nodes to higher levels of the tree.

Acknowledgments. The authors thank Dr. Alessandro Linari for helping with the
experiments.

A Guaranteeing Quality of Results

In this Appendix, we show how the threshold θ of a quality-controlled query
can be chosen so as to provide probabilistic guarantees on the quality of results,
extending the results presented in [CP00] to the case k > 1. The approximate
result R̃ of a query is a list of k objects that may, however, not be the k closest
ones to the query q. A possible way to define the quality of R̃ is in terms of the
relative error Err wrt the exact result R. Let us denote the i-th NN of a query

2 In [PC09] we introduced only the query-independent cost model for approximate
queries.
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q in a set of objects X as pi
X (q) and with p̃i

X (q) the i-th NN of q in R̃. In the
(simplest) case presented in [CP00], when k = 1, the error is computed as:

Err =
d

(
q, p̃1X (q)

)

d (q, p1X (q))
− 1 (11)

This can be extended to the case k > 1 by using the error on the k-th nearest
neighbor (see also [AM+98,ZS+98]):

Err
def=

d
(
q, p̃k

X (q)
)

d
(
q, pk

X (q)
) − 1 (12)

which reduces to Eq. 11 when k = 1.
The type of guarantee provided on the quality of results in [CP00] has

the form: “with probability at least 1 − δ the error does not exceed ε”, that is
Pr {Err ≤ ε} ≥ 1− δ, where ε ≥ 0 is an accuracy parameter, δ ∈ [0, 1) is a confi-
dence parameter, and Err is the random variable obtained from Eq. 12 applied to
a random query q. In [CP00], this is computed by using G (x), i.e., the distance
distribution of the 1-NN, which can be obtained from the distance distribution
F (·) as:

G (x) def= Pr
{
d

(
q, p1X (q)

)
≤ x

}
= 1 − (1 − F (x))N (13)

For k ≥ 1, this generalizes to Gk (x), i.e., the probability to find at least k
objects at a distance ≤ x, which can be computed as:

Gk (x) def= Pr
{
d

(
q, pk

X (q)
)

≤ x
}

= 1 −
k−1∑

j=0

(
N

j

)
· F (x)j · (1 − F (x))N−j (14)

The probability that the result of an approximate k-NN query θ is correct,
i.e., that the approximate k-th NN, p̃k

X (q), is indeed the correct one, is given by
Gk

(
d

(
q, p̃k

X (q)
))

. Since we want to bound the error with confidence 1 − δ, we
obtain the following guarantee on the error:

Err ≤ ε =
d

(
q, p̃k

X (q)
)

sup {x|Gk (x) ≤ δ} − 1

because the probability that d
(
q, pk

X (q)
)

< sup
{
x|Gk (x) ≤ δ

}
is less than δ.

The (one-sided) confidence interval corresponding to 1 − δ is therefore [0, ε].
Thus, the threshold θ for a quality-controlled query can be obtained as (1 + ε)
sup

{
x|Gk (x) ≤ δ

}
. Clearly, if Gk () is invertible, it is: sup

{
x|Gk (x) ≤ δ

}
=

(Gk)−1(δ).
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Abstract. Content-based similarity search techniques have been
employed in a variety of today applications. In our work, we aim at the
scenario when the similarity search is applied in the context of stream
processing. In particular, there is a stream of query objects which need
to be evaluated. Our goal is to be able to cope with the rate of incom-
ing query objects (i.e., to reach sufficient throughput) and, at the same
time, to preserve the quality of the obtained results at high levels. We
propose an approximation technique for the similarity search which com-
bines the probability of an indexed object to be a part of a query result
and the time needed to examine the object. We are able to achieve better
trade-off between the efficiency (processing time) and the quality (pre-
cision) of the similarity search compared to traditional priority queue
based approximation techniques.

1 Introduction

Large quantities of unstructured data are being produced these days due to the
digital media explosion. One of common subtasks while processing such data
is searching in the data. Traditional approaches based on exact match of data
attributes are not usually appropriate for these data types. Instead, content-
based similarity search techniques are a valid option. Often k-nearest-neighbors
queries (kNN) are applied, which retrieve the k objects that are the most similar
to a given query object.

One of contemporary paradigms for processing large amounts of data is
stream processing when there is a potentially infinite sequence of data items
which are continuously being created and have to be continuously processed. For
example, consider a text search-engine which continuously receives images from
external sources and needs to continuously annotate them by textual descrip-
tions according to the image content so that they are subsequently findable by
the textual keywords. As another example, a spam filter receives incoming emails
and compares them to some learned spam knowledge base so that spam messages
can be detected. A news notification system needs to compare the newly pub-
lished articles to the profiles of all the subscribed users to find out who should
be notified.
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 17–33, 2017.
DOI: 10.1007/978-3-319-68474-1 2
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All these applications have to deal with some form of content-based searching
while processing the streamed data. An important characteristic is that the
data do not need to be processed immediately as in interactive applications,
but some delay is acceptable. The performance of these applications is mostly
determined by the number of processed data items in a given time interval,
i.e., the throughput is the most important metric. The individual query search
times can be improved by applying some similarity indexing technique, for which
there are efficient algorithms based on the metric model of similarity [16]. On
the other hand, one should care also about the effectiveness of the search results.
These two metrics (throughput and effectiveness) usually go against each other;
improving the effectiveness worsens the throughput and vice versa.

I/O costs typically have a significant effect on the performance of similarity
search techniques. In our previous work [10], we exploit the fact that some order-
ings of the processed queries can result into considerably lower I/O costs and
overall processing times than a random ordering. This is based on the observa-
tion that two similar queries need to access similar data of the search index. By
obtaining an appropriate ordering of queries, the accessed data can be cached
in the main memory and reused for evaluation of similar queries lowering down
the I/O costs. We proposed a technique to dynamically reorder the incoming
queries which, according to our experiments, allows to significantly improve the
throughput.

In a typical stream-processing scenario, the input data come from an exter-
nal source and the application cannot control the speed of the entering data.
Therefore it is important that the application can adapt to the changes in the
input frequency so that it is possible to process all the data. One way of reacting
is to alter the quality of the results: when the incoming stream is too fast, the
search quality is lowered so that the throughput is increased and vice versa.

A common way to control the level of result quality in a similarity search
engine is to employ approximation where only the most promising indexed
objects are examined to form an approximate answer. In such an indexing
engine, the order of examining the indexed objects is often determined by a
priority queue, and the examination of the queue proceeds until a stop condition
is hit. A good approximation technique should place the most promising indexed
objects (i.e., the ones with the highest probability of being in the precise result)
at the beginning of the queue, thus ensuring that they are examined before the
stop condition is met.

In this work, we propose an approximation technique which combines the
priority queue based approach with the caching system we presented in our
previous work. We make use of the fact that the cached objects can be examined
in significantly lower time than the uncached ones.

The next section summarizes works which use some sort of caching in the
similarity search. The formal definition of the problem which we solve is provided
in Sect. 3. The paper proceeds with a detailed description of the approximation
technique in Sect. 4. A score function is used to determine which indexed objects
should be examined; its properties are studied in Sect. 5. Conducted experiments
are presented in Sect. 6.
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2 Related Work

The usage of a caching mechanism in similarity search has been proposed in
several papers to reduce the amount of I/O operations. In [8], the authors propose
caching of similarity search results and reusing them to produce approximate
results of similar queries. The concept of caching similarity search results is used
also in [12]. The paper focuses on caching policies which incrementally reorganize
the cache to ensure that the cached items cover the similarity space efficiently.
The Static/Dynamic cache presented in [14] consists of a static part to store
queries (along with their results) that remain popular over time and a dynamic
part to keep queries that are popular for a short period of time. Authors of
[5] present a caching system to obtain quick approximate answers. If the cache
cannot provide the answer, the distances computed up to that moment are used
to query the index so that the computations are not wasted. Caching of data
partitions is presented in [4] for simultaneous solving of multiple queries so that
each data partition is read at most once. The data partition caching is used also
in [7] complemented with caching previous answers which serve to set initial
search radius for similar kNN queries. The authors of the paper [13] target the
situations when the distance computation itself is an expensive operation. They
propose D-cache which stores distances computed during previous queries to
avoid some distance computations of the subsequent queries. A cache of distances
is used also by the Snake Table [2] which is designed for processing streams of
queries with snake distribution (i.e., consecutive query objects are similar). In [1],
an inverted cache index maintains “usefulness” statistics which are explored to
reorder a priority queue to increase the effectiveness of accessing data partitions.
A different approach is described in [15] to process a stream of queries which is
based on parallel locality-sensitive hashing.

In our previous work [10], we proposed a technique for enhancing the through-
put of processing a stream of similarity query objects by reordering the query
objects combined with caching previously accessed data partitions. In this paper,
we extend our previous approach in order to improve the trade-off between the
throughput and the quality of the similarity search results. The combination of
the caching mechanism with the priority queue based query evaluation differen-
tiates us from the other approaches.

3 Problem Definition

In this section, we formally define the problem which we solve in this work.
Similarity can be universally modeled using metric space (D, d) abstraction [16],
where D is a domain of arbitrary objects and d is a total distance function
d : D × D → R. The distance between any two objects from D corresponds
to the level of their dissimilarity (d(p, p) = 0, d(o, p) ≥ 0). Let X ⊆ D be a
database of objects.

Let s = ((q1, t1), (q2, t2), . . .) be a stream of pairs (qi, ti) where qi is a query
object and ti is its creation time (e.g. when it has entered the application), where



20 F. Nalepa et al.

ti ≤ ti+1 for each i ≥ 1. For each query object qi in s, a k-nearest-neighbors
query NN(qi, k) is executed which returns k nearest objects from the database
X to the query object.

In practice, approximate techniques are usually applied to accelerate the
query execution. In such a case, the results may contain objects which are not
among the actual precise k nearest objects. The quality of the approximate
results is often expressed by the precision metric. Let A be the set of the k
nearest objects to the query object and B be the set of objects returned by
an approximate technique. The precision is computed as prec = |A∩B|

k where
|A| = |B| = k.

Our goal is to obtain results of high precision while still being able to keep
up with the rate of incoming query objects. Formally, let T be a time limit, BL
be a backlog limit constraining the maximum number of arrived unprocessed
query objects at each time t ≤ T (i.e., any such unprocessed query objects qi
for which ti ≤ t). The task is to maximize the average precision of the executed
kNN queries until the time T while obeying the backlog limit (i.e., achieving
sufficient throughput).

4 Approximation Technique

In our approach we consider a generic metric index which uses data partitioning
R = {r1, . . . , rn} where ri ⊆ X. When evaluating a query, a subset of the
partitions Q ⊆ R needs to be accessed, typically from a disk storage [16]. A usual
bottleneck of similarity search techniques is the reading the partitions from the
disk during query evaluations. In our previous work [10], we proposed a technique
to speedup the processing by caching the partitions (and the contained objects)
in the main memory in order to reduce I/O costs of subsequent queries. The
number of cached objects is restricted by a limit maxCacheSize, and the least
recently used policy is used to replace the content of the cache whenever it is
full. Using this caching system allows to achieve better processing times since
some partitions can be quickly obtained from the cache instead of reading them
slowly from the disk.

The aim of indexing methods is to generate partitions in such a way that
any two objects oi, oj in a given partition are similar to each other, i.e., d(oi, oj)
is small. A priority queue based strategy [16] for evaluating a query NN(qi, k)
works as follows. The data partitions are ordered according to their likeliness
of containing any of the k nearest objects to the query object. By expanding
the individual partitions, eventually a priority queue (o1, o2, . . . , oh) of indexed
objects of the database X is generated where h ≤ |X|1. The indexed objects oi
are examined (i.e., d(oi, qi) is computed) in this order during the query evalu-
ation. The goal of search techniques is to achieve such an ordering so that the
probability of an indexed object being a part of the answer decreases with an
1 Some data partitions and the contained objects can be skipped during the query

evaluation due to search space pruning rules employed by the index structure. For
the purposes of this paper, we omit such objects from the priority queue.
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increasing position in the priority queue. Note that the priority queue is often
generated incrementally during the query evaluation.

To employ an approximation technique, the indexed objects are examined
according to the priority queue, and once a stop condition is fulfilled, the process-
ing is stopped and k closest objects to the query object, which have been exam-
ined so far, form the answer set. Frequently, the stop condition is specified as
the maximum number of objects examined during a single query.

We propose an approximation technique in which we exploit the caching sys-
tem presented in our previous work. The approximation technique works not
only with the position of an object in the priority queue (like traditional approx-
imation techniques) but also with the information whether the object is or is not
cached. Based on these data, a score of the object is computed which determines
whether the object should be examined. More specifically, the position of the
object is used to derive the probability that it is a part of the precise answer set
(the probability should decrease with an increasing position). The information
about the caching state is used to estimate the time to examine the object. The
score should increase with an increasing probability of an object being a part
of the answer set and decrease with an increasing examination time. The score
determines the worthiness of the object to be examined by balancing the contri-
bution of the object to the quality of the final query result and the time spent
by examining the object.

Let us provide formal definitions of the used terms.

answerProbability(pos) = prob

is the probability that an object at the posth position in the priority queue is
a part of the precise answer set (i.e., it is one of the real k nearest neighbors).
This should be a nonincreasing function since the intention of similarity search
techniques which use the priority queue is to examine more promising objects
before the less promising ones, i.e., the probability of an object being a part of
the answer set should not increase with an increasing position in the priority
queue:

answerProbability(pos1) ≥ answerProbability(pos2) where pos1 < pos2

In practice, the function is meant to be specified empirically based on the prop-
erties of the used indexing and search technique, and on the properties of the
indexed data and the expected queries.

For the examination time, let there be a function

time(isCached) = t where isCached ∈ {true, false}
providing the time to examine a single object of the priority queue depending
on whether the object is or is not cached. The following should hold:

time(true) ≤ time(false)

That is, the cached objects are processed much faster than the others; the validity
of this is studied in our previous work [10].
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Whether an object is worth examining is determined by computing
score(pos, isCached) which has the following properties based on the charac-
teristics of answerProbability and time functions:

score(pos, true) ≥ score(pos, false)

score(pos1, isCached) ≥ score(pos2, isCached) where pos1 < pos2

Before processing a query, minScore parameter is set. Only objects which
have at least as high score as minScore are examined during the query eval-
uation. As a consequence of the score function properties, two position lim-
its PL1 and PL2 can be computed. PL1 is the maximum position for which
score(PL1, false) ≥ minScore; PL2 is the maximum position for which
score(PL2, true) ≥ minScore (note that PL1 ≤ PL2). It means that an object
is examined during processing of a query if and only if it is not cached and its
position in the priority queue is at maximum PL1, or it is cached and its posi-
tion in the priority queue is at maximum PL2. If PL1 equals PL2, we get the
traditional stop condition based solely on the maximum number of examined
objects.

It is worth noting how answerProbability (and transitively the score func-
tion) is related to the precision of query results (our optimization criteria). First,
realize that

|X|∑

pos=1

answerProbability(pos) = k

Let P = {pos|1 ≤ pos ≤ h ∧ score(pos, isCachedpos) ≥ minScore} be the set
of positions whose objects are examined during the given kNN query where h
is the length of the priority queue and isCachedpos is true iff the object at the
position pos is cached at the time of the evaluation. Then the expected precision
is computed as follows:

∑
pos∈P answerProbability(pos)

k
= precision (1)

That is the sum of the answerProbability values of the examined objects deter-
mines the expected precision of the query result according to the assumed
probabilities.

5 Score Function

In the previous section, we presented the properties which the score function has
to hold; this section is devoted to the actual specification of the score function.

Let us simplify the original problem definition a little bit. Let u =
(qi1 , qi2 , . . . , qin) be a finite sequence of query objects. The task is to process
all the query objects of u in the given order within the time T while achieving
the maximum average precision. The items of the sequence u are selected and
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reordered out of the query objects of the original (infinite) sequence s. The way
to generate u is outlined later.

The simplified problem can be also defined as an instance of a 0/1 knapsack
problem. Let there be a set of items I = {x1, . . . , xm} where each item xi has
its weight wi and value vi. The task is to select a subset of I so that the sum
of the weights of the selected items does not exceed a given weight limit W and
the sum of the values of the selected items is maximized.

Let (oj1, oj2, . . . , ojuj
) be the priority queue for the query object qj . The set

of items I comprises of all the objects of the priority queues of each query object
in u:

I = {oi11, oi12, . . . , oi1ui1
, oi21, . . . , oinuin

}
The weight of each oij equals the time needed for examination of the given

object:
wij = time(isCachedij)

where isCachedij is true iff the object oij is cached at the moment of the query
evaluation.

The value of each oij equals its probability of being contained in the answer
set:

vij = answerProbability(j)

where j is the position of oij in the corresponding priority queue.
The weight limit W equals the time until which the processing of the whole

sequence u of the query objects has to be finished: W = T .
In other words, the task is to examine such objects oij so that the overall

time does not exceed the time limit T and the sum of their probabilities being in
the answer sets is maximized, hence the maximum average precision is achieved
according to Formula 1.

There are a number of approaches solving the 0/1 knapsack problem in gen-
eral. However, the problem of our scenario is that the values (the probability of
an object to be a part of the answer) and the weights (derived from the actual
content of the cache) are not known in advance since the priority queue is deter-
mined incrementally while a query is being processed. One of the approaches
to solving the 0/1 knapsack problem is to compute the density of each item xi:
d(xi) = vi

wi
. The items are sorted by their densities in a descending order, and

they are put into the knapsack greedily in this order until the weight limit W
is reached. This approach provides the optimal solution if it is allowed to put a
fraction of an item into the knapsack. In such a case, the last item placed into
the knapsack may be fractioned so that the weight limit is not exceeded.

Since we work with inexact data answerProbability and time to examine
an object, in practice we do not require the theoretical solution of the knap-
sack problem to strictly obey the weight limit. In other words, we can tolerate
a little excess of the time limit T , thus we do not need to fraction the last
item put into the knapsack. If the density of the last item placed into the knap-
sack following the described algorithm was known ahead, we would be able to
solve our problem by examining only the objects having at least such a density.
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This means we would be able to achieve the optimal solution even without know-
ing all the values and the weights ahead.

Consequently, the density is an appropriate score function:

score(pos, isCached) =
answerProbability(pos)

time(isCached)

It remains to determine the minimal density limit (the density of the last
item placed into the knapsack), which is, in our terms, the minScore. How to
overcome the limitation of not knowing the values and the weights ahead is
discussed in Sect. 5.2.

5.1 Knapsack Problem Analysis

In this section, we briefly analyze the input and the solution of the knapsack
problem. Let us have an instance of the knapsack problem with an optimal
solution having the sum of the values V . A higher overall value V (and hence a
higher average precision) can be achieved by reducing weights of the items (i.e.,
by enlarging the maximal number of cached objects maxCacheSize). Another
way to improve the average precision is to have the cached objects (light items) at
the beginning of the priority queues (valuable items), i.e., to have light valuable
items. This is influenced by the ordering of the query objects in the sequence u.
If two consecutive query objects q1, q2 are similar to each other, also the sets of
objects at the beginning of the corresponding priority queues are similar (i.e.,
there is a significant intersection). This results in a high concentration of cached
objects at the beginning of the priority queue when processing q2.

The problem of the query ordering is dealt with in our previous work [10]
which is aimed at improving the throughput of processing of a stream of query
objects. We denote the set of arrived query objects which are waiting for their
processing as a buffer. Whenever a new query object arrives at the application,
it is placed to the buffer. The query object is removed from the buffer right
before its processing. The proposed algorithm dynamically reorders the query
objects within the buffer so that sequences of similar query objects are obtained.
Combined with keeping recently examined objects in the main memory cache,
this results in high reuse of the cached objects and thus improved throughput.

In fact, the result of the query ordering creates the bridge between the orig-
inal problem defined in Sect. 3 and the problem simplification in Sect. 5 since it
enables us to obtain the ordered subsequence of query objects u out of the orig-
inal sequence of query objects s. The subsequence u is generated incrementally
as query objects are pulled from the buffer, and it stops when the time limit T
is reached.

5.2 Minimal Density

Up to now, we have specified the score function as the density of an object
referring to the knapsack problem; we have also shown how the average precision
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of evaluated queries can be improved by enlarging the cache size and/or by
reordering the query objects. In this section, we describe a method to set the
minScore limit (a.k.a. the minimal density) in order to decide which objects are
worth examining during a query evaluation.

Since the densities of the objects are not known in advance, we modify the
minimal density limit dynamically. The strategy is to maintain the number of
arrived unprocessed query objects (the query objects in the buffer) at the maxi-
mum backlog limit BL (defined in Sect. 3). According to our previous work [10],
by maintaining a larger buffer, more effective query ordering can be generated
(i.e., having more light valuable items in the knapsack as described in Sect. 5.1).
If the current size of the buffer is over the backlog limit BL, the minimal density
limit is raised causing the buffer size to be lowered. Analogically, if the cur-
rent buffer size is below BL, the minimal density limit is lowered. A particular
way of how the density limits can be modified is provided in the section with
experiments.

Using the presented strategy, the backlog limit BL constraint can be tem-
porarily violated since we consider it as a soft limit, i.e., it can be exceeded, but
appropriate actions should be taken to push the current backlog down. If this
is unacceptable in real application, the soft limit can be set to a lower value so
that the violations of the hard limit BL are avoided.

6 Experiments

In this section, we provide experimental evaluation of the proposed approach.

6.1 Setup

Let us start with describing the setup of the experiments.
We use the M-Index [11] structure to index the metric-space data. It employs

practically all known principles of metric space partitioning, pruning, and filter-
ing, thus reaching high search performance. The actual data are partitioned into
buckets which are stored as separate files on a disk and read into the main
memory during query evaluations.

For the experiments, we use the Profimedia dataset of images [6]. We created
two different subsets of the images and extracted their visual-feature descriptors.
The generated datasets are: 1 million Caffe descriptors [9] (4096 dimensional
vectors) and 10 million MPEG-7 descriptors [3].

Separately, we created two sequences of 10,000 images represented by corre-
sponding descriptors which are used as query objects in the experiments. The
sequences are already ordered so that consecutive images are similar to each
other. During experiments, images from the respective collection are continu-
ously streamed and processed by approximate 30-NN queries.

We also created two more sequences of 10,000 images which serve as the
training data to specify the answerProbability function (details in Sect. 6.2).
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The least recently used policy is used when inserting to the full cache. In
particular, the data partitions with the oldest last access time are discarded and
replaced with the new partitions of the current query so that the maximum size
of the cache is obeyed.

Similarity search techniques (including M-Index) usually make the decisions
whether objects of the priority queue should be examined on per partition basis,
i.e., it is decided for the whole data partition whether its objects should be exam-
ined. However, we use an object as the unit of the data access for the analytical
purposes of this paper since the occupation of individual data partitions typi-
cally differs across the dataset. Theoretically we decide for each object whether
it should be examined based on its score; practically we make the decision for
the whole data partition by considering the score of the first object in the given
partition. The difference between the theoretical per object processing and prac-
tical per partition processing is that, in practice, the examined objects with a
score lower than minScore occur if they reside in the data partition whose first
object has a score at least as high as the minScore limit. This situation can
happen for at most two data partitions per a query since there are two position
limits PL1, PL2; meaning the difference is negligible.

6.2 Answer Probability

In this section, we verify the assumption of good indexing and search techniques
when the priority queue is employed. In particular, we verify whether the func-
tion answerProbability(pos) is nonincreasing for M-Index and the experimental
data.

We evaluated 10,000 30-NN training queries for each dataset and computed
the probability that an object is a part of the answer set given its position in the
priority queue. The probability was determined as answerProbability(pos) =
resultCount
queryCount where resultCount is the number of times an object at the position
pos was a part of the precise answer set; queryCount is the number of queries
(i.e., 10,000). The results can be seen in Fig. 1; they are aggregated by 500
positions, i.e., the first point in the graph shows the overall probability for the
positions 1–500; the next one for the positions 501–1,000 and so on. The graphs
show the results only for a part of the priority queue, but there is no raise in the
probability at later positions. It can be observed that our assumption is valid
for M-Index and the tested datasets. The difference in the probability values
between the two graphs is caused mainly by the difference in the dataset sizes.
These results serve as the specification of the answerProbability function which
is needed for experiments in Sects. 6.5 and 6.6.

6.3 Position Limits

The experiments in this section are carried out to analyze the impact of the
position limits PL1, PL2 on the effectiveness and the efficiency of the process-
ing. For the MPEG-7 dataset, the cache size was limited by 150,000 objects.
For the set of PL1 limits {5,000; 10,000; 20,000; 30,000; 40,000}, a series of
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Fig. 1. Answer probability according to the object position in the priority queue

experiments was conducted for various PL2 starting from PL2 = PL1 and end-
ing at PL2 = 300,000. During each experiment, 10,000 queries were evaluated.
Figure 2a depicts the results. There is a single curve for each PL1 showing the
processing time and the achieved average precision for individual PL2 limits. The
first (bottom left) point of each curve expresses the result when PL2 = PL1,
i.e., the traditional approximation technique when the stop condition is defined
as the maximum number of examined objects. The graph presents the improve-
ment of the proposed approach compared to the traditional approximation tech-
nique. For instance, using the traditional technique, the precision of 62% can be
achieved in 52 min (PL1 = PL2 = 20,000) whereas the precision of 64% can be
reached in just 31 min using the new approach (PL1 = 10,000; PL2 = 40,000),
which is 60% of the original time.

Figure 2b shows the average amount of examined objects per a query. For
example, for PL1 = PL2 = 10,000, there are 10,000 objects examined per each
query. As PL2 rises, there are more objects examined; the raise is not linear since
only cached objects are examined at the positions above PL1. For instance, if
PL1 = 10,000; PL2 = 300,000, there are 94,000 examined objects on average
per each query.

6.4 Cache Size

As presented in Sect. 5.1, the size of the cache plays the decisive role in the ratio of
heavy and light items of the knapsack problem. In this section, we show how the
cache size practically influences the efficiency and the effectiveness of the process-
ing. The experiments were conducted for the cache size ranging from 80,000 to
700,000 objects for the MPEG-7 dataset. We used the following position limits:
PL1 = 14,500; PL2 = 101,500. (These are one of the optimal position limits used
in the experiments in Sect. 6.5). In Fig. 3a, we can observe the processing times.
When the cache size of only 80,000 is used, the processing time is very high
since a lot of objects which are within PL1 in the priority queue (and therefore
have to be processed regardless of whether they are cached or not) are loaded
from the disk. As the cache size approaches 300,000 objects, the time quickly
drops since most of the objects which are within PL1 can be retrieved from the
cache. The reason of the subsequent raise of the processing time is depicted in
Fig. 3b capturing the numbers of examined objects for individual cache sizes.
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As the cache enlarges, so does the amount of objects which appear within PL2

in the priority queue and which are cached at the same time (and therefore
are examined). As the number of examined objects rise so does the precision
(Fig. 3c) going from the precision of 0.67 to 0.80 for the cache sizes 80,000 and
700,000 respectively.
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6.5 Optimal Position Limits

In Sect. 6.3, we showed how the precision and the processing time change when
PL1 is fixed and PL2 is altered. In this section, we operate with the density as
a definition of the score function to set the optimal position limits (details in
Sect. 5). Specifically, given minScore (alias minimal density), PL1 and PL2 are
computed to be the maximum values satisfying score(PL1, false) ≥ minScore
and score(PL2, true) ≥ minScore (see Sect. 4 for further details).

Let us start with the MPEG-7 dataset and the cache size limit of 150,000
objects. Figure 4a compares the traditional approach (i.e., PL1 = PL2) and
the proposed approach when the position limits are set according to the min-
imal density limit. The new approach defeats the traditional one according to
the results, i.e., a better precision is achieved for a given processing time, or a
given precision can be achieved faster. Figure 4b compares the optimal setting
of the position limits to other position limit settings as presented in Sect. 6.3.
The optimal setting (solid line) does not drop below the other position limit set-
tings (dashed lines), thus the optimality of the position limits is experimentally
verified.

50 100

0.4

0.6

0.8

Overall time [min]

A
vg

pr
ec
is
io
n

Optimal PL1, PL2

Trad. approach

(a) Optim. PL1, PL2 vs trad. approach

50 100

0.4

0.6

0.8

1

Overall time [min]

A
vg

pr
ec
is
io
n

Optimal PL1, PL2

Arbitrary PL1, PL2

(b) Optimal vs arbitrary position limits

Fig. 4. Optimal PL1, PL2 setting for MPEG-7 dataset; 10,000 30-NN queries

We also carried out experiments with high precision search using the MPEG-7
dataset. The cache size limit was set to 500,000 (i.e., 5% of the dataset). In Fig. 5,
we can see the proposed approach outperforms the traditional technique even
for the precisions higher than 0.9. For instance, to reach the precision of 0.94, it
is possible to save more than 15% of the processing time.

Concerning the Caffe dataset, Fig. 6 shows the comparison of optimal position
limit settings and the traditional approach with the cache size limit of 150,000
objects. The improvement for the Caffe dataset is not as large as for the MPEG-7
dataset, but still we are, for example, able to achieve the precision of 0.85 with
more than 15% time savings.
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6.6 Adaptive Minimal Density Limit

The experiments presented in this section were carried out to analyze behavior of
the algorithm for dynamic adaption of the minScore limit presented in Sect. 5.2.
This time we took an unordered stream of query objects which were continuously
sent to the buffer of waiting query objects. Within the buffer, the query objects
were continuously reordered to obtain sequences of similar query objects. For the
evaluation of the queries, we employed the proposed approximation technique.
The minScore limit was adapted dynamically according to the current number
of query objects in the buffer. The size of the buffer was checked every 100
processed queries and minScore was multiplied or divided by 1.5 if the buffer
size was too high or too low, respectively. The initial minScore was set so that
PL1 = 5,000.

We used the MPEG-7 dataset; the backlog limit BL was set to 50,000 query
objects. The maximal cache size was 150,000 objects. The experiment was run
for 5 h in total, and we changed the input rates of incoming query objects. For
the first 2 h, a new query object was added to the buffer every 60 ms, every
600 ms for another 1 h, every 70 ms for the next hour and every 300 ms for the
final hour.

Figure 7a captures the evolution of the number of query objects waiting for
processing in the buffer throughout the time. The moments when the input
frequency is changed are depicted by the vertical lines. At first, the buffer size
grows far over the backlog limit before it settles on the 50,000 line. This is
because of the nature of the query reordering method which needs some “warm
up” time before it can produce effective ordering of the queries. After that we
can see that the size of the buffer is stabilized at the backlog limit even though
the rate of incoming query objects changes.
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Fig. 7. Adaptive minimal density; input frequencies: 60 ms, 600ms, 70 ms, 300ms

Figure 7b tracks the applied position limits during the experiment. Except for
the “warm up” phase, the position limits correlate with the input frequency as
expected enabling to maintain the stable buffer size while keeping high precision
of the results.

In Table 1, we summarize the parameters used by the presented approach.

Table 1. System parameters

answerProbability(pos) Set automatically during the training phase

time(isCached) Set automatically during the training phase

PL1, PL2 Adjusted automatically according to the
backlog

maxCacheSize Defined by a user

BL The backlog limit defined by a user

adaptive min. dens. factor Defined by a user; influences the speed of
adaption of PL1, PL2

7 Conclusion

We have presented an approximation technique designed for processing a stream
of kNN similarity search queries. A score is computed for individual objects of
the priority queue by a combination of the probability of the object to be a
part of the answer set and the time needed to examine the object. Based on the
score, it is determined whether the object is worth examining during the query
evaluation.

Compared to the baseline of a traditional approximation technique using the
number of examined objects as the stop condition, the proposed approach allows
to achieve better trade-off between the processing time and the precision of the
similarity search. We have also shown a practical use of the proposed approach by
showing its ability to react to the changes in the frequency of incoming streamed
query objects.
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Abstract. This paper describes ANN-Benchmarks, a tool for evaluating
the performance of in-memory approximate nearest neighbor algorithms.
It provides a standard interface for measuring the performance and qual-
ity achieved by nearest neighbor algorithms on different standard data
sets. It supports several different ways of integrating k-NN algorithms,
and its configuration system automatically tests a range of parameter set-
tings for each algorithm. Algorithms are compared with respect to many
different (approximate) quality measures, and adding more is easy and
fast; the included plotting front-ends can visualise these as images, LATEX
plots, and websites with interactive plots. ANN-Benchmarks aims to pro-
vide a constantly updated overview of the current state of the art of k-NN
algorithms. In the short term, this overview allows users to choose the
correct k-NN algorithm and parameters for their similarity search task;
in the longer term, algorithm designers will be able to use this overview to
test and refine automatic parameter tuning. The paper gives an overview
of the system, evaluates the results of the benchmark, and points out
directions for future work. Interestingly, very different approaches to k-
NN search yield comparable quality-performance trade-offs. The system
is available at http://sss.projects.itu.dk/ann-benchmarks/.

1 Introduction

Nearest neighbor search is one of the most fundamental tools in many areas of
computer science, such as image recognition, machine learning, and computa-
tional linguistics. For example, one can use nearest neighbor search on image
descriptors such as MNIST [17] to recognize handwritten digits, or one can find
semantically similar phrases to a given phrase by applying the word2vec embed-
ding [22] and finding nearest neighbors. The latter can, for example, be used to
tag articles on a news website and recommend new articles to readers that have
shown an interest in a certain topic. In some cases, a generic nearest neighbor
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search under a suitable distance or measure of similarity offers surprising quality
improvements [7].

In many applications, the data points are described by high-dimensional vec-
tors, usually ranging from 100 to 1000 dimensions. A phenomenon called the
curse of dimensionality, the existence of which is also supported by popular
algorithmic hardness conjectures (see [2,28]), tells us that to obtain the true
nearest neighbors, we have to use either linear time (in the size of the dataset)
or time/space that is exponential in the dimensionality of the dataset. In the case
of massive high-dimensional datasets, this rules out efficient and exact nearest
neighbor search algorithms.

To obtain efficient algorithms, research has focused on allowing the returned
neighbors to be an approximation of the true nearest neighbors. Usually, this
means that the answer to finding the nearest neighbors to a query point is
judged by how close (in some technical sense) the result set is to the set of true
nearest neighbors.

There exist many different algorithmic techniques for finding approximate
nearest neighbors. Classical algorithms such as kd-trees [4] or M-trees [8] can
simulate this by terminating the search early, for example shown by Zezula
et al. [29] for M-trees. Other techniques [20,21] build a graph from the dataset,
where each vertex is associated with a data point, and a vertex is adjacent to its
true nearest neighbors in the data set. Others involve projecting data points into
a lower-dimensional space using hashing. A lot of research has been conducted
with respect to locality-sensitive hashing (LSH) [14], but there exist many other
techniques that rely on hashing for finding nearest neighbors; see [27] for a survey
on the topic. We note that, in the realm of LSH-based techniques, algorithms
guarantee sublinear query time, but solve a problem that is only distantly related
to finding the k nearest neighbors of a query point. In practice, this could mean
that the algorithm runs slower than a linear scan through the data, and counter-
measures have to be taken to avoid this behavior [1,25].

Given the difficulty of the problem of finding nearest neighbors in high-
dimensional spaces and the wide range of different solutions at hand, it is natural
to ask how these algorithms perform in empirical settings. Fortunately, many of
these techniques already have good implementations: see, e.g., [5,19,23] for tree-
based, [6,10] for graph-based, and [3] for LSH-based solutions. This means that
a new (variant of an existing) algorithm can show its worth by comparing itself
to the many previous algorithms on a collection of standard benchmark datasets
with respect to a collection of quality measures. What often happens, however, is
that the evaluation of a new algorithm is based on a small set of competing algo-
rithms and a small number of selected datasets. This approach poses problems
for everyone involved:

(i) The algorithm’s authors, because competing implementations might be
unavailable, they might use other conventions for input data and output
of results, or the original paper might omit certain required parameter set-
tings (and, even if these are available, exhaustive experimentation can take
lots of CPU time).
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(ii) Their reviewers and readers, because experimental results are difficult to
reproduce and the selection of datasets and quality measures might appear
selective.

This paper proposes a way of standardizing benchmarking for nearest neighbor
search algorithms, taking into account their properties and quality measures.
Our benchmarking framework provides a unified approach to experimentation
and comparison with existing work. The framework has already been used for
experimental comparison in other papers [20] (to refer to parameter choice of
algorithms) and algorithms have been contributed by the community, e.g., by the
authors of NMSLib [6] and FALCONN [3]. An earlier version of our framework
is already widely used as a benchmark referred to from other websites, see, e.g.,
[3,5,6,10,19].

Related work. Generating reproducible experimental results is one of the great-
est challenges in many areas of computer science, in particular in the machine
learning community. As an example, openml.org [26] and codalab.org provide
researchers with excellent platforms to share reproducible research results.

The automatic benchmarking system developed in connection with the
mlpack machine learning library [9,12] shares many characteristics with our
framework: it automates the process of running algorithms with preset para-
meters on certain datasets, and can visualize these results. However, the under-
lying approach is very different: it calls the algorithms natively and parses the
standard output of the algorithm for result metrics. Consequently, the system
relies solely on the correctness of the algorithms’ own implementations of qual-
ity measures, and adding new quality measures needs changes in every single
algorithm implementation. Very recently, Li et al. [18] presented a comparison
of many approximate nearest neighbor algorithms, including many algorithms
that are considered in our framework as well. Their approach is to take existing
algorithm implementations and to heavily modify them to fit a common style
of query processing, in the process changing compiler flags (and sometimes even
core parts of the implementation). There is no general framework, and including
new features again requires manual changes in each single algorithm.

Our benchmarking framework does not aim to replace these tools; instead, it
complements them by taking a different approach. We require that algorithms
expose a simple programmatic interface, which is only required to return the
set of nearest neighbors of a given query, after preprocessing the set of data
points. All the timing and quality measure computation is conducted within our
framework, which lets us add new metrics without rerunning the algorithms, if
the metric can be computed from the set of returned elements. Moreover, we
benchmark each implementation as intended by the author. That means that we
benchmark implementations, rather than algorithmic ideas [16].

Contributions. We describe our system for benchmarking approximate nearest
neighbor algorithms with the general approach described in Sect. 3. The system
allows for easy experimentation with k-NN algorithms, and visualizes algorithm
runs in an approachable way. Moreover, in Sect. 4 we use our benchmark suite

https://www.openml.org/
https://www.codalab.org/
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to overview the performance and quality of current state-of-the-art k-NN algo-
rithms. This allows us to identify areas that already have competitive algorithms,
to compare different methodological approaches to nearest neighbor search, but
also to point out challenging datasets and metrics, where good implementations
are missing or do not take full advantage of properties of the underlying met-
ric. Having this overview has immediate practical benefits, as users can select
the right combination of algorithm and parameters for their application. In the
longer term, we expect that more algorithms will become able to tune their own
parameters according to the user’s needs, and our benchmark suite will also serve
as a testbed for this automatic tuning.

2 Problem Definition and Quality Measures

We assume that we want to find nearest neighbors in a space X with a distance
measure dist : X × X → R, for example the d-dimensional Euclidean space R

d

under Euclidean distance (l2 norm), or Hamming space {0, 1}d under Hamming
distance.

An algorithm A for nearest neighbor search builds a data structure DSA
for a data set S ⊂ X of n points. In a preprocessing phase, it creates DSA to
support the following type of queries: For a query point q ∈ X and an integer
k, return a result tuple π = (p1, . . . , pk′) of k′ ≤ k distinct points from S that
are “close” to the query q. Nearest neighbor search algorithms generate π by
refining a set C ⊆ S of candidate points w.r.t. q by choosing the k closest points
among those using distance computations. The size of C (and thus the number
of distance computations) is denoted by N . We let π∗ = (p∗

1, . . . , p
∗
k) denote the

tuple containing the true k nearest neighbors for q in S (where ties are broken
arbitrarily). We assume in the following that all tuples are sorted according to
their distance to q.

2.1 Quality Measures

We use different notions of “recall” as a measure of the quality of the result
returned by the algorithm. Intuitively, recall is the ratio of the number of points
in the result tuple that are true nearest neighbors to the number k of true
nearest neighbors. However, this intuitive definition is fragile when distances are
not distinct or when we try to add a notion of approximation to it. To avoid
these issues, we use the following distance-based definitions of recall and (1+ε)-
approximative recall, that take the distance of the k-th true nearest neighbor as
threshold distance.

recall(π, π∗) =
|{p contained in π | dist(p, q) ≤ dist(p∗

k, q)}|
k

recallε(π, π∗) =
|{p contained in π | dist(p, q) ≤ (1 + ε)dist(p∗

k, q)}|
k

, for ε > 0.

(If all distances are distinct, recall(π, π∗) matches the intuitive notion of recall.)
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Table 1. Performance measures used in the framework.

Name of measure Computation of measure

Index size of DS Size of DS after preprocessing finished (in kB)

Index build time DS Time it took to build DS (in seconds)

Number of distance
computations

N

Time of a query Time it took to run the query and generate result
tuple π

We note that (approximate) recall in high dimensions is sometimes criticised;
see, for example, [6, Sect. 2.1]. We investigate the impact of approximation as
part of the evaluation in Sect. 4, and plan to include other quality measures such
as position-related measures [29] in future work.

2.2 Performance Measures

With regard to the performance, we use the performance measures defined in
Table 1, which are divided into measures of the performance of the preprocess-
ing step, i.e., generation of the data structure, and measures of the performance
of the query algorithm. With respect to the query performance, different com-
munities are interested in different cost values. Some rely on actual timings of
query times, where others rely on the number of distance computations. The
framework can take both of these measures into account. However, none of the
currently included algorithms report the number of distance computations.

3 System Design

ANN-Benchmarks is implemented as a Python library with several different front-
ends: one script for running experiments and a handful of others for working
with and plotting results. It is designed to be run in a virtual machine or Docker
container, and so comes with shell scripts for automatically installing algorithm
implementations, dependencies, and datasets.

The experiment front-end has some parameters of its own that influence what
algorithm implementations will be tested: the dataset to be searched (and an
optional dataset of query points), the number of neighbours to search for, and
the distance metric to be used to compare points. The plotting front-ends are
also aware of these parameters, which are used to select and label plots.

This section gives only a high-level overview of the system; see http://sss.
projects.itu.dk/ann-benchmarks/ for more detailed technical information.

3.1 Installing Algorithms and Datasets

Each dataset and library has a shell script that downloads, builds and installs
it. These scripts are built on top of a shell function library that defines a few

http://sss.projects.itu.dk/ann-benchmarks/
http://sss.projects.itu.dk/ann-benchmarks/


ANN-Benchmarks 39

common operations, like cloning and patching a Git repository or downloading
a dataset and checking its integrity. Datasets may also need to be converted;
we include Python scripts for converting a few commonly-used formats into the
plain-text format used by our system, and the shell scripts make use of these.

Although we hope that algorithm libraries will normally bundle their own
Python bindings, our shell function library can also apply a patch series to an
implementation once it has been downloaded, allowing us to (temporarily) carry
patches for bindings that will later be moved upstream.

Adding support for a new algorithm implementation to ANN-Benchmarks is
as easy as writing a script to install it and its dependencies, making it available
to Python by writing a wrapper (or by reusing an existing one), and adding the
parameters to be tested to the configuration files. Most of the installation scripts
fetch the latest version of their library from its Git repository, but there is no
requirement to do this; indeed, installing several different versions of a library
would make it possible to use the framework for regression testing.

Algorithm wrappers. To be usable by our system, each of the implementations
to be tested must have some kind of Python interface. Many libraries already
provide their own Python wrappers, either written by hand or automatically
generated using a tool like SWIG; others are implemented partly or entirely in
Python.

To bring implementations that do not provide a Python interface into the
framework, we specify a simple text-based protocol that supports the few opera-
tions we care about: parameter configuration, sending training data, and running
queries. The framework comes with a wrapper that communicates with external
programs using this protocol. In this way, experiments can be run in external
front-end processes implemented in any programming language.

The protocol has been designed to be easy to implement. Every message is
a line of text that will be split into tokens according to the rules of the POSIX
shell, good implementations of which are available for most programming lan-
guages. The protocol is flexible and extensible: front-ends are free to include
extra information in replies, and they can also implement special configuration
options that cause them to diverge from the protocol’s basic behaviour. As an
example, we provide a simple C implementation that supports an alternative
query mode in which parsing and preparing a query data point and running a
query are two different commands. (As the overhead of parsing a string repre-
sentation of a data point is introduced by the use of the protocol, removing it
makes the timings more representative.)

Comparing implementations. We note at this point that we are explicitly
comparing algorithm implementations. Implementations make many different
decisions that will affect their performance and two implementations of the same
algorithm can have somewhat different performance characteristics [16]. Our
framework supports other quality measures, such as the number of distance
computations, which is more suited for comparing algorithms on a more abstract
level; however, the implementations we consider do not yet support this measure.
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3.2 Loading Datasets and Computing Ground Truth

Once we have datasets available, we must load them and compute the ground
truth for the query set: the true nearest neighbours for each query point, along
with their distances. This ground truth is passed, along with the values obtained
by each experiment, to the functions used by the plotting scripts to calculate
the quality metrics.

The query set for a dataset is, by default, a pseudorandomly-selected set
of ten thousand entries separated from the rest of the training data. If this
behavior is not wanted, datasets can declare a different number of queries in
their metadata, or the user can provide an explicit query set instead.

Depending on the values of the system’s own configuration parameters, many
different sets may have to be computed. Each of these is stored in a separate
cache file.

3.3 Creating Algorithm Instances

After loading the dataset, the framework moves on to creating the algorithm
instances. It does so based on a YAML configuration file that specifies a hierar-
chy of dictionaries: the first level specifies the point type, the second the distance
metric, and the third each algorithm implementation to be tested. Each imple-
mentation gives the name of its wrapper’s Python constructor; a number of other
entries are then expanded to give the arguments to that constructor. Figure 1
shows an example of this configuration file.

Fig. 1. An example of a fragment of an algorithm configuration file.

The base-args list consists of those arguments that should be prepended
to every invocation of the constructor. Figure 1 also shows one of the special
keywords, "@metric", that is used to pass one of the framework’s configuration
parameters to the constructor.

Algorithms must specify one or more “run groups”, each of which will be
expanded into one or more lists of constructor arguments. The args entry com-
pletes the argument list, but not directly: instead, the Cartesian product of
all of its entries is used to generate many lists of arguments. The annoy entry
in Fig. 1, for example, expands into twelve different algorithm instances, from
Annoy("euclidean", 100, 100) to Annoy("euclidean", 400, 10000).
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3.4 The Experiment Loop

Once the framework knows what instances should be run, it moves on to
the experiment loop. (Figure 2 gives an overview of the loop.) Each algorithm
instance is run in a separate subprocess. This makes it easy to clean up properly
after each run: simply destroying the subprocess takes care of everything. This
approach also gives us a simple and implementation-agnostic way of computing
the memory usage of an implementation: the subprocess takes a snapshot of its
memory consumption before and after initialising the algorithm instance’s data
structures and compares the two.

Fig. 2. Overview of the interaction between ANN-Benchmarks and an algorithm
instance under test. The instance builds an index data structure for the dataset X
in the preprocessing phase. During the query phase, it returns k data points for each
query point; after answering a query, it can also report any extra information it might
have, such as the size of the candidate set.

The complete results of each run are sent back to the main process using a
pipe. The main process performs a blocking, timed wait on the other end of the
pipe, and will destroy the subprocess if the user-configurable timeout is exceeded
before any results are available.

3.5 Results and Metrics

For each run, we store the full name – including the parameters – of the algorithm
instance, the time it took to evaluate the training data, and the near neighbours
returned by the algorithm, along with their distance from the query point. (To
avoid affecting the timing of algorithms that do not indicate the distance of a
result, the experiment loop independently re-computes distance values after the
run is otherwise finished.) Each run is stored in a separate file in a directory
hierarchy that encodes the framework’s configuration. Keeping runs in separate
files makes them easy to compress, easy to enumerate, and easy to re-run, and
individual results – or sets of results – can easily be shared to make results more
transparent.

Metric functions are passed the ground truth and the results for a particular
run; they can then compute their result however they see fit. Adding a new
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quality metric is a matter of writing a short Python function and adding it to
an internal data structure; the plotting scripts query this data structure and will
automatically support the new metric.

3.6 Frontend

ANN-Benchmarks provides two options to evaluate the results of the experiments:
a script to generate individual plots using Python’s matplotlib and a script to
generate a website that summarizes the results and provides interactive plots
with the option to export the plot as LATEX code using pgfplots. See Fig. 3 for
an example. Plots depict the Pareto frontier over all runs of an algorithm; this
gives an immediate impression of the algorithm’s general characteristics, at the
cost of concealing some of the detail. When more detail is desired, the scripts
can also produce scatter plots.

Fig. 3. Interactive plot screen from framework’s website (cropped). Plot shows “Queries
per second” (y-axis, log-scaled) against “Recall” (x-axis, not shown). Highlighted data
point corresponds to a run of Annoy with parameters as depicted, giving about 1249
queries per second for a recall of about 0.52.

4 Evaluation

In this section we present a short evaluation of our findings from running bench-
marks in the benchmarking framework.

Experimental setup. All experiments were run in Docker containers on
Amazon EC2 c4.2xlarge instances that are equipped with Intel Xeon E5-2666v3
processors (4 cores available, 2.90 GHz, 25.6 MB Cache) and 15 GB of RAM run-
ning Amazon Linux. We ran a single experiment multiple times to verify that
performance was reliable, and compared the experiments results with a 4-core
Intel Core i7-4790 clocked at 3.6 GHz with 32 GB RAM. While the latter was a
little faster, the relative order of algorithms remained stable. For each parameter
setting and dataset, the algorithm was given thirty minutes to build the index
and answer the queries.

Tested Algorithms. Table 2 summarizes the algorithms that are used in the
evaluation; see the references provided for details. More implementations are
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Table 2. Overview of tested algorithms (abbr. in parentheses). Implementations in
italics have “recall” as quality measure provided as an input parameter.

Principle Algorithms

k-NN graph KGraph (KG) [10], SWGraph (SWG) [6,21], HNSW [6,20]

Tree-based FLANN [23], BallTree (BT) [6]

LSH FALCONN (FAL) [3], MPLSH [6,11]

Random-proj. forest Annoy (A) [5], RPForest (RPF) [19]

Other Multi-Index Hashing (MIH) [24] (exact Hamming search)

included in the framework, but turned out to be non-competitive (details can be
found on the framework’s website). The scripts that set up the framework auto-
matically fetch the most current version found in each algorithm’s repository.

Datasets. The datasets used in this evaluation are summarized in Table 3.
Results for other datasets are found on the framework’s website. The NYTimes
dataset was generated by building tf-idf descriptors from the bag-of-words ver-
sion, and embedding them into a lower dimensional space using the Johnson-
Lindenstrauss Transform [15]. Hamming space versions have been generated
by applying Spherical Hashing [13] using the implementation provided by the
authors of [13]. The random dataset Rand-Angular (where data points lie on the
surface of the d-dimensional unit sphere) is generated by choosing 500 query
points at random and putting clusters of 500 points at distance around α

√
2/3,

where α grows linearly from 0 to 1 with step size 1/500. Each cluster has 500
points at distance around 2α

√
2/3 added. The rest of the dataset consists of

random data points, 500 of which are chosen as the other set of query points
(with closest neighbors expected to be at distance

√
2).

Table 3. Datasets under consideration

Dataset Data/Query points Dimensionality Metric

SIFT 1 000 000/10 000 128 Euclidean

GLOVE 1 183 514/10 000 100 Angular/Cosine

NYTimes 234 791/10 000 256 Euclidean

Rand-Angular 1 000 000/1 000 128 Angular/Cosine

SIFT-Hamming 1 000 000/10 000 256 Hamming

NYTimes-Hamming 234 791/10 000 128 Hamming

Parameters of Algorithms. Most algorithms do not allow the user to explic-
itly specify a quality target—in fact, only three implementations from Table 2
provide “recall” as an input parameter. We used our framework to test many
parameter settings at once. The detailed settings tested for each algorithm can
be found on the framework’s website.
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4.1 Objectives of the Experiments

We used the benchmarking framework to find answers to the following questions:

(Q1) Performance. Given a dataset, a quality measure and a number k of near-
est neighbors to return, how do algorithms compare to each other with respect
to different performance measures, such as query time or index size?
(Q2) Robustness. Given an algorithm A, how is its performance and result
quality influenced by the dataset and the number of returned neighbors?
(Q3) Approximation. Given a dataset, a number k of nearest neighbors to
return, and an algorithm A, how does its performance improve when the returned
neighbors can be an approximation? Is the effect comparable for different algo-
rithms?
(Q4) Embeddings. Equipped with a framework with many different datasets
and distance metrics, we can try interesting combinations. How do algorithms
targeting Euclidean space or Cosine similarity perform in, say, Hamming space?
How does replacing the internals of an algorithm with Hamming space related
techniques improve its performance?

The following discussion is based on a combination of the plots found on the
framework’s website; see the website for more complete and up-to-date results.

4.2 Discussion

(Q1) Performance. Figure 4 shows the relationship between an algorithm’s
achieved recall and the number of queries it can answer per second (its QPS) on
the two datasets GLOVE (Cosine similarity) and SIFT (Euclidean distance) for
10- and 100-nearest neighbor queries.

For GLOVE, we observe that the graph-based algorithms HNSW and SWGraph,
the LSH-based FALCONN, and the “random-projection forest”-based Annoy algo-
rithm are fastest. For high recall values, HNSW is fastest, while for lower recall
values, FALCONN achieves highest QPS. We can also observe the importance of
implementation decisions: although Annoy and RPForest are both built upon
the same algorithmic idea, they have very different performance characteristics.

On SIFT, all tested algorithms can achieve close to perfect recall. In partic-
ular, the graph-based algorithms (along with KGraph) are fastest, followed by
Annoy. FALCONN, BallTree, and FLANN have very similar performance.

Very few of these algorithms can tune themselves to produce a particular
recall value. In particular, the fastest algorithms on the GLOVE dataset expose
many parameters, leaving the user to find the combination that works best. The
KGraph algorithm, on the other hand, uses only a single parameter, which—
even in its “smallest” choice—still guarantees recall at least 0.9 on SIFT. FLANN
manages to tune itself for a particular recall value on the SIFT dataset; for
GLOVE with high recall values, however, the tuning does not complete within
the time limit, especially with 100-NN.

Figure 5 relates an algorithm’s performance to its index size. High recall can
be achieved with small indexes by probing many points; however, this probing
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Fig. 4. Recall-QPS (1/s) tradeoff - up and to the right is better. Top: GLOVE, bottom:
SIFT; left: 10-NN, right: 100-NN.

is expensive, and so the QPS drops dramatically. To reflect this performance
cost, we scale the size of the index by the QPS it achieves. This reveals that, on
SIFT, SWGraph and FLANN achieve good recall values with small indexes. Both
BallTree and HNSW show a similar behavior to each other. Annoy and FALCONN
need rather large indexes to achieve high QPS. The picture is very different on
GLOVE, where FALCONN provides the best ratio up to recall 0.8, only losing to
the graph-based approaches at higher recall values.

(Q2) Robustness. Figure 6 plots recall against QPS for Annoy, FALCONN, and
HNSW with fixed parameters over a range of datasets. Each algorithm has a dis-
tinct performance curve. In particular, FALCONN has very fast query times for
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Fig. 5. Recall-Index size (kB)/QPS (s) tradeoff - down and to the right is better.
Left: SIFT (k = 100), right: GLOVE (k = 10).
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unless otherwise stated, left: Annoy, middle: FALCONN, right: HNSW.

low recall values; the other two algorithms appear to have some base cost associ-
ated with each query that prevents this behavior. Although all algorithms take
a performance hit for high recall values, HNSW (when it has time to complete its
preprocessing) is the least affected. All algorithms show a sharp transition for
the random dataset; this is to be expected based on the dataset’s composition
(cf. Datasets above).

(Q3) Approximation. Figure 7 relates achieved QPS to the (approximate)
recall of an algorithm. The plots show results on the NYTimes dataset for recall
with no approximation and approximation factors of 1.01 and 1.1. The dataset
is notoriously difficult; with no approximation, only a handful of algorithms can
achieve a recall above 0.98. However, we know the candidate sets of most algo-
rithms are very close to the true nearest neighbors, as even a very small approx-
imation factor of 1.01 improves the situation drastically: all algorithms get more
than 0.9 recall. Allowing for an approximation of 1.1 yields very high perfor-
mance for most algorithms, although some benefit more than others: FALCONN,
for example, now always outperforms HNSW, while Annoy suddenly leaps ahead
of its competitors.
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Fig. 7. (Approximate) Recall-QPS (1/s) tradeoff - up and to the right is better,
NYTimes dataset; left: ε = 0, middle: ε = 0.01, right: ε = 0.1.
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(Q4) Embeddings. Figure 8 shows a comparison between selected algorithms
on the binary versions of SIFT and NYTimes. The performance plot for HNSW in
the original Euclidean-space version is also shown. On SIFT, algorithms perform
very similarly to the original Euclidean-space version (see Fig. 4), which indicates
that the queries are as difficult to answer in the embedded space as they are in the
original space. The behavior is very different on NYTimes, where all algorithms
improve their speed and quality. The only dedicated Hamming space algorithm
shown here, exact multi-index hashing, shows good performance at around 180
QPS on SIFT and 400 QPS on NYTimes.

As an experiment, we created a Hamming space-aware version of Annoy, using
popcount for distance computations, and sampling single bits (as in Bitsampling
LSH [14]) instead of choosing hyperplanes. This version is an order of magnitude
faster on NYTimes; on SIFT, the running times converge for high recall values.

The embedding into Hamming space does have some consistent benefits that
we do not show here. Hamming space-aware algorithms should always have
smaller index sizes, for example, due to the compactness of bit vectors stored as
binary strings.

5 Conclusion and Further Work

We introduced ANN-Benchmarks, an automated benchmarking system for
approximate nearest neighbor algorithms. We described the system and used
it to evaluate existing algorithms. Our evaluation showed that well-enginereed
solutions for Euclidean and Cosine distance exist, and many techniques allow for
fast nearest neighbor search algorithms. At the moment, graph-based approaches
such as HNSW or KGraph outperform the other approaches for very high recalls,
whereas LSH-based solutions such as FALCONN yield very high performance at
lower recall values. Index building for graph-based approaches takes a long time
for datasets with difficult queries. We did not find solutions targeting Ham-
ming space under Hamming distance, but showed that substituting Hamming
space-specific techniques into more general algorithms can greatly improve their
running time.
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In future, we aim to add support for other metrics and quality measures,
such as positional errors [29]. Preliminary support exists for set similarity under
Jaccard distance, but algorithm implementations are missing. Additionally, sim-
ilarity joins are an interesting variation of the problem worth benchmarking.
Benchmarking GPU-powered nearest neighbor algorithms is the objective of
current work. We also intend to simplify and further automate the process of
re-running benchmarks when new versions of algorithm implementations appear.

Acknowledgements. We thank the anonymous reviewers for their careful comments
that allowed us to improve the paper. The first and third authors thank all members
of the algorithm group at ITU Copenhagen for fruitful discussions.
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Abstract. In order to accelerate efficiency of similarity search, com-
pact bit-strings compared by the Hamming distance, so called sketches,
have been proposed as a form of dimensionality reduction. To maximize
the data compression and, at the same time, minimize the loss of infor-
mation, sketches typically have the following two properties: (1) each
bit divides datasets approximately in halves, i.e. bits are balanced, and
(2) individual bits have low pairwise correlations, preferably zero. It has
been shown that sketches with such properties are minimal with respect
to the retained information. However, they are very difficult to index due
to the dimensionality curse – the range of distances is rather narrow and
the distance to the nearest neighbour is high. We suggest to use sketches
with unbalanced bits and we analyse their properties both analytically
and experimentally. We show that such sketches can achieve practically
the same quality of similarity search and they are much easier to index
thanks to the decrease of distances to the nearest neighbours.

1 Introduction

Treating data objects according to their pairwise similarity closely corresponds
to the human perception of reality, thus it represents an important field of data
processing. Features of complex objects are typically characterized by descrip-
tors, which are often high dimensional vectors. These descriptors can be bulky
and evaluation of their pairwise similarity may be computationally demand-
ing [16,21]. Thus techniques to process them efficiently are needed. In this paper
we consider one to one mapping between objects and descriptors, thus we do
not distinguish these terms and we use just term object. One of the state-of-
the-art approaches allowing to search big datasets efficiently is based on object
transformation to short binary strings – sketches. The objective of a sketching
technique is to construct the binary strings so that they, together with Hamming
distance h, preserve pairwise similarity relations between objects as much as pos-
sible. Thanks to their compact size and computational efficiency of the Hamming
distance, sketches have been used by several authors who report promising results
for different data types, dimensions, and similarity functions [5,7,15,19].

Many sketching techniques were proposed and majority of them produce
sketches sk(o) with balanced bits with low correlations [12,13,15,19], because
these properties are reported to support the quality of similarity approximation:
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 53–63, 2017.
DOI: 10.1007/978-3-319-68474-1 4
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– Bit i is balanced (with respect to dataset X) iff it is set to 1 in one half of all
sketches sk(o), o ∈ X.

– Bit correlations are investigated in pairwise manner over all pairs of bits of
sketches sk(o), o ∈ X.

To the best of our knowledge, there is no prior work discussing disadvantages
arising from these properties. In this paper, we analyse their pros and cons and
we further focus on sketches with bits balanced to a given ratio b:

– Bit i is balanced to ratio b (with respect to dataset X) iff it is set to 1 in b · |X|
sketches sk(o), o ∈ X. Without loss of generality, we assume 0.5 ≤ b ≤ 1, since
the opposite case is symmetric.

We denote Sb the set of all sketches sk(o), o ∈ X with bits balanced to b.
We show that the Hamming distance distribution on sketches S0.5 (i.e. with

balanced bits) with low pairwise bit correlations makes an efficient indexing
practically impossible. The main contribution of this paper is analytical and
experimental investigation of sketches with unbalanced bits, which shows that
they can achieve practically the same quality of the similarity search but they
are significantly easier to index.

2 Background

To formalize the concept of similarity, we adopt the model of metric space
M = (D, d), where D is a domain of objects and d : D × D �→ R is a dis-
tance function which determines the dissimilarity of objects [21]. Further we
consider a finite dataset X ⊆ D. The goal of this section is to provide basic
observations about the sketches, which influence their indexability and ability
to preserve similarity relationships of objects. First, let us focus on Hamming
distance density of sketches Sb with length λ.

Lemma 1 (Mean value of Hamming distance). Let us have set Sb of
sketches sk(o), o ∈ X with length λ. The mean value of Hamming distance on
Sb is 2λ · b · (1 − b) regardless of pairwise bit correlations.

Proof. Let us consider one bit i of the sketches. The Hamming distance h of
sketches sk(o1), sk(o2) on bit i is 1 iff sk(o1), sk(o2) have different values in bit i.
Considering all |X| sketches, it happens in 2b|X| · (1 − b)|X| cases. Thus sum of
all Hamming distances over λ bits is 2λb|X| · (1 − b)|X|, and the mean Hamming
distance is 2λb(1 − b) as we summed |X|2 distances in the previous step.

The mean of Hamming distance is maximized for b = 0.5, i.e. for the balanced
bits.

Next, we focus on the bit correlation, which we express with the Pear-
son correlation coefficient. According to Theorem 2 in [12], the variance of
Hamming distance on sketches S0.5 decreases with decreasing absolute value
of the average pairwise bit correlation; it is minimized for uncorrelated bits.
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In case of uncorrelated bits, the Hamming distance density of sketches Sb

has binomial distribution, thus for variance σ2 of Hamming distances holds:
σ2 = λb(1 − b). In other words, (1) sketches with balanced bits have maximum
mean distance and, (2) for these sketches, minimization of the pairwise bit cor-
relations means minimization of the variance of the Hamming distance, which is
maximization of all distances lower than the mean distance. Clearly, maximizing
values of the smallest inter-object distances violates the key objective of the data
transformation for the similarity indexing: distances h(sk(o1), sk(o2)), o1, o2 ∈ X
for very similar objects o1, o2 are desired to be small [5]. Moreover these conse-
quences imply a problem known as the dimensionality curse [18].

A formalised view is provided by the intrinsic dimensionality of sketches.
Intrinsic dimensionality (iDim) expresses “the minimum number of parameters
needed to account for the observed properties of the data” [6]. We use the formula
proposed by Chavez and Navarro [2] for the estimation of iDim:

iDim ≈ μ2

2 · σ2
, (1)

where μ is the mean of distance density, and σ2 is its variance. In compliance
with the previous paragraph, it has been proven that:

– for uncorrelated bits, iDim is maximized iff they are balanced [18],
– for balanced bits, iDim is maximized iff they are uncorrelated [12].

In the field of similarity search, iDim expresses “the difficulty” of data index-
ing [17]. Thus techniques which produce sketches S0.5 with bit correlations close
to zero produce hard-to-index sketches. Moreover indexing techniques typically
assume at least a few objects in small distances from the query object [14,16].

2.1 Observations on GHP Sketches

We illustrate our findings on a sketching technique based on the generalized
hyperplane partitioning (GHP) [21]. Bit i of all sketches sk(o), o ∈ X is deter-
mined using a pair of pivoting objects pi0, pi1, which splits objects o ∈ X by
comparing distances d(o, pi0), d(o, pi1); value of bit ski(o) expresses which pivot
is closer to o. This technique is described in detail e.g. in [12].

Let us consider query object q ∈ D and its most similar object oq1 ∈ X,
oq1 �= q. As we have explained, the Hamming distance h(sk(q), sk(oq1)) is high
on average on sketches S0.5 with low pairwise bit correlations. It means that
many hyperplanes separate q and oq1. On the contrary, in case of sketches with
unbalanced bits, e.g. S0.8, the distance h(sk(q), sk(oq1)) should be lower.

For motivation, consider the situation in 2D Euclidean space shown in Fig. 1.
In case of hyperplanes dividing dataset into halves (Fig. 1a), the Hamming dis-
tances between originally close objects are high which suggests that many hyper-
planes split dense subspaces of dataset X. On the other hand, in case of sketches
with unbalanced bits (Fig. 1b), the Hamming distances are smaller not only for
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(a) b = 0.5 (b) b = 0.8

Fig. 1. Hyperplanes producing sketches with bits balanced to different balance b

originally close objects, but also for more distant ones; as shown later, this draw-
back can be compensated by using longer sketches. Please, note that this is only
an artificial example in 2D, but these properties are implied by values of mean
and variance of the Hamming distance and thus hold even for real-life, high
dimensional data.

Figure 1b suggests, that unbalanced bits may lead to many objects with all
bits set to 1 (the “center” of the figure). However, our practical experience with
sketches in high dimensional space show that there is just a few such objects.
In particular, we conducted experiments with b ∈ {0.85, 0.9} and λ = 205 (see
Sect. 4 for details on the dataset). We realized that there was no sketch with
all bits set to 1 in case of b = 0.85, and only eight out of one million in case of
b = 0.9.

2.2 Related Work

Charikar has introduced in his pioneering work [1] the idea of using random
hyperplanes to summarize objects in a multi-dimensional vector spaces in such a
way that the resulting bit strings respect the cosine distance. Lv et al. [11] have
proposed a sketching technique for spaces of vectors compared by (weighted) L1

distance function. Their method is based on thresholding ; a threshold is deter-
mined for each dimension of the original space. Individual bits of the sketches are
set according to values in corresponding dimensions and compressed. Pagh et al.
propose odd sketches [14] – short binary strings created as a transformation of
original vector space, based on min-hashing [9,10]. Odd sketches are compared
by the Hamming distance, and they suffer a lot from the curse of dimensionality.
Daugman [3] uses bit strings to describe human irises to identify people. His
method is based on encoding shades of grey colour shown in images of irises
in UV light, and it constitutes the most widely used approach of human irises
recognition.

3 Analysis of Bits Balanced to b

The objective of this section is to quantify all trends mentioned above. More
specifically, we analytically derive the influence of the ratio b on bit correlations,
Hamming distance distribution, and iDim of sketches.
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Consider sketches Sb and their two arbitrarily selected bits i, j, 0 ≤ i < λ,
0 ≤ j < λ. Set Sb can be split into four parts according to combination of
values in bits i, j. Let us denote #11,#10,#01,#00 the relative numbers of the
sketches in these four parts. It holds that #10 = #01 regardless of correlation of
bits i and j. Denoting ski(o) the ith bit of sketch sk(o), the Pearson correlation
coefficient of bits i, j can be simplified:

Corr(i, j) =

∑

o∈X

(ski(o) − b)(skj(o) − b)
√ ∑

o∈X

(ski(o) − b)2
∑

o∈X

(skj(o) − b)2
=

#11 − b2

b(1 − b)
. (2)

Let us point out one difference between balanced and unbalanced bits: if we
switch all values in arbitrary bit i in case of balanced bits, only the sign of
correlations Corr(i, j) (with all other bits j) changes. Thus only the absolute
values of pairwise bit correlations matter [12]. On the other hand, in case of
unbalanced bits (b �= 0.5), the sign of correlation matters, as opposite correlations
express different space partitioning. For example for b = 0.8, correlation −0.25
means object distribution #11 = 60%, #10 = #01 = 20%, #00 = 0% while
correlation +0.25 means distribution #11 = 68%, #10 = #01 = 12%, #00 =
8%. Therefore, we keep the same bit orientation for all bits (specifically, 1 in
b · |X| sketches).

It has been shown [12], that high intrinsic dimensionality iDim increases
potential of sketches with balanced bits to well approximate similarity relation-
ships of objects. So, let us analyse the iDim of sketches with bits balanced
to b. We denote Hi the list of all |X|2 Hamming distances measured just on
bit i of sketches sk(o), o ∈ X. Then Corr(Hi,Hj) is the Pearson correlation
of lists Hi,Hj , and CorrAvg is the average pairwise correlation over all lists
Hi,Hj , 0 ≤ i < j < λ. We have derived in [12] the variance σ2 of Hamming dis-
tance on sketches S0.5. Using Lemma 7 from that paper and analogous approach,
it is possible to derive σ2 for sketches Sb:

σ2 = 2b(1 − b) · [1 − 2b(1 − b)] · [λ + (λ2 − λ) · CorrAvg]. (3)

Using Lemma 1 and Eq. 3, the iDim of sketches with bits balanced to b is:

iDim ≈ μ2

2σ2
=

b · (1 − b) · λ

(2b2 − 2b + 1) · [1 + (λ − 1)CorrAvg]
. (4)

Therefore iDim of sketches increases with decreasing CorrAvg. In the following,
we lower bound average correlation CorrAvg, which implies the upper bound for
iDim of sketches with bits balanced to b.

Minimum average correlation CorrAvg occurs iff all pairwise correlations of
lists Hi,Hj are minimal. Thus, we focus on Corr(Hi,Hj):

Corr(Hi,Hj) =
2(#11 · #00 + #2

10) − [2b(1 − b)]2

2b(1 − b) − [2b(1 − b)]2
. (5)
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Using this equation, it is possible to express values #11,#10 and #00 implying
minimum value of Corr(Hi,Hj). Please, notice that all fractions #11,#10 and
#00 must be non-negative.

Theorem 1. Maximum iDim of sketches Sb with bits balanced to b occurs iff for
all pairs of bits 0 ≤ i < j < λ holds: #00 = max(0, 3/4−b), #10 = min(1/4, 1−b)
and #11 = max(2b − 1, b − 1/4).

Proof. Theorem holds as a consequence of Eqs. 2, 4 and 5.

Values #00,#10 and #11 implying maximum iDim of sketches, imply negative
pairwise correlations Corr(i, j) for b > 0.5, which bring a problem: it is not
possible to create meaningful sketches for similarity search with significantly
negative pairwise bit correlations. Considering a given ratio b > 0.5 and negative
bit correlations, each zero in an arbitrary bit i of any sketch ski(o1) pushes other
values ski(o2), o2 ∈ X ∧ o2 �= o1 to be 1. However the number of ones is given by
ratio b.

In case of b ≥ 0.75, maximum iDim occurs iff ∀0 ≤ i < j ≤ λ : #00 = 0. In
this case, each sketch contains exactly one or none bit set to 0, and therefore at
most λ + 1 different sketches of length λ exist (including one with all bits set
to 1). In the other words, an effort to minimize ratio #00 leads to extremely long
sketches.

In practice when a realistic sketch length λ is preserved, higher iDim of
sketches Sb may be achieved with an effort to produce uncorrelated bits rather
than negatively correlated. The reason is, that few significant negative correla-
tions usually cause higher increase of other correlations which leads to an increase
of average pairwise correlation above zero. We illustrate these statements in an
experiment in Sect. 4.

As a result of provided analysis and experiments, we propose to search for
uncorrelated unbalanced bits, i.e. for sketches with binomial distance distribu-
tion, but with lower mean value than in case of balanced bits, which is favourable
for indexing of sketches.

4 Evaluation

At first, we run an experiment to confirm the suitability of producing sketches
with uncorrelated rather than negatively correlated bits. Then we focus on the
quality of similarity search with unbalanced sketches and their indexability. Let
us briefly describe the testing data and sketching technique:

Testing Data

The experiments are conducted on a real-life data collection consisting of visual
descriptors extracted from images. More specifically, we use DeCAF descrip-
tors [4] – 4096-dimensional vectors taken as an output from the last hidden layer
of a deep convolutional neural network [8]. These descriptors were extracted from
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a 1M subset of the Profiset collection1. The DeCAF descriptors are compared
by the Euclidean distance to form a metric space.

Sketching Technique

In order to create sketches, we randomly select a set of 512 pivots and we inves-
tigate all

(
512
2

)
pivot pairs. We use a random subset of 100,000 data objects and

analyse the balance b of generalized hyperplane partitioning (GHP) defined by
each pair of pivots (see Sect. 2.1 for examples of GHP). From pivot pairs implying
a proper balance b (which is about 8,000–15,000 pairs) we further select those,
producing sketches with low correlated bits using our heuristic. Description of
this heuristic is available online2.

4.1 Searching for Negatively Correlated Bits

Table 1 contains evaluated properties of sketches created by the sketching tech-
nique, which tried to (1) find sketches with uncorrelated bits, and (2) find as
negatively correlated bits as possible. Ratio b was 0.8 in these experiments, and
results for four sketch lengths λ are presented. The average pairwise bit corre-
lation is lower in case of searching for uncorrelated bits, rather then negatively
correlated, in three cases. The numbers of negative and positive pairwise bit
correlations confirms these results as well. There is an exception in Table 1, the
sketch length λ = 205 for which average bit correlation is lower when searched
for negatively correlated bits. However, observed difference is tiny in this case.

Table 1. Sketching technique: searching for uncorrelated and negatively correlated
unbalanced bits, b = 0.8

Searching for uncorrelated Searching for negative correlations

λ Average corr # positive # negative Average corr # positive # negative

64 +0.0019 1,000 1,016 +0.0024 1,032 984

128 +0.0046 4,066 4,062 +0.0053 4,106 4,022

205 +0.0064 10,494 10,416 +0.0063 10,469 10,441

256 +0.0072 16,406 16,234 +0.0077 16,436 16,204

The reasons of observed tendencies are discussed in theoretical Sect. 3.

1 http://disa.fi.muni.cz/profiset/.
2 http://www.fi.muni.cz/∼xmic/sketches/AlgSelectLowCorBits.pdf.

http://disa.fi.muni.cz/profiset/
http://www.fi.muni.cz/~xmic/sketches/AlgSelectLowCorBits.pdf
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4.2 Quality of Sketches

The most important requirement for sketches with unbalanced bits is that they
have to provide acceptable quality of the similarity search in comparison to
sketches with balanced bits. In the following experiments, we use k-recall@k′

of approximate kNN search using sketches. More specifically, for each query
object q, we compare the set of k most similar objects from X found by the
sequential scan of X (denoted as Prec(q)) with k objects found by the filter
and refine approach based on sketches: First, in the filtering phase, we select
k′ objects o ∈ X, k′ ≥ k with smallest Hamming distances h(sk(q), sk(o)).
Then these k′ objects o are refined by evaluating distances d(q, o) in order to
identify approximate kNN answer denoted as Ans(q, k’ ). The ability of sketches
to approximate similarity relationships of objects o ∈ X is expressed by measure
k-recall@k′:

k-recall@k′ =
Prec(q) ∩ Ans(q, k′)

k
. (6)

In the following, we present results only for k = 10, because trends observed in
these experiments are the same even for other values of k. Size of dataset X in
the following experiments is |X| = 1,000,000. All results are averages over 1,000
randomly selected queries q.

(a) b ∈ {0.5, 0.8}, λ ∈ {64, 128, 256} (b) b ∈ {0.5, 0.75, 0.8, 0.85, 0.9}, λ = 256

Fig. 2. Quality of approx. similarity search with sketches balanced to different b

We demonstrate by Fig. 2a that the difference in 10-recall@k′ using sketches
S0.5 and S0.8 is relatively high in case of short sketches, however with increasing
length λ it is becoming negligible (in our case, this happens approximately for
λ ≥ 200). Figure 2b depicts 10-recall@k′ for sketch length λ = 256 and different
ratio b. Using b ∈ {0.5, 0.75, 0.8}, the results are practically the same; decrease
is noticeable in case of b = 0.85: for example about 2.3 percentage points for k’
= 5,000 (i.e. 0.5 % of |X|) and it is significant for b = 0.9: e.q. 9.2 percentage
points for k’ = 5,000.
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Table 2. Sketches with λ = 256: 10-recall@k′,
iDim and avg. Hamming distances to k′th closest
sketch

b 10-recall@k’ iDim h(sk(q), sk(oqk′ ))

k’=2,500 k’=10,000 k′=1 k′=100 k′=10,000

0.50 93.20% 98.41% 29.4 43.1 58.9 83,6

0.75 93.43% 98.66% 24.1 32.0 44.3 63.2

0.80 92.79% 98.52% 19.6 27.4 38.0 54.0

0.85 89.19% 97.30% 13.5 21.1 29.7 42.2

0.90 80.31% 92.46% 9.0 13.8 19.9 28.3 Fig. 3. Ham. distance densities for
λ = 256

4.3 Indexability of Sketches

The indexability of sketches is illustrated by their iDim and by the average
Hamming distances h(sk(q), sk(oqk′)) between sk(q) and its k′th nearest sketch
for k′ ∈ {1; 100; 10,000}. We show results for b ∈ {0.5, 0.75, 0.8, 0.85, 0.9} in
Table 2. These results make possible to utilize techniques for bit-strings indexing
and other processing [16,20]

As expected, the iDim of sketches decreases as ratio b grows (for b ≥ 0.5). For
instance the iDim of sketches S0.5 and S0.8 differs about one third for λ = 256.
In order to remind results from Sect. 4.2, we show 10-recall@k′ for two selected
k′: the difference of 10-recall@k′ for b ∈ [0.5, 0.8] is negligible. It confirms, that
properly unbalanced sketches can be used as a full-fledged but easily indexable
alternative to sketches with balanced bits. Better indexability is confirmed by the
decrease of distances to the k′ nearest sketches (shown in last three columns of
Table 2), and by distribution of Hamming distance densities presented in Fig. 3.
All these measurements confirm the analytic results from Sects. 2 and 3.

5 Conclusions

We have investigated sketches – bit strings created by such transformation of
data objects, which should preserve the similarity relationships between the
objects. Sketching techniques proposed so far usually aim at producing bit strings
with balanced and low correlated bits. Sketches with these properties have been
reported to provide the best trade-off between their length and ability to approx-
imate similarity relationships between objects. In this paper, we studied one
drawback of such sketches: these properties lead to maximization of the intrin-
sic dimensionality of the set of sketches making them hard-to-index (because
of the dimensionality curse). We thus focus on sketches with bits balanced to
some given ratio b and we derive various theoretical properties of such sketches.
Further, we show on a real life dataset that the proposed approach can achieve
practically the same quality of the similarity search, but with sketches having
iDim about one third lower than sketches with balanced bits.
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Abstract. Researchers have long considered the analysis of similarity
applications in terms of the intrinsic dimensionality (ID) of the data.
This theory paper is concerned with a generalization of a discrete mea-
sure of ID, the expansion dimension, to the case of smooth functions in
general, and distance distributions in particular. A local model of the
ID of smooth functions is first proposed and then explained within the
well-established statistical framework of extreme value theory (EVT).
Moreover, it is shown that under appropriate smoothness conditions, the
cumulative distribution function of a distance distribution can be com-
pletely characterized by an equivalent notion of data discriminability. As
the local ID model makes no assumptions on the nature of the function
(or distribution) other than continuous differentiability, its extreme gen-
erality makes it ideally suited for the non-parametric or unsupervised
learning tasks that often arise in similarity applications. An extension
of the local ID model is also provided that allows the local assessment
of the rate of change of function growth, which is then shown to have
potential implications for the detection of inliers and outliers.

1 Introduction

In an attempt to alleviate the effects of high dimensionality, and thereby improve
the discriminability of data, simpler representations of data are often sought by
means of a number of supervised or unsupervised learning techniques. One of the
earliest and most well-established simplification strategies is dimensional reduc-
tion, which seeks a projection to a lower-dimensional subspace that minimizes
the distortion of the data according to a given criterion. In general, dimen-
sional reduction requires that an appropriate dimension for the reduced space
(or approximating manifold) be either supplied or learned, ideally so as to mini-
mize the error or loss of information incurred. The dimension of the surface that
best approximates the data can be regarded as an indication of the intrinsic
dimensionality (ID) of the data set, or of the minimum number of latent vari-
ables needed to represent the data. Intrinsic dimensionality thus serves as an
important natural measure of the complexity of data.

c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 64–79, 2017.
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1.1 Characterizations of Intrinsic Dimensionality

Over the past decades, many characterizations of ID have been proposed. The
earliest theoretical measures of ID such as the classical Hausdorff dimension,
Minkowski-Bouligand or ‘box counting’ dimension, and packing dimension, all
associate a non-negative real number to metric spaces in terms of their covering
or packing properties (for a general reference, see [1]). Although they are of
significant theoretical importance, they are impractical for direct use in similarity
applications, as the value of such measures is zero for any finite set. However,
these theoretical measures have served as the foundation of practical methods for
finite data samples, including the correlation dimension [2], and ‘fractal’ methods
which estimate ID from the space-filling capacity or self-similarity properties of
the data [3,4]. Other practical techniques for the estimation of ID include the
topological approaches, which estimate the basis dimension of the tangent space
of a data manifold from local samples (see for example [5]). In their attempt to
determine lower-dimensional projective spaces or surfaces that approximate the
data with minimum error, projection-based learning methods such as PCA can
produce as a byproduct an estimate of the ID of the data. Parametric modeling
and estimation of distribution often allow for estimators of ID to be derived [6].

An important family of dimensional models, including the minimum neigh-
bor distance (MiND) models [5], the expansion dimension (ED) [7], generalized
expansion dimension (GED) [8], and the local intrinsic dimension (LID) [9],
quantify the ID in the vicinity of a point of interest in the data domain. More
precisely, expansion models of dimensionality assess the rate of growth in the
number of data objects encountered as the distance from the point increases. For
example, in Euclidean spaces the volume of an m-dimensional set grows propor-
tionally to rm when its size is scaled by a factor of r — from this rate of volume
growth with distance, the dimension m can be deduced. Expansion models of
dimensionality provide a local view of the dimensional structure of the data, as
their estimation is restricted to a neighborhood of the point of interest. They
hold an advantage over parametric models in that they require no explicit knowl-
edge of the underlying global data distribution. Expansion models also have the
advantage of computational efficiency: as they require only an ordered list of
the neighborhood distance values, no expensive vector or matrix operations are
required for the computation of estimates. Expansion models have seen applica-
tions in the design and analysis of index structures for similarity search [7,10–14],
and heuristics for anomaly detection [15], as well as in manifold learning.

1.2 Local Intrinsic Dimensionality and Extreme Value Theory

With one exception, the aforementioned expansion models assign a measure of
intrinsic dimensionality to specific sets of data points. The exception is the local
intrinsic dimension (‘local ID’, or ‘LID’), which extends the GED model to a
statistical setting that assumes an underlying (but unknown) distribution of dis-
tances from a given reference point [9]. Here, each object of the data set induces
a distance to the reference point; together, these distances can be regarded as
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samples from the distribution. The only assumptions made on the nature of the
distribution are those of smoothness.

In [9], the local intrinsic dimension is shown to be equivalent to a notion
of discriminability of the distance measure, as reflected by the growth rate of
the cumulative distribution function. For a random distance variable X, with
a continuous cumulative distribution function FX, the k-nearest neighbor dis-
tance within a sample of n points is an estimate of the distance value r for
which FX(r) = k/n. If k is fixed, and n is allowed to tend to infinity, the indis-
criminability of FX at the k-nearest neighbor distance tends to the local intrin-
sic dimension. The local intrinsic dimension can thus serve to characterize the
degree of difficulty in performing similarity-based operations within query neigh-
borhoods using the underlying distance measure, asymptotically as the sample
size (that is, the data set size) scales to infinity.

From the perspective of a given query point, the smallest distances encoun-
tered in a query result could be regarded as ‘extreme events’ associated with the
lower tail of the underlying distance distribution [16]. The modeling of neigh-
borhood distance values can thus be investigated from the viewpoint of extreme
value theory (EVT), a statistical discipline concerned with the extreme behav-
ior of stochastic processes. One of the pillars of EVT, a theorem independently
proven by Balkema and de Haans [17] and by Pickands [18], states that under
very reasonable assumptions, the tails of continuous probability distributions
converge to a form of power-law distribution, the Generalized Pareto Distribu-
tion (GPD) [19]. In an equivalent (and much earlier) formulation of EVT due
to Karamata [20], the cumulative distribution function of a tail distribution can
be represented in terms of a ‘regularly varying’ function whose dominant factor
is a polynomial in the distance [19]; the degree (or ‘index’) of this polynomial
factor determines the shape parameter of the associated GPD. The index has
been interpreted as a form of dimension within statistical contexts [19]. Many
practical methods have been developed for the estimation of the index, including
the well-known Hill estimator and its variants (for a survey, see [21]).

In a recent paper, Amsaleg et al. [22] developed estimators of local ID through
a heuristic approximation of the true underlying distance distribution by a trans-
formed GPD. The scale parameter of the GPD was shown to determine the local
ID value. Estimators of the scale parameter of the GPD were then considered as
candidates for the heuristic estimation of the local ID of the true distance distrib-
ution. Of these, the Hill estimator [23] has recently been used for ID estimation
in the context of reverse k-NN search [14] and the analysis of non-functional
dependencies among data features [24].

1.3 Contributions

In this paper, we revisit the intrinsic dimensionality model proposed in [9] so as
to establish a firm theoretical connection between LID and EVT. The specific
contributions of the paper include the following:
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1. In Sect. 2.2, an overview of the LID model, extended so as to cover not only
the cumulative distribution functions of distance distributions, but also a
more general class of functions satisfying certain smoothness conditions.

2. In Sect. 3, a theoretical result demonstrating that any smooth functions can
be fully represented in terms of an associated LID discriminability function.
When applied to distance distributions, the result implies that the cumulative
distribution function can be characterized entirely in terms of its discrim-
inability, with no explicit knowledge of probability densities.

3. In Sect. 4, the development of a second-order theory of local intrinsic dimen-
sionality that captures the growth rates within the discriminability measure
itself. In the context of distance distributions, the second-order LID is shown
to be a natural measure of the inlierness or outlierness of the underlying data
distribution.

4. In Sect. 5, the theory developed in Sect. 3 is revealed to be a reworking of
extreme value theory from first principles, for the growth rate of smooth
functions from the origin. Rather than relying on the heuristic asymptotic
connection to the generalized Pareto distribution that was identified in [22],
we show that the LID characterization theorem is a more precise statement of
the Karamata representation for the case of short-tailed distributions, with
all elements of the Karamata representation being given an interpretation
in terms of LID. A well-studied second-order EVT parameter governing the
convergence rate of extreme values is also given an interpretation in terms of
higher-order LID.

2 Background and Preliminaries

In this section, we give an overview of the LID model of [9], extended to account
for a more general class of smooth functions (and not just cumulative distribution
functions over the non-negative real domain). We begin the discussion with an
overview of the expansion dimension and its applications.

2.1 Expansion Dimension

For the Euclidean distance metric in R
m, increasing the radius of a ball by a

factor of Δ would increase its volume by a factor of Δm. Were we inclined to
measure the volumes V1 and V2 of two balls of radii r1 and r2, with r2 > r1 > 0,
taking the logarithm of their ratios would reveal the dimension m:

V2

V1
=

(
r2
r1

)m

=⇒ m =
ln(V2/V1)
ln(r2/r1)

. (1)

The generalized expansion dimension (GED) can be regarded as the smallest
upper bound on the values of m that would be produced over a set of allow-
able ball placements and ball radii [8]; Karger and Ruhl’s original expansion
dimension (ED) further constrained r2 to be double the value of r1 [7].



68 M.E. Houle

The ED and GED have also appeared in the complexity analyses of several
other similarity search structures [10,12,25]. The GED has also been success-
fully applied to guide algorithmic decisions at runtime for a form of adaptive
search, the so-called multi-step similarity search problem [11,13,14,26]. In [15],
a heuristic for outlier detection was presented in which approximations of the
well-known local outlier factor (LOF) score [27] were calculated after projection
to a lower-dimensional space. The quality of the approximation was shown to
depend on a measure of expansion dimension, in which the ratio of the ball radii
relates to a targeted error bound.

2.2 Intrinsic Dimensionality of Distance Distributions

If one accepts the observed data set as indicative of an underlying generation
process, the generalized expansion dimension can be regarded as an attempt to
model the worst-case growth characteristics of the distribution of distances to
generated objects, as measured from a reference object drawn from U . When the
reference object q ∈ U is fixed, a supplied data set S thus gives rise to a sample
of values drawn from the distance distribution associated with q.

For finite data sets, GED formulations are obtained by estimating the volume
of balls by the numbers of points they enclose [8]. In contrast, for continuous real-
valued random distance variables, the notion of volume is naturally analogous to
that of probability measure. As shown in [9], the generalized expansion dimension
can thus be adapted for distance distributions by replacing the notion of ball
set size by that of the probability measure of lower tails of the distribution. As
in Eq. 1, intrinsic dimensionality can then be modeled as a function of distance
X = x, by letting the radii of the two balls be r1 = x and r2 = (1 + ε)x, and
letting ε → 0. The following definition (adapted from [9]) generalizes this notion
even further, to any real-valued function that is non-zero in the vicinity of x �= 0.

Definition 1. Let F be a real-valued function that is non-zero over some open
interval containing x ∈ R, x �= 0. The intrinsic dimensionality of F at x is
defined as

IntrDimF (x) � lim
ε→0

ln (F ((1 + ε)x)/F (x))
ln ((1 + ε)x/x)

= lim
ε→0

ln (F ((1 + ε)x)/F (x))
ln(1 + ε)

,

whenever the limit exists.

Using the same assumptions on the distance distribution, [9] also proposed a
natural measure of the discriminability of a random distance variable X, in terms
of the relative rate at which its cumulative distance function FX increases as the
distance increases. If X is discriminative at a given distance r, then expanding
the distance by some small factor should incur a small increase in probability
measure as a proportion of the value of FX(r) (or, expressed in terms of a data
sample, the proportional expansion in the expected number of data points in
the neighborhood of the reference point q). Conversely, if the distance variable
X is indiscriminative at distance r, then the proportional increase in probability
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measure would be large. Accordingly, [9] defined the indiscriminability of the
distance variable as the limit of the ratio of two quantities: the proportional
rate of increase of probability measure, and the proportional rate of increase in
distance. As with the intrinsic dimensionality formulation of Definition 1, we
generalize the notion of a cumulative distribution function to any real-valued
function F (x) that is non-zero in the vicinity of x.

Definition 2. Let F be a real-valued function that is non-zero over some open
interval containing x ∈ R, x �= 0. The indiscriminability of F at x is defined as

InDiscrF (x) � lim
ε→0

[
(F ((1 + ε)x) − F (x))

F (x)

/
(1 + ε)x − x

x

]

= lim
ε→0

F ((1 + ε)x) − F (x)
ε · F (x)

,

whenever the limit exists.

When F satisfies certain smoothness conditions in the vicinity of x > 0,
the intrinsic dimensionality and the indiscriminability of F both exist at x,
and are equivalent. Once again, we generalize the original statement appearing
in [9] so as to apply not only to distance distributions, but also to any general
function F : R → R at values for which F is both non-zero and continuously
differentiable. The proof follows from applying l’Hôpital’s rule to the numerator
and denominator in the limits of IntrDimF and InDiscrF ; since it is essentially
the same as the version in [9], we omit it here.

Theorem 1. Let F be a real-valued function that is non-zero over some open
interval containing x ∈ R, x �= 0. If F is continuously differentiable at x, then

IntrDimF (x) = InDiscrF (x) =
x · F ′(x)

F (x)
.

This equivalence can be extended to those cases where x = 0 or F (x) = 0
by taking the limit of IntrDimF (t) = InDiscrF (t) as t → x, wherever the limit
exists.

Corollary 1. Let F be a real-valued function that is non-zero and continuously
differentiable over some open interval containing x ∈ R, except perhaps at x
itself. Then

IDF (x) � lim
t→x

t · F ′(t)
F (t)

= lim
t→x

IntrDimF (t) = lim
t→x

InDiscrF (t),

whenever the limits exist.

For values of x at which IDF (x) exists, we observe that IDF (x) = ID−F (x);
the LID model therefore expresses the local growth rate relative to the magnitude
of F , regardless of its sign. Although in general IDF is negative whenever |F | is
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decreasing, if F is a cumulative distribution function, IDF must be non-negative
whenever it exists.

IDF can be viewed interchangeably as both the intrinsic dimensionality and
the indiscriminability of F at x. However, we will henceforth refer to IDF (x) as
the indiscriminability of F at x whenever x �= 0, and to ID∗

F � IDF (0) as the
local intrinsic dimension of F.

3 ID-Based Representation of Smooth Functions

The LID formula IDF (x) = x · F ′(x)/F (x) established in Corollary 1 simultane-
ously expresses the notions of local intrinsic dimensionality and indiscriminabil-
ity. In general, the formula measures the instantaneous rate of change F ′(x)
normalized by the cumulative rate of change F(x)/x. When F is the cumulative
distribution function of a distance distribution, the formula can be interpreted
as a normalization of the probability density F ′(x) with respect to the cumu-
lative density F (x)/x. The following theorem states conditions for which the
indiscriminability IDF fully characterizes F .

Theorem 2 (Local ID Representation). Let F : R → R be a real-valued
function, and let v ∈ R be a value for which IDF (v) exists. Let x and w be values
for which x/w and F (x)/F (w) are both positive. If F is non-zero and continu-
ously differentiable everywhere in the interval [min{x,w},max{x,w}], then

F (x)
F (w)

=
( x

w

)IDF (v)

· GF,v,w(x), where

GF,v,w(x) � exp
(∫ w

x

IDF (v) − IDF (t)
t

dt

)
,

whenever the integral exists.

Proof. For any x and w for which x/w and F (x)/F (w) are both positive,

F (x) = F (w) · exp (ln(F (x)/F (w)))
= F (w) · exp (IDF (v) ln(x/w) + IDF (v) ln(w/x) + ln(F (x)/F (w)))

= F (w) ·
( x

w

)IDF (v)

· exp (IDF (v) ln(w/x) − ln(F (w)/F (x)))

= F (w) ·
( x

w

)IDF (v)

· exp
(

IDF (v)
∫ w

x

1
t

dt −
∫ w

x

F ′(t)
F (t)

dt

)
,

since F is differentiable within the range of integration. Furthermore, since F
is also non-zero over the range, and since F ′ is continuous, Corollary 1 implies
that F ′(t)/F (t) can be substituted by IDF (t)/t. Combining the two integrals,
the result follows. ��

The representation formula in Theorem 2 can be used to characterize
the behavior of the function F in the vicinity of a given reference value v.
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To see why, let us consider the value of the function at a point w that is tend-
ing towards v. The following theorem shows that when x is restricted to lie
not too far from w, the exponential factor GF,v,w(x) eventually vanishes: in
other words, the relationship stated in Theorem 2 tends asymptotically towards
F (x)/F (w) = (x/w)IDF (v). This asymptotic relationship fits the intuition pre-
sented in Eq. 1 of Sect. 2.1, where the dimension is revealed by the ratios of the
volumes and the radii of two balls. Here, as per the definitions of local intrinsic
dimensionality and indiscriminability in Sect. 2, the role of volume is played by
probability measure, and the dimension is the local ID. The asymptotic relation-
ship is formalized in the following theorem.

Theorem 3. Let F : R → R be a real-valued function, and let v ∈ R be a value
for which IDF (v) exists. Assume that there exists an open interval containing
v for which F is non-zero and continuously differentiable, except perhaps at v
itself. For any fixed c > 1, if v �= 0, then

lim
w→v

|x−v| ≤ c|w−v|
GF,v,w(x) = 1 ;

otherwise, if v = 0, then

lim
w→0+

0< 1/c ≤ x/w ≤ c

GF,0,w(x) = lim
w→0−

0< 1/c ≤ x/w ≤ c

GF,0,w(x) = 1 .

Proof. For each case, it suffices to show that
∫ w

x
(IDF (v) − IDF (t))/t dt → 0.

First we consider the case where v = 0. Since IDF (v) is assumed to exist, for
any real value ε > 0 there must exist a value 0 < δ < 1 such that |t − v| < δ
implies that |IDF (t) − IDF (v)| < ε. Therefore, when |w − v| < δ,

∣∣∣∣
∫ w

x

IDF (v) − IDF (t)
t

dt

∣∣∣∣ ≤ ε ·
∣∣∣∣
∫ w

x

1
t

dt

∣∣∣∣ = ε ln
w

x
. (2)

Since we have that 0 < 1/c ≤ w/x ≤ c, ln(w/x) is bounded from above and
below by constants. Therefore, since ε can be made arbitrarily small, the limit
is indeed 0, and the result follows for the case v = 0.

Next, we consider the case where v �= 0. The argument is the same as when
v = 0, except that δ is chosen such that 0 < δ < |v|/c. Again, when |w − v| < δ,
Inequality 2 holds. Moreover, since by assumption |x − v| ≤ c|w − v| < cδ < |v|,
we have ||v| − |x|| < cδ and ||w| − |v|| < δ. Together, these inequalities imply
that

0 <
δ(c − 1)

2|v| <
|v| − δ

|v| + cδ
<

w

x
=

|w|
|x| <

|v| + δ

|v| − cδ
.

Since ln(w/x) is once again bounded from above and below by positive constants,
the limits in this case exist and are 0, and the result follows. ��

For the case when v = 0, x can be allowed to range over an arbitrarily large
range relative to the magnitude of w, by choosing c sufficiently large. However,
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x and w must be of the same sign (either both strictly positive or both strictly
negative). When v �= 0, the separation between x and v can be much greater than
that between w and v, provided that the ratio of the two separations remains
bounded by a constant — the constant can be chosen to be arbitrarily large, but
once fixed, it cannot be changed.

Given a random distance variable X, its cumulative distribution function
satisfies the conditions of Theorem 2 with v = 0, provided that it is strictly pos-
itive and continuously differentiable within some open interval of distances with
lower endpoint 0. The ID representation expresses the behavior of the entire dis-
tribution in terms of the local intrinsic dimensionality and the indiscriminability
function, without the explicit involvement of a probability density function. In
this sense, the indiscriminability function holds all the information necessary to
reconstruct the distribution.

Taken together, Theorems 2 and 3 show that within the extreme lower tail of a
smooth distance distribution, ratios of probability measure tend to a polynomial
function of the corresponding ratios in distance, with degree equal to the local
ID of the cumulative distribution function. If the distances were generated from
a reference point in the relative interior of a local manifold to points selected
uniformly at random within the manifold, the polynomial growth rate would
simply be the dimension of the manifold. However, it should be noted that in
general, data distributions may not be perfectly modelled by a manifold, in which
case the growth rate (and intrinsic dimensionality) may not necessarily be an
integer.

4 Second-Order Local ID

In the previous section, we saw that a smooth function F can be represented in
terms of its indiscriminability function IDF . Here, we show that a representation
formula for IDF can be obtained for the second-order LID function IDIDF

(x)
from the first-order representation formulae for F and F ′.

4.1 Second-Order ID Representation

For the proof of the representation formula for IDF , we require two technical
lemmas. The first of the two lemmas shows that the second-order LID function
IDIDF

(x) can be expressed in terms of the difference between the indiscriminabil-
ities of F and F ′. The proof is omitted due to space limitations.

Lemma 1. Let F be a real-valued function over the interval I = (0, z), for some
choice of z > 0 (possibly infinite). If F is twice differentiable at some distance
x ∈ I for which F (x) �= 0 and F ′(x) �= 0, then IDF (x), IDF ′(x) and ID′

F (x) all
exist, and

IDIDF
(x) =

x · ID′
F (x)

IDF (x)
= IDF ′(x) + 1 − IDF (x).
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The next technical lemma shows that the second-order LID converges to 0
as x → 0. Again, the proof is omitted due to space limitations.

Lemma 2. Let F be a real-valued function over the interval I = (0, z), for some
choice of z > 0 (possibly infinite). If F and F ′ are twice-differentiable and either
positive everywhere or negative everywhere on I, if F (x) → 0 as x → 0, and if
ID∗

F exists, then ID∗
F ′ also exists, and

ID∗
IDF

= ID∗
F ′ + 1 − ID∗

F = 0.

We are now in a position to state and prove a characterization of the first-
order LID function in terms of the second-order LID function.

Theorem 4 (Second-Order ID Representation). Let F be a real-valued
function over the interval I = (0, z), for some choice of z > 0 (possibly infi-
nite). Also, assume that F and F ′ are twice-differentiable and either positive
everywhere or negative everywhere on I. Given any distance values x,w ∈ (0, z),
IDF (x) admits the following representation:

IDF (x) = IDF (w) · exp
(

−
∫ w

x

IDIDF
(t)

t
dt

)
.

Furthermore, if F (x) → 0 as x → 0, and if ID∗
F exists and is non-zero, then the

representation is also valid for x = 0.

Proof. The assumptions on F and F ′, together with Lemma 1, imply that IDF ,
IDF ′ , ID′

F and IDIDF
exist everywhere, and that IDF (x) and IDF (w) are non-

zero and share the same sign. We can therefore establish the result for the case
where x > 0, as follows:

IDF (x)/IDF (w) = exp ln (IDF (x)/IDF (w))

= exp
(

−
∫ w

x

ID′
F (t)

IDF (t)
dt

)
= exp

(
−

∫ w

x

IDIDF
(t)

t
dt

)
,

where the last step follows from Theorem 1. If F (x) → 0 as x → 0, and if ID∗
F

exists and is non-zero, by Lemma 2 we have that ID∗
F ′ exists, and that ID∗

IDF
= 0.

Since IDF (w) is also non-zero, the integral in the representation formula must
converge, and therefore the representation is valid for x = 0 as well. ��

4.2 Inlierness, Outlierness and LID

Local manifold learning techniques such as Locally-Linear Embedding [28] typi-
cally model data dimensionality as the dimension of a manifold that well approxi-
mates the data within a region of interest. Under these assumptions, with respect
to given reference point q on the manifold, the model assumes that the data dis-
tribution within a neighborhood of q tends to uniformity as the radius of the
neighborhood tends to zero. The local ID of the manifold at q is simply the
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value of ID∗
F , where F is the cumulative distribution function for the induced

distance distribution from q. In addition, the indiscriminability function IDF

can indicate whether q should be regarded as an inlier or as an outlier relative
to its locality within the manifold, as the following argument shows.

If IDF (x) < ID∗
F throughout a neighborhood of q of radius 0 < x < ε (where

ε > 0 is chosen to be sufficiently small), then from the local ID representation
formula of Theorem 2, we observe that GF,0,ε(x) is greater than 1, and that
F (ε)/F (x) < (ε/x)ID

∗
F . Consequently, the growth rate in probability measure

within distance x from q is less than would be expected for a locally-uniform
distribution of points within a manifold of dimension ID∗

F . The drop in indiscrim-
inability (or rise in discriminability) indicates a decrease in local density as the
distance from q increases. Under this interpretation, the relationship between q
and its neighborhood can be deemed to be that of an inlier.

By similar arguments, if instead IDF (x) > ID∗
F , then a rise in indiscrim-

inability (or drop in discriminability) would indicate an increase in local density
as the distance from x increases, in which case q would be an outlier with respect
to its neighborhood.

Within a small local neighborhood 0 < x < ε, the condition IDF (x) < ID∗
F

is equivalent to that of ID′
F (x) < 0, and the condition IDF (x) > ID∗

F is equiv-
alent to that of ID′

F (x) > 0. The strength of the inlierness or outlierness of q
can be judged according to the magnitude |ID′

F (x)|. However, for ease of com-
parison across manifolds of different intrinsic dimensions, and across different
distances x, |ID′

F (x)| should be normalized with respect to these two quantities.
The second-order LID function IDIDF

(x) = x·ID′
F (x)/IDF (x) can thus be viewed

as a natural measure of the inlierness (when negative) or outlierness (when pos-
itive) of q, one that normalizes the relative rate of change of the LID function
with respect to the average (radial) rate of change of LID within distance x of q,
namely IDF (x)/x.

As an illustration of the ability of second-order LID to naturally determine
the inlierness or outlierness of a point with respect to a data distribution, let
us consider a Gaussian distribution in R

m generated as a vector of normally
distributed random variables with means μi and variances σ2

i , for 1 ≤ i ≤ m.
Then the normalized distance from the origin to a point X = (X1,X2, . . . , Xm),
defined as Z =

√∑m
i=1(X

2
i /σ2

i ), follows a noncentral chi distribution. Although
the details are omitted due to the complexity of the derivations, Theorem 1 can
be applied to the probability density function for Z to show that

ID∗
FZ

= m , and ID∗
IDIDFZ

= 2

where λ =
√∑m

i=1(μ
2
i /σ2

i ) is a distributional parameter representing the nor-
malized distance between the Gaussian mean and the origin. Moreover, as z
tends to 0, the sign of IDIDFZ

(z) is positive when λ >
√

m, and negative when
0 ≤ λ <

√
m, indicating ‘outlierness’ of the tail region of the Gaussian beyond

the inflection boundary λ =
√

m, and ‘inlierness’ of the central region. It is
worth noting that the strength of outlierness or inlierness is a constant value,
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Inlier Region λ <
√

m

μμ−σ μ+σ

Fig. 1. The inlier region of a 1-dimensional Gaussian distribution. The boundary
between the inlier (central) region and the outlier (tail) regions is at normalized dis-
tance λ =

√
m = 1, or equivalently at |x − μ| = σ.

regardless of the actual dimension m, or of the (normalized) distance λ to the
Gaussian center. The 1-dimensional case is illustrated in Fig. 1.

5 Local ID and Extreme Value Theory

The characterization of continuous distance distributions established from first
principles in Sect. 3 can be regarded as an elucidation of extreme value theory
(EVT) in the setting of short-tailed distributions. Several mutually-equivalent
formulations of EVT exist; here, the formulation with which we will concern
ourselves is that of regularly varying functions, pioneered by Karamata in the
1930s. There is a vast literature on EVT and its applications, the majority of
which involve the upper tails of distributions. For a detailed account of regular
variation and EVT, see (for example) [29].

5.1 First-Order EVT

Let F be a function that is continuously differentiable and strictly positive over
the open interval I = (0, z) for some z > 0. Although Karamata’s original
representation theorem [20] deals with the behavior of smooth functions as they
diverge to (positive) infinity, the theorem can be reformulated by applying a
reciprocal transformation of the function domain (1/z,∞) into the interval I;
this yields the result that the function F restricted to I can be expressed in the
form F (x) = xγ�(1/x) for some constant γ, where � is differentiable and slowly
varying (at infinity); that is, for all c > 0, � satisfies

lim
u→∞

�(cu)
�(u)

= 1.

The function F restricted to I is itself said to be regularly varying with index γ.
Note that the slowly-varying component �(u) is not necessarily constant as

u → ∞. However, the slowly-varying condition ensures that the derivative �′(u)
is bounded, and that the following auxiliary function tends to 0:

ε(u) � u�′(u)
�(u)

, lim
u→∞ ε(u) → 0 .
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Slowly varying functions are also known to be representable in terms of their
auxiliary function. More specifically, �(1/x) can be shown to be slowly varying
as 1/x → ∞ if and only if there exists some w > 0 such that

�(1/x) = exp

(
η(1/x) +

∫ 1/x

1/w

ε(u)
u

du

)
,

where η and ε are measurable and bounded functions such that η(1/x) tends
to a constant, and ε(1/t) tends to 0, as x and t tend to 0. Note that under the
substitution t = 1/u, the slowly-varying component can be expressed as

�(1/x) = exp
(

η(1/x) +
∫ w

x

ε(1/t)
t

dt

)
.

Thus the formula F (x) = xγ�(1/x) can easily be verified to fit the form of the
representation given in Theorem 2, with the following choices:

γ = ID∗
F ; η(1/x) = lnF (w) − ID∗

F ln w ; ε(1/t) = ID∗
F − IDF (t) .

5.2 Second-Order EVT

An issue of great importance and interest in the design and performance of
semi-parametric EVT estimators is the speed of convergence of extreme values
to their limit [30]. As is the case with first-order EVT, many approaches to the
estimation of second-order parameters have been developed [21].

Here, we will follow the formulation appearing in [31] using second-order
regular variation. In their paper, de Haan and Resnick proved the equivalence
of two conditions regarding the derivatives of regularly varying functions, which
can be stated as follows. Let φ : (0,∞) → R be twice differentiable, with φ′(t)
eventually positive as t → ∞, and let γ ∈ R. Consider a function A(t) whose
absolute value is regularly varying with index ρ ≤ 0, such that A(t) → 0 as
t → ∞ with A(t) either eventually positive or eventually negative. Then the
condition

A(t) � t · φ′′(t)
φ′(t)

− γ + 1

is equivalent to φ′ having the following representation for some non-zero con-
stant k:

φ′(t) = k · tγ−1 · exp
(∫ t

1

A(u)
u

du

)
.

As in the discussion of first-order EVT in Sect. 5.1, we apply a reciprocal
transform of the domain to an interval of the form I = (0, w), by setting t = 1/x
and φ′(t) = F ′(x). Noting that F ′′(x) = −t2φ′′(t), and defining B(x) � A(t),
the first condition can be shown to be

B(x) � 1 − γ − x · F ′′(x)
F ′(x)

= 1 − γ − IDF ′(x),
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and, under the substitution u = 1/y, the second condition can be shown to be

F ′(x) = k · x1−γ · exp
(∫ 1

x

B(y)
y

dy

)
.

Thus these equivalent conditions can be verified to fit the form of the repre-
sentation given in Theorem 2, with w = 1, v = 0, and

k = F ′(1);
γ = 1 − ID∗

F ′ = 2 − ID∗
F ;

B(x) = 1 − γ − IDF ′(x) = ID∗
F − 1 − IDF ′(x) .

Second-order EVT is largely concerned with the estimation of the para-
meter ρ. The following theorem establishes that the two functions B(x) and
IDIDF ′ (x) both have as their index of regular variation the non-negative
value −ρ.

Theorem 5. Let F be a function that is twice differentiable over the interval
I = (0, z), for some choice of z > 0 (possibly infinite). Furthermore, assume that
F ′ and F ′′ are positive everywhere or negative everywhere over I, that F ′(x) → 0
as x → 0, and that ID∗

F exists. Let B(x) = ID∗
F − 1 − IDF ′(x). Then B(x) and

B∗(x) � IDIDF ′ (x) are both regularly varying with index −ρ. Furthermore, if B∗
is continuously differentiable, then −ρ = ID∗

B∗ .

The proof relies heavily on Lemma 2 and Theorem 4. However, due to space
limitations, the details are omitted in this version of the paper.

6 Conclusion

Among the implications of the extreme-value-theoretic foundation introduced
in this paper, perhaps the one with the greatest potential impact for similar-
ity applications is that intrinsic dimensionality reveals the interchangeability
between probability and distance. For distance distributions, the ID representa-
tion formula of Theorem 2 essentially states that the ratio of the expected num-
bers of points in neighborhoods of different radii asymptotically tends to the ratio
of the neighborhood radii themselves, raised to the power of the intrinsic dimen-
sion. Knowledge of any 4 of these 5 quantities would help to determine the value
of the unknown quantity. Indeed, this relationship among probability, distance
and ID has already been successfully exploited to improve the accuracy/time
tradeoff of certain similarity search tasks, via dimensional testing [11–14].

To realize the full potential of the theory of local intrinsic dimensionality
for similarity applications, it is essential that accurate and efficient estima-
tors be available. Estimators for the first-order EVT scale parameter have been
developed within the EVT community; generally, they require on the order of
100 neighborhood distance samples in order to converge [22]. However, second-
order EVT estimators generally require many thousands of neighbors for conver-
gence [32]. Reducing the sample size for both first- and second-order LID/EVT
estimation would be a worthwhile target.
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Another important future research direction is that of feature selection and
metric learning. The LID model provides a natural measure of data discrim-
inability that could in principle be used to guide the selection of features, or the
learning of similarity measures. Towards this goal, in a companion paper [33], a
theoretical investigation is made into how the local IDs of distance distributions
can change as their cumulative distribution functions are combined.
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Abstract. Distance-based expansion models of intrinsic dimensional-
ity have had recent application in the analysis of complexity of simi-
larity applications, and in the design of efficient heuristics. This theory
paper extends one such model, the local intrinsic dimension (LID), to
a multivariate form that can account for the contributions of different
distributional components towards the intrinsic dimensionality of the
entire feature set, or equivalently towards the discriminability of dis-
tance measures defined in terms of these feature combinations. Formulas
are established for the effect on LID under summation, product, compo-
sition, and convolution operations on smooth functions in general, and
cumulative distribution functions in particular. For some of these opera-
tions, the dimensional or discriminability characteristics of the result are
also shown to depend on a form of distributional support. As an example,
an analysis is provided that quantifies the impact of introduced random
Gaussian noise on the intrinsic dimension of data. Finally, a theoreti-
cal relationship is established between the LID model and the classical
correlation dimension.

1 Introduction

In such areas as search and retrieval, machine learning, data mining, multi-
media, recommendation systems, and bioinformatics, the efficiency and efficacy
of many fundamental operations commonly depend on the interplay between
measures of data similarity and the choice of features by which objects are rep-
resented. Similarity search, perhaps the most fundamental operation involving
similarity measures, is ubiquitous in data analysis tasks such as clustering, k-
nearest-neighbor classification, and anomaly detection, as well as content-based
multimedia applications.

One of the most common strategies employed in similarity search is that
of neighborhood expansion, in which the radius of the search (or, equivalently,
the number of points visited) is increased until a neighborhood of the desired
size has been identified. Even when this radius is known in advance, the actual
number of points visited can be considerably larger than the target neighbor-
hood size, particularly if the similarity measure is not discriminative. A highly
indiscriminative similarity measure is more susceptible to measurement error,
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 80–95, 2017.
DOI: 10.1007/978-3-319-68474-1 6
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and (in the case of distance metrics) is less suited to classical methods for search
path pruning based on the triangle inequality.

1.1 Discriminability and Dimensionality

In the design and analysis of similarity applications, measures or criteria often
directly or indirectly express some notion of the discriminability of similarity
measures within neighborhoods. Examples include spectral feature selection cri-
teria [1], such as the Laplacian score [2], that measure the discriminative power
of candidate feature in terms of the variance of feature values. The distance ratio
(aspect ratio), defined as the ratio between the largest and smallest pairwise dis-
tances within a data set, has been applied to the analysis of nearest-neighbor
search [3]. As a way of characterizing the dimensionality of data, data concen-
tration has been measured in terms of the relationship between the mean and
variance of pairwise distance values [4]; in the context of similarity indexing,
data concentration has been linked to the theory of VC dimensionality [5]. Dis-
order inequalities, relaxations of the usual metric triangle inequality, have been
proposed for the analysis of combinatorial search algorithms making use of rank-
ings of data points with respect to a query [6]. The degree of relaxation of the
disorder inequality can be regarded as a measure of the discriminability of the
data.

In an attempt to alleviate the effects of high dimensionality, and thereby
improve the discriminability of data, simpler representations are often sought by
means of a number of supervised or unsupervised learning techniques. One of the
earliest and most well-established simplification strategies is dimensional reduc-
tion, which seeks a projection to a lower-dimensional subspace that minimizes
data distortion. In general, dimensional reduction requires that an appropriate
dimension for the reduced space (or approximating manifold) must be either
supplied or learned, ideally so as to minimize the error or loss of information
incurred. The dimension of the surface that best approximates the data can be
regarded as an indication of the intrinsic dimensionality (ID) of the data set, or
of the minimum number of latent variables needed to represent the data. Intrin-
sic dimensionality thus serves as an important natural measure of the complexity
of data.

An important family of dimensional models, including the minimum neighbor
distance (MiND) models [7], the expansion dimension (ED) [8,9], and the local
intrinsic dimension (LID) [10], quantify the ID in the vicinity of a point of interest
in the data domain, by assessing the rate of growth in the number of data objects
encountered as the distance from the point increases. For example, in Euclidean
spaces the volume of an m-dimensional set grows proportionally to rm when its
size is scaled by a factor of r — from this rate of volume growth with distance, the
dimension m can be deduced. These so-called expansion models provide a local
view of the dimensional structure of the data, as their estimation is restricted to
a neighborhood of the point of interest. They hold an advantage over parametric
models in that they require no explicit knowledge of the underlying global data
distribution. Expansion models have been successfully applied to the design and
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analysis of index structures for similarity search [8,11–15], and heuristics for
anomaly detection [16], as well as in manifold learning.

With one exception, the aforementioned expansion models assign a measure
of intrinsic dimensionality to specific sets of data points. The exception is the
local intrinsic dimension (‘local ID’, or ‘LID’), which extends the ED model
to a statistical setting that assumes an underlying (but unknown) distribution
of distances from a given reference point [10]. Here, each object of the data
set induces a distance to the reference point; together, these distances can be
regarded as samples from the distribution. The only assumptions made on the
nature of the distribution are those of smoothness.

In [10], the local intrinsic dimension is shown to be equivalent to a notion
of discriminability of the distance measure, as reflected by the growth rate of
the cumulative distribution function. For a random distance variable X with
a continuous cumulative distribution function FX, the k-nearest neighbor dis-
tance within a sample of n points is an estimate of the distance value r for
which FX(r) = k/n. If k is fixed, and n is allowed to tend to infinity, the indis-
criminability of FX at the k-nearest neighbor distance tends to the local intrin-
sic dimension. The local intrinsic dimension can thus serve to characterize the
degree of difficulty in performing similarity-based operations within query neigh-
borhoods using the underlying distance measure, asymptotically as the sample
size (that is, the data set size) scales to infinity.

A strong connection has been shown between local intrinsic dimensional-
ity and the scale parameter of the generalized Pareto distribution [17], and to
the index of regularly varying functions in the Karamata representation from
extreme value theory [18]. Estimators developed within the extreme value the-
ory research community have been shown to be effective for local ID [17]. Of
these, the Hill estimator [19] has recently been used for ID estimation in the
context of reverse k-NN search [15] and the analysis of non-functional depen-
dencies among data features [20].

1.2 Contributions

This work is a companion paper to [18], which establishes a formal connection
between the LID model and the statistical discipline of extreme value theory
(EVT) [21,22]. In this theoretical paper, we extend the LID model to a mul-
tivariate form that can account for contributions from different distributions
towards an overall intrinsic dimensionality; or equivalently towards the discrim-
inability of distance measures defined in terms of feature combinations.

The paper is organized as follows: in the next section, the local ID model
of [10,18] is reintroduced in a multivariate framework, and an equivalence is
shown between the notions of local intrinsic dimensionality and indiscriminabil-
ity. In Sect. 3 we introduce the notion of local intrinsic dimensionality weighted
by a measure of the support for the function or distribution to which it is asso-
ciated. In Sect. 4, we derive and state rules by which support-weighted and
unweighted local ID change as functions or distributions are combined. The
effect on ID of adding noise to feature values is investigated in Sect. 5, where
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we develop a rule for the convolution of probability density functions. Using
this rule, we consider as an example the effect of introducing random Gaussian
noise. A relationship between the local intrinsic dimensionality and the correla-
tion dimension is established in Sect. 6. The paper concludes in Sect. 7.

2 Intrinsic Dimensionality and Indiscriminability

In this section, we rework the local ID model from [10] in a multivariate frame-
work. The model as originally proposed considered only the cumulative distribu-
tion functions of distance distributions. Here, we extend the notions of intrinsic
dimensionality and indiscriminability to a more general class of smooth func-
tions, and show that these notions remain equivalent within the new framework.

2.1 Multivariate Formulation of Local ID

The definitions of intrinsic dimensionality and indiscriminability introduced
in [10] and further developed in [18] can be extended to the multivariate case in
a natural way, by replacing the magnitude of the independent variable from the
univariate case with the multivariate vector norm.

Definition 1. Let F be a real-valued multivariate function over a normed vector
space (Rm, ‖ · ‖) that is non-zero at x �= 0 ∈ R

m. The intrinsic dimensionality of
F at x is defined as

IntrDimF (x) � lim
ε→0

ln (F ((1 + ε)x)/F (x))
ln (‖(1 + ε)x‖/‖x‖)

= lim
ε→0

ln (F ((1 + ε)x)/F (x))
ln(1 + ε)

,

wherever the limit exists.

Definition 1 expresses the local intrinsic dimensionality of F as the growth
rate (or ‘scale’) in function value over the growth rate in the norm of its variable
vector. F can be regarded as playing the role of the volume of a ball in some
space, with ‖x‖ playing the role of its radius — in Euclidean space, the quotient
appearing in the limit would reveal the dimension of the space [8–10,18].

Definition 2 expresses the indiscriminability of F as a ratio between the
proportional increase in value of the function versus the proportional increase in
the norm of its variable vector, as the vector expands [10,18].

Definition 2. Let F be a real-valued multivariate function over a normed vector
space (Rm, ‖ · ‖) that is non-zero at x �= 0 ∈ R

m. The indiscriminability of F at
x is defined as

InDiscrF (x) � lim
ε→0

(
F ((1 + ε)x) − F (x)

F (x)

/
(1 + ε)‖x‖ − ‖x‖

‖x‖
)

= lim
ε→0

F ((1 + ε)x) − F (x)
ε · F (x)

,

wherever the limit exists.
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If the function F depends only on the norm of x (that is, if F (x) = F (y)
when ‖x‖ = ‖y‖), then F can be expressed as a univariate function of a single
variable, ‖x‖. In this case, the definitions of the multivariate intrinsic dimension-
ality and indiscriminability stated above are equivalent to the original univariate
versions from [10]. In particular, the indiscriminability of F at x (or equivalently,
the distance ‖x‖ from the origin) would account for the growth rate of F over
expanding balls centered at the origin, when measured at radius ‖x‖.

In general, however, F may not depend only on the norm of x, and the
dependencies of the growth rate of F on its variables may differ greatly from
variable to variable.

2.2 Equivalence of Indiscriminability and Intrinsic Dimensionality

The following result generalizes the main theorem of [10] for univariate cumula-
tive distribution functions to the case of multivariate real functions F : Rm → R,
for those locations (with the exception of the origin) at which the gradient
∇F = ( ∂F

∂xi
)m
i=1 is defined and is continuous.

Theorem 1. Let F be a real-valued multivariate function over a normed vector
space (Rm, ‖ · ‖), and let x �= 0 ∈ R

m be a vector of positive norm. If there exists
an open interval I ⊆ R containing 0 such that F is non-zero and continuously
differentiable at (1 + ε)x for all ε ∈ I, then

IDF (x) � x · ∇F (x)
F (x)

= IntrDimF (x) = InDiscrF (x) .

Proof. By assumption, F is non-zero and differentiable at (1+ε)x for all real val-
ues of ε within an open interval containing 0. We may therefore apply l’Hôpital’s
rule to the limits of Definitions 1 and 2 along this interval. Using the chain rule
for multivariate differentiation, and letting y = (1 + ε)x, the indiscriminability
of F thus becomes

InDiscrF (x) = lim
ε→0

[
m∑

i=1

(
∂F (y)
∂xi

· ∂xi

∂yi
· ∂yi

∂ε

)/
∂(ε · F (x))

∂ε

]

=
1

F (x)
· lim

ε→0

m∑
i=1

(
∂F (y)
∂xi

· ∂(yi/(1 + ε))
∂yi

· ∂((1 + ε)xi)
∂ε

)

=
1

F (x)
· lim

ε→0

[
1

1 + ε
·

m∑
i=1

(
∂F ((1 + ε)x)

∂xi
· xi

)]

=
1

F (x)
·

m∑
i=1

(
xi · ∂F (x)

∂xi

)
=

x · ∇F (x)
F (x)

;

the limit holds due to the assumption of continuity for each of the partial deriv-
atives of F , together with the assumption that F (x) �= 0.

To complete the proof, we observe that the multivariate intrinsic dimension-
ality can be derived in a similar way. (The details are omitted due to space
limitations.) �	
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The equivalence between the multivariate indiscriminability and intrinsic
dimensionality can be extended to the origin 0, or to points x �= 0 where F
is zero, by taking limits of IntrDimF and InDiscrF radially, along a line passing
through x and the origin. When taken at x, the limit will be referred to as the
indiscriminability of F at x, which we will denote by IDF (x). Otherwise, if the
limit is taken at the origin, x is interpreted as the direction vector of a line of
points along which IntrDimF and InDiscrF are evaluated as the distance to the
origin tends to zero. We will refer to this limit as the local intrinsic dimension-
ality of F in the direction of x, and denote it by ID∗

F (x).

Corollary 1. Let F be a real-valued multivariate function over a normed vector
space (Rm, ‖ · ‖), and let x �= 0 ∈ R

m be a vector of positive norm. If there exists
an open interval I ⊆ R containing 0 such that F is non-zero and continuously
differentiable at (1 + ε)x for all ε ∈ I, then

IDF (x) � lim
ε→0

(1 + ε)x · ∇F ((1 + ε)x)
F ((1 + ε)x)

= lim
ε→0

IntrDimF ((1 + ε)x) = lim
ε→0

InDiscrF ((1 + ε)x) ,

whenever the limits exist.
Alternatively, if F is non-zero and continuously differentiable at εx for all

ε ≥ 0 ∈ I, then

ID∗
F (x) � lim

ε→0+

εx · ∇F (εx)
F (εx)

= lim
ε→0+

IntrDimF (εx) = lim
ε→0+

InDiscrF (εx) ,

whenever the limits exist.

If x = (xi)m
i=1 is such that xi = 0 for some choices of 1 ≤ i ≤ m, Corollary 1

holds within the subspace spanned by those variables that are non-zero at x. No
contributions are made by the ith coordinate towards the values of IDF (x) or
ID∗

F .
In the univariate case, if the function F is such that F ((1 + ε)x) = 0 for

all ε ∈ I, the values of the derivative F ′((1 + ε)x) are also 0, and IDF (0) is
in indeterminate form. However, for the remainder of the paper, F ((1 + ε)x) ·
IDF ((1 + ε)x) can safely be deemed to be 0 whenever (1 + ε)x ·F ′((1 + ε)x) = 0.

2.3 Transformations of Variable

In some similarity applications, transformations of the underlying distance mea-
sures are sometimes sought so as to improve the overall performance of tasks that
depend upon them. In the context of distance distributions with smooth cumula-
tive distribution functions, for certain smooth transformations of the underlying
distance measure, it was shown in [10] that the indiscriminability of a cumulative
distribution function after transformation can be decomposed into two factors:
the indiscriminability of the cumulative distribution function before transfor-
mation, and the indiscriminability of the transform itself. Here, we restate the
theorem for the case when F is not necessarily a cumulative distribution function.
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Theorem 2 ([10]). Let g be a real-valued function that is non-zero and contin-
uously differentiable over some open interval containing x ∈ R, except perhaps
at x itself. Let f be a real-valued function that is non-zero and continuously dif-
ferentiable over some open interval containing g(x) ∈ R, except perhaps at g(x)
itself. Then

IDf◦g(x) = IDg(x) · IDf (g(x))

whenever IDg(x) and IDf (g(x)) are defined. If x = f(x) = g(x) = 0, then

ID∗
f◦g = ID∗

f · ID∗
g

whenever ID∗
f and ID∗

g are defined.

Note that as with Corollary 1, the theorem also holds for one-sided limits,
and for boundary points whenever the domain(s) of the functions are restricted
to intervals of the real line.

3 Support-Weighted Local Intrinsic Dimensionality

When considering the intrinsic dimensionality of a function of several variables,
or a distance distribution on a space of many features, it is natural to ask which
variables or features are contributing most to the overall discriminability of the
function or cumulative distribution function (as the case may be). Two variables
or features with the same local ID value taken individually may not necessarily
have the same impact on the overall ID value when taken together. To see this,
let Φ and Ψ be the respective cumulative distribution functions of two univariate
distance distributions on distance variable x. The indiscriminability IDΦ(x) can
be thought of as having a ‘support’ equal to the probability measure associated
with distance x — namely, Φ(x); similarly, the support for IDΨ (x) would be
Ψ(x). Even when the indiscriminabilities IDΦ(x) and IDΨ (x) are equal, if (say)
the support Φ(x) greatly exceeded Ψ(x), one would be forced to conclude that
the features associated with IDΦ are more significant than those of IDΨ , at least
within the neighborhood of radius x, if Φ and Ψ were to be combined.

Accordingly, we define a ‘support-weighted’ local intrinsic dimension as
follows.

Definition 3 (Support-Weighted ID). Let F be a real-valued multivariate
function over a normed vector space (Rm, ‖ · ‖), and let x �= 0 ∈ R

m be a vector
of positive norm. The support-weighted indiscriminability of F at x is defined
as

wIDF (x) � F (x) IDF (x) = x · ∇F (x) .

Theorem 1 implies that the support-weighted ID is equivalent to x · ∇F (x),
the directional derivative of F (x) in the direction of x itself. It can be regarded
as a measure of the growth rate F over an expanding ball, that rewards increases
in the magnitudes of both the rate of change of F (from the gradient ∇F (x))
and the radius of the ball itself (from x).
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For examples in which the function represents the cumulative distribution
of a distance distribution, estimating support-weighted ID for the purpose of
assessing indiscriminability can be complicated by the need to standardize the
distance within which the indiscriminabilities are measured — otherwise, if the
local ID of each feature were assessed at widely-varying distances, there would
be no basis for the comparison of performance. In practice, however, estimation
of ID requires samples that are the result of a k-nearest neighbor query on the
underlying data set. Nevertheless, in the univariate case, standardization can be
achieved using the local ID representation theorem from [18]:

Theorem 3 (Local ID Representation [18]). Let Φ : R → R be a real-valued
function, and let v ∈ R be a value for which IDΦ(v) exists. Let x and w be values
for which x/w and Φ(x)/Φ(w) are both positive. If Φ is non-zero and continuously
differentiable everywhere in the interval [min{x,w},max{x,w}], then

Φ(x)
Φ(w)

=
( x

w

)IDΦ(v)

· GΦ,v,w(x), where

GΦ,v,w(x) � exp
(∫ w

x

IDΦ(v) − IDΦ(t)
t

dt

)
,

whenever the integral exists.

For a univariate cumulative distribution function Φ at distance x, we can
use the theorem with v = 0 to relate the support Φ(x) with the support at
another desired distance w. If n is the size of the data set that we are given, we
choose the distance at which over n selection trials one would expect k samples
to fall within the neighborhood — that is, w would satisfy Φ(w) = k/n. The
support-weighted ID would thus be:

wIDΦ(x) = Φ(x) IDΦ(x) =
k IDΦ(x)

n
·
( x

w

)ID∗
Φ · GΦ,0,w(x) .

In [18] it is shown that (under certain mild assumptions) the function GΦ,0,w(x)
tends to 1 as x,w → 0 (or equivalently, as n → ∞); also, IDΦ(x) would tend to
ID∗

Φ, for which reliable estimators are known [17,19]. Thus, for reasonably large
data set sizes, one could use the following approximation:

wIDΦ(x) ≈ k ID∗
Φ

n
·
( x

w

)ID∗
Φ

.

4 Composition Rules for Local ID

The support-weighted ID can be interpreted as the radially-directed directional
derivative x · ∇F (x). Each contribution to the inner product has the form of
a univariate directional derivative, which Theorem 1 tells us is equivalent to a
univariate support-weighted ID. In this section, the properties of the multivariate
directional derivative will be exploited to prove a number of composition rules.
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Theorem 4 (General Decomposition Rule). Let F be a real-valued multi-
variate function over a normed vector space (Rm, ‖ · ‖), and let x �= 0 ∈ R

m be a
vector of positive norm. If there exists an open interval I ⊆ R containing 0 such
that F is non-zero and continuously differentiable at (1 + ε)x for all ε ∈ I, then

wIDF (x) =
m∑

i=1

wIDFi
(xi) ,

where for all 1 ≤ i ≤ m, Fi is any univariate antiderivative of the partial
derivative ∂F/∂xi obtained by treating the other variables xj (j �= i) as constants.

Alternatively, if F is non-zero and continuously differentiable at εx for all
ε ≥ 0 ∈ I, then

ID∗
F (x) =

m∑
i=1

ω∗
i ID∗

Fi
, ω∗

i � lim
ε→0+

Fi(εxi)
F (εx)

,

whenever the limits ω∗
i exist.

Proof. With the assumption of the continuous differentiablity of F , together
with the definition of Fi, Theorem 1 can be applied twice to give

F (x) IDF (x) =
m∑

i=1

(
xi · ∂F (x)

∂xi

)
=

m∑
i=1

xi F ′
i (xi) =

m∑
i=1

Fi(xi) IDFi
(xi) .

Replacing x by εx and then taking the limit as ε → 0+, we obtain

ID∗
F (x) = lim

ε→0+
IDF (εx) = lim

ε→0+

m∑
i=1

(
Fi(εxi)
F (εx)

· IDFi
(εx)

)
=

m∑
i=1

ω∗
i ID∗

Fi
.

�	
The antiderivative Fi is not unique — each choice satisfying the conditions

of Theorem 4 would be associated with its own support-weighted ID function
(although the sum would be the same). If, however, each Fi is constructed from
F by fixing all variable values to those of a specific point x, we find that the local
ID values taken at x would themselves sum to the total local ID. Such a collection
Fi will be referred to as the canonical decomposition of the support-weighted ID.

Corollary 2 (Canonical Decomposition Rule). Let F satisfy the condi-
tions of Theorem 4 at x, with the additional constraint that xi �= 0 for all
1 ≤ i ≤ m. Let Fi be the univariate function on xi obtained directly from F
by treating the variable xj as a constant, for all choices j �= i. Then

IDF (x) =
m∑

i=1

IDFi
(xi) and ID∗

F (x) =
m∑

i=1

ID∗
Fi

.
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Proof. Since the definition of Fi implies that Fi(xi) = F (x) �= 0, we have that
F ′

i (xi) = ∂F (x)/∂xi. Theorem 4 can therefore be applied to give

IDF (x) =
m∑

i=1

(
Fi(xi)
F (x)

· IDFi
(xi)

)
=

m∑
i=1

IDFi
(xi) .

To prove the second statement of the theorem, it suffices to replace x by εx, and
let ε → 0. �	

Corollary 2 can be used to show that whenever a function can be expressed
as the product of univariate functions (each on their own variable), the local ID
of the product is the sum of the individual IDs of each univariate function. The
proof is omitted due to space limitations.

Corollary 3 (Product Rule). Let F (x) =
∏m

i=1 Φi(xi) be a function satis-
fying the conditions of Theorem 4 at x. If we have that IDΦi

(xi) exists for all
1 ≤ i ≤ m, or alternatively that ID∗

Φi
exists, then

IDF (x) =
m∑

i=1

IDΦi
(xi), or alternatively , ID∗

F (x) =
m∑

i=1

ID∗
Φi

.

Theorem 4 can be used directly to show that whenever a function can be
expressed as the sum of univariate functions (each on their own variable), the
support-weighted ID of the sum is the sum of the individual support-weighted
IDs of each univariate function. Again, we omit the proof.

Corollary 4 (Summation Rule). Let F (x) =
∑m

i=1 Φi(xi) be a function
satisfying the conditions of Theorem 4 at x. Then

wIDF (x) =
m∑

i=1

wIDΦi
(xi), or alternatively ,

ID∗
F (x) =

m∑
i=1

ω∗
i ID∗

Φi
, ω∗

i � lim
ε→0+

Φi(εxi)
F (εx)

,

whenever the limits ω∗
i exist.

Note that for the summation rule, the sum of the weights ω∗
i must equal 1.

Intuitively, whenever a function can be expressed as the sum of univariate func-
tions (each on their own variable), the local ID of the sum is a weighted sum of
the individual IDs of each univariate function — the weighting being determined
by the proportional support of each univariate function.

5 Convolution and Support-Weighted ID

As a motivating example, let us consider a situation in which multivariate data
is perturbed through the addition of random noise. Given a distance of interest
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x > 0, if before the perturbation the distribution of a distance feature is asso-
ciated with a cumulative distribution function Φ, the probability of the feature
value lying in the range [0, x] would be Φ(x); if Φ were smooth at x, the distance
distribution would have a probability density of Φ′(x). However, if the value
were perturbed by an amount t by the addition of noise, the probability density
associated with this event would be Φ′(x − t). In general, the overall probability
density at x would be determined by the convolution

F ′(x) =
∫ ∞

−∞
φ(x − t)ψ(t) dt ,

where φ and ψ are the probability density functions associated with the original
distance distribution and the additive noise, respectively.

In this situation, one may wonder how the noise affects the intrinsic dimen-
sionality of the distribution. Some insight into this issue can be gained from
an analysis of support-weighted ID. Before attempting an answer, we will state
and prove the following general result (not necessarily restricted to probability
density functions of distance distributions).

Theorem 5 (Convolution Rule). Let F be the real-valued univariate convo-
lution function over a normed vector space (R, ‖ · ‖), defined as follows:

F (x) =
∫ x

0

∫ ∞

−∞
φ(s − t)ψ(t) dt ds ,

where φ and ψ have the antiderivatives Φ and Ψ , respectively, defined almost
everywhere. Consider the value x �= 0. If there exists an open interval I ⊆ R

containing 0 such that F is non-zero and continuously differentiable at (1 + ε)x
for all ε ∈ I, then

wIDF (x) =
∫ ∞

−∞
wIDΦ(x − t)ψ(t) dt +

∫ ∞

−∞
wIDΨ (x − t)φ(t) dt .

Proof. With the assumption of the continuous differentiablity of F , Theorem 1
can be applied twice to give

wIDF (x) = F (x) IDF (x) = x · F ′(x) = x ·
∫ ∞

−∞
φ(x − t)ψ(t) dt

=
∫ ∞

−∞
(x − t)φ(x − t)ψ(t) dt +

∫ ∞

−∞
t φ(x − t)ψ(t) dt .

After the substitution u = x− t in the second integral, and applying Theorem 1,
the result follows:

wIDF (x) =
∫ ∞

−∞
(x − t)Φ′(x − t)ψ(t) dt +

∫ ∞

−∞
(x − u)Ψ ′(x − u)φ(u) du

=
∫ ∞

−∞
Φ(x − t) IDΦ(x − t)ψ(t) dt +

∫ ∞

−∞
Ψ(x − t) IDΨ (x − t)φ(t) dt .

�	
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The convolution rule has a natural interpretation when φ and ψ are
both probability density functions: the support-weighted ID of the convolution
(wIDF ) is the sum of the expected values of the support-weighted ID of each
function (wIDΦ and wIDΨ ), each taken with respect to each other’s distribution
(using the probability densities ψ and φ, respectively), shifted by the value of x
and reversed in orientation.

Returning to our example involving the perturbation of the data by noise, let
us assume that a certain amount of random Gaussian noise (whose probability
density is ψ) is added to the value of each variable of the data (whose probability
density is φ).

If the original distribution is associated with a real data set, its contribution
to the overall support-weighted ID is likely to be low. Real data sets typically
have intrinsic dimensionalities much lower than the representational dimension
— typical values range up to approximately 20, even when the number of features
are in the thousands or more [17]. On the other hand, the contribution of the
Gaussian noise is likely to be much higher, particularly when the variance is
high: the central portion of a high-variance Gaussian would have high support
as well as an ID value approaching 1. (As the probability density of the Gaussian
distribution is well known, this assertion can be verified analytically; however,
the details are omitted due to space limitations.) In short, the convolution rule
indicates that great care should be used when introducing additive (Gaussian)
noise into data sets, as they can produce sets with unrealistically high complexity
as measured by support-weighted or unweighted local ID.

6 Local ID and the Correlation Dimension

In [23], Pesin explored the relationship between several formulations of the cor-
relation dimension with other measures of intrinsic dimensionality, such as the
Hausdorff dimension, the ‘box counting’ dimension, and the Rényi dimension.
Rather than assuming any smoothness conditions (such as continuous differen-
tiability), Pesin used upper limits (lim sup) and lower limits (lim inf) to define
the various measures of dimension. A partial ordering of these measures was
then exhibited. For some of the theoretical arguments, the Hausdorff and cer-
tain other dimensional variants were characterized in terms of the extreme values
of a local ID formulation closely related to ID∗.

A full accounting of the interrelationships between the various measures of
intrinsic dimensionality is beyond the scope of this paper — instead, the inter-
ested reader is referred to [20,23] for more information. Here, we will show that
for smooth distance distributions, the correlation dimension of a domain can be
expressed as a form of weighted averaging of the local intrinsic dimensionalities
associated with the distributions of distances from each of the locations within
the domain.

We begin with a formal definition of the correlation dimension. Consider
an infinite sequence of random point samples from a domain D for which a
probability measure μ and distance measure d : D × D → R

≥0 are defined.
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Given a positive distance threshold r > 0, the correlation integral C(r) is given
by the limit

C(r) � lim
n→∞ ρn(r) , ρn(r) = 2gn(r)/(n2 − n) ,

where gn(r) is the number of unordered pairs of points of the nth sample having
mutual distance at most r. As r tends to 0, if the correlation integral asymp-
totically tends to a polynomial form C(r) → rν , the value of ν for which this
relationship holds is the correlation dimension [24]. More formally, the correla-
tion dimension is given by

ν = lim
r→0+

log C(r)/ log r .

In practice, the correlation dimension ν is estimated from values of ρn(r) over
a large sample. The simplest method for estimating ν is to plot ρn(r) against r
in log-log scale, to then fit a line to the lower tail, and determine its slope [25].
More sophisticated estimators have been proposed by Takens and Theiler [26].

When C is smooth in the vicinity of r = 0, l’Hôpital’s rule can be used to
show that the correlation dimension can be expressed in terms of the local ID
of C.

Definition 4. Whenever C(r) is non-zero and continuously differentiable in
some open interval bounded below by r = 0, the correlation dimension can be
expressed as

CD∗ � lim
r→0+

log C(r)
log r

= lim
r→0+

r · C ′(r)
C(r)

= lim
r→0+

IDC(r) .

In addition, CD(r) � IDC(r) will be referred to as the correlation indiscrim-
inability at radius r wherever IDC(r) is well-defined.

The quantity ρn(r) can be regarded as an estimate of the probability that
two points independently drawn from D have mutual distance at most r. The
correlation integral C(r) can thus be represented as the following Lebesgue inte-
gral:

C(r) =
∫

D
Fr dμ =

∫∫
D

θ(r − d(x,y)) dμ(y) dμ(x) , (1)

where Fr(x) is the probability of drawing a sample from D within distance r of
x, and where θ(x) equals 1 if x ≥ 1 and equals 0 otherwise.

With respect to any given fixed location x, the random selection of points
from D induces a distribution of non-negative values, determined by the distances
of selected points from x. The value of the cumulative distribution function of
this distribution at distance r is precisely the integrand Fr(x) appearing in
Eq. 1. To avoid notational confusion, we will denote the cumulative distribution
function for distances relative to x by Fx(r) � Fr(x).

The following theorem uses this notion of distance distributions relative to
the locations in D to establish a relationship between the correlation indiscrim-
inability and the indiscriminabilities of these distributions.
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Theorem 6. Let D be a domain for which a probability measure μ and distance
measure d : D × D → R

≥0 are defined. For a given point x ∈ D and a posi-
tive distance value r > 0, let Fr(x) = Fx(r) be the probability associated with
the ball {y ∈ D | d(y,x) ≤ r} centered at x with radius r, as defined above. If
the correlation indiscriminability CD(r) exists at r, and if the indiscriminabil-
ity IDFr

(x) � IDFx(r) exists almost everywhere (that is, for all x ∈ D except
possibly over a subset of D of measure zero), then

CD(r) ·
∫

D
Fr dμ =

∫
D

Fr · IDFr
dμ .

Furthermore, if the intrinsic dimensionality ID∗
F (x) � IDFx(0) exists almost

everywhere, then

CD∗ = lim
r→0

(∫
D

Fr · ID∗
F dμ

/ ∫
D

Fr dμ

)
,

wherever the limit exists.

Proof. Rewriting the left-hand side of the first equation in terms of the correla-
tion integral C, and applying Corollary 1, we obtain

CD(r) ·
∫

D
Fr dμ = IDC(r) · C(r) = r · C ′(r) =

∫
D

r · fr dμ ,

where fr(x) = F ′
x(r) is the derivative of the cumulative distribution function Fx

at r (which must exist for almost all x ∈ D, since IDFx(r) is assumed to exist
almost everywhere). Applying Corollary 1 again to the integrand r · fr, the first
equation follows.

The second equation of the theorem statement follows from the first, by
taking the limit of the ratio of the two integrals as r tends to zero, and noting that
the local intrinsic dimensionality ID∗

F is assumed to exist almost everywhere. �	
Intuitively, Theorem 6 extends the finite summation rule of Corollary 4 to the

possibly infinite collection of distance distributions induced by the locations of
the domain D. Here, the correlation indiscriminability and correlation dimension
can be viewed as a form of expectation of the local ID, taken across all locations
of D according to a weighting function that depends on the local cumulative
distribution function. If one accepts ID∗

F and IDF (r) as the natural measures of
intrinsic dimensionality and indiscriminability for a smooth local distance dis-
tribution, then the correlation dimension is a natural measure of global intrinsic
dimensionality within a domain where almost every location is associated with
a smooth distance distribution.

7 Conclusion

In 2005, Yang and Wu [27] identified ten challenging problems in data mining,
by consulting 14 of the most active researchers in data mining as to what they
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considered to be the most important topics for future research. The first chal-
lenging problem listed was that of developing a unifying theory of data mining,
for which the authors stated:

Several respondents feel that the current state of the art of data mining
research is too ‘ad-hoc’. Many techniques are designed for individual prob-
lems, such as classification or clustering, but there is no unifying theory.
However, a theoretical framework that unifies different data mining tasks
including clustering, classification, association rules, etc., as well as differ-
ent data mining approaches (such as statistics, machine learning, database
systems, etc.), would help the field and provide a basis for future research.

Although a comprehensive theory of data mining is not yet in sight, the
similarity-based intrinsic dimensional framework presented in this paper and
others can constitute an early step, as it provides a framework for the formal
study of such fundamental notions as similarity measure, data density, data dis-
criminability, intrinsic dimensionality, and (in [18]) local inlierness and outlier-
ness. Preliminary work on the use of support-weighted local ID in the selection
of features for similarity graph construction [28] shows that this model also has
promise for guiding practical applications.

Acknowledgments. The author gratefully acknowledges the financial support of
JSPS Kakenhi Kiban (A) Research Grant 25240036 and JSPS Kakenhi Kiban (B)
Research Grant 15H02753.
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Abstract. In a metric space, triangle inequality implies that, for any
three objects, a triangle with edge lengths corresponding to their pair-
wise distances can be formed. The n-point property is a generalisation
of this where, for any (n + 1) objects in the space, there exists an n-
dimensional simplex whose edge lengths correspond to the distances
among the objects. In general, metric spaces do not have this prop-
erty; however in 1953, Blumenthal showed that any semi-metric space
which is isometrically embeddable in a Hilbert space also has the n-point
property.

We have previously called such spaces supermetric spaces, and have
shown that many metric spaces are also supermetric, including Euclidean,
Cosine, Jensen-Shannon and Triangular spaces of any dimension.

Here we show how such simplexes can be constructed from only their
edge lengths, and we show how the geometry of the simplexes can be
used to determine lower and upper bounds on unknown distances within
the original space. By increasing the number of dimensions, these bounds
converge to the true distance.

Finally we show that for any Hilbert-embeddable space, it is possible
to construct Euclidean spaces of arbitrary dimensions, from which these
lower and upper bounds of the original space can be determined. These
spaces may be much cheaper to query than the original. For similarity
search, the engineering tradeoffs are good: we show significant reduc-
tions in data size and metric cost with little loss of accuracy, leading to
a significant overall improvement in exact search performance.

Keywords: Supermetric space · Metric search · Metric embedding ·
Dimensionality reduction

1 Introduction

To set the context, we are interested in searching a (large) finite set of objects
S which is a subset of an infinite set U , where (U, d) is a metric space. The
general requirement is to efficiently find members of S which are similar to an
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arbitrary member of U , where the distance function d gives the only way by
which any two objects may be compared. There are many important practical
examples captured by this mathematical framework, see for example [3,19]. Such
spaces are typically searched with reference to a query object q ∈ U . A threshold
search for some threshold t, based on a query q ∈ U , has the solution set {s ∈
S such that d(q, s) ≤ t}.

This becomes an interesting problem when exhaustive search is intractable, in
which case the research problem is to find ways of pre-processing the collection
ahead of query time in order to minimise the cost of query. There are three
main problems with achieving efficiency. Most obviously, if the search space is
very large, scalability is required. Less obviously, when the search space is large,
semantic accuracy is important to avoid large numbers of false positive results
– in the terminology of information retrieval, precision becomes relatively more
important that recall. To achieve higher semantic accuracy will usually require
more expensive metrics, and larger data representations.

Here, we present a new technique which can be used to address all three of
these issues in supermetric spaces. Using properties of finite isometric embed-
ding, we show a mechanism which allows spaces with certain properties to be
translated into a second, smaller, space. For a metric space (U, d), we describe a
family of functions φn which can be created by measuring the distances among
n objects sampled from the original space, and which can then be used to create
a surrogate space:

φn : (U, d) → (Rn, �2)

with the property

�2(φn(u1), φn(u2)) ≤ d(u1, u2) ≤ g(φn(u1), φn(u2))

for an associated function g.
The advantages of the proposed technique are that (a) the �2 metric is very

much cheaper than some Hilbert-embeddable metrics; (b) the size of elements
of Rn may be much smaller than elements of U , and (c) in many cases we can
achieve both of these along with an increase in the scalability of the resulting
search space.

2 Related Work

Finite Isometric Embeddings are excellently summarised by Blumenthal [1].
He uses the phrase four-point property to mean a space that is 4-embeddable in
3-dimensional Euclidean space: that is, that for any four objects in the original
space it is possible to construct a distance-preserving tetrahedon. Wilson [17]
shows various properties of such spaces, and Blumenthal points out that results
given by Wilson, when combined with work by Menger [15], generalise to show
that some spaces with the four-point property also have the n-point property:
any n points can be isometrically embedded in an (n−1)-dimensional Euclidean
space (�n−1

2 ). In a later work, Blumenthal [2] shows that any space which is
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isometrically embeddable in a Hilbert space has the n-point property. This single
result applies to many metrics, including Euclidean, Cosine, Jensen-Shannon and
Triangular [7], and is sufficient for our purposes here.

Dimensionality Reduction aims to produce low-dimensional encodings of
high-dimensional data, preserving the local structure of some input data. See
[11,18] for comprehensive surveys on this topic.

The Principal Component Analysis (PCA) [12] is the most popular of the
techniques for unsupervised dimensionality reduction. The idea is to find a linear
transformation of n-dimensional to k-dimensional vectors (k ≤ n) that best
preserves the variance of the input data. Specifically, PCA projects the data
along the direction of its first k principal components, which are the eigenvectors
of the covariance matrix of the (centered) input data.

According to the Johnson-Lindenstrauss Flattening Lemma (JL) (see e.g.
[14, pag. 358]), a projection can also be used to embed a finite set of n euclidean
vectors into a k-dimensional euclidean space space (k < n) with a “small” dis-
tortion. Specifically the Lemma asserts that for any n-points of �2 and every
0 < ε < 1 there is a mapping into �k

2 that preserves all the interpoint distances
within factor 1 + ε, where k = O(ε−2 log n). The low dimensional embedding
given by the Johnson Lindenstrauss lemma is particularly simple to implement.

General Metric Spaces do not allow either PCA or JL as these require access
to a coordinate space. Mao et al. [13] pointed out that multidimensional-methods
can be indirectly applied to metric space by using the pivot space model. In that
case each metric object is represented by its distance to a finite set of pivots.

In the general metric space context, perhaps the best known technique is
metric Multidimensional Scaling (MDS) [8]. MDS aims to preserve inter-point
distances using spectral analysis. However, when the number m of data points
is large the classical MDS is too expensive in practice due to a requirement for
O(m2) distance computations and spectral decomposition of a m × m matrix.

The Landmark MDS (LMDS) [9] is a fast approximation of MDS. LMDS uses
a set of k landmark points to compute k × m distances of the data points from
the pivots. It applies classical MSD to these points and uses a distance-based
triangulation procedure to project the remaining data points.

LAESA. [16] is a more tractable mechanism which has been used for met-
ric filtering, rather than approximate search. n reference objects are somehow
selected. For each element of the data, the distances to these points are recorded
in a table. At query time, the distances between the query and each reference
point are calculated. The table can then be scanned row at a time, and each dis-
tance compared; if, for any reference object pi and data object sj the absolute
difference |d(q, pi) − d(sj , pi)| > t, then from triangle inequality it is impossible
for sj to be within distance t of the query, and the distance calculation can
be avoided. LAESA can be used as an efficient pre-filter for exact search when
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memory size is limited, and we make an experimental comparison with the new
lower-bound mechanism we describe in this paper.

3 Upper and Lower Bounds from Simplexes

For any (n + 1) objects ui in a supermetric space (U, d), there exists a simplex
in �n

2 where each vertex vi corresponds to one object ui and whose edge lengths
correspond to distances in the original space, i.e. �2(vi, vj) = d(ui, uj).

We show now how this property can be used to give bounds on distances
between two elements of U whose distance cannot be directly measured. This is
useful in many different search paradigms where the bounds are required between
an arbitrary elements si ∈ S ⊂ U which has been pre-processed before a search,
and an element q ∈ U which is not known when the pre-processing occurs.

Our strategy is to choose a set of n reference points P ⊂ U , from which an
isometric (n − 1)-dimensional simplex σ is created. Now, given a further point
u ∈ U , and all the distances d(pi, u), an n-dimensional simplex σu can be created
by the addition of a single vertex to σ.

Fig. 1. Tetrahedral embedding of four points into 3D Euclidean space.

For simplicity, Fig. 1 shows an �32 space into which four objects have been
projected. Here we have only two reference points, p1 and p2. For each element
a the notation va is used to denote a corresponding point in the �32 space. The
distance d(s, q) is not known; however the 4-point property means that the corre-
sponding distance �2(vs, vq) must be able to form the final edge of a tetrahedron.
From this Figure, the intuition of the upper and lower bounds on d(s, q) is clear,
through rotation of the triangle vp1vp2vq around the line vp1vp2 until it is coin-
cident with the plane in which vp1vp2vs lies. The two possible orientations give
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the upper and lower bounds, corresponding to the distances between vs and the
two apexes apq− and apq+ of the two possible planar tetrahedra.

The same intuition generalises into many dimensions. The inter-object dis-
tances within a set {pi} of n reference objects are used to form a base simplex
σ0, with vertices vp1 , . . . , vpn

, in (n−1) dimensions. This corresponds to the line
segment vp1vp2 in the figure, which gives a two-vertex simplex in �12. The sim-
plex σ0 is contained within a hyperplane of the �n

2 space, and the distances from
object s to each pi are used to calculate a new simplex σs, in �n

2 , consisting of a
new apex point vs set above the base simplex σ0. There are two possible posi-
tions in �n

2 for vs, one on either side of the hyperplane containing σ0; we denote
these as v+

s , and v−
s respectively. Now, given the distances between object q and

all pi, there also exist two possible simplexes for σq, with two possible positions
for vq denoted by v+

q and v−
q .

The process of rotating a triangle around its base generalises to that of rotat-
ing the apex point of any simplex around the hyperplane containing its base
simplex. Furthermore, the n-point property guarantees the existence of a sim-
plex σ1 in �n+1

2 which preserves the distance d(s, q) as �2(vs, vq). From these
observations we immediately have the following inequalities:

�n
2 (v+

s , v+
q ) ≤ d(s, q) ≤ �n

2 (v+
s , v−

q )

Proofs of the correctness of these inequalities are available in [6].

4 Constructing Simplexes from Edge Lengths

In this section, we show a novel algorithm for determining Cartesian coordinates
for the vertices of a simplex, given only the distances between points. The algo-
rithm is inductive, at each stage allowing the apex of an n-dimensional simplex
to be determined given the coordinates of an (n − 1)-dimensional simplex, and
the distances from the new apex to each vertex in the existing simplex. This
is important because, given a fixed base simplex over which many new apexes
are to be constructed, the time required to compute each one is O(n) for n
dimensions, whereas construction of the whole simplex is O(n2).

A simplex is a generalisation of a triangle or a tetrahedron in arbitrary dimen-
sions. In one dimension, the simplex is a line segment; in two it is the convex
hull of a triangle, while in three it is the convex hull of a tetrahedron. In general,
the n-simplex of vertices p1, . . . , pn+1 equals the union of all the line segments
joining pn+1 to points of the (n − 1)-simplex of vertices p1, . . . , pn.

The structure of a simplex in n-dimensional space is given as an n + 1 by n
matrix representing the cartesian coordinates of each vertex. For example, the
following matrix represents four coordinates which are the vertices of a tetrahe-
dron in 3D space:

⎡
⎢⎢⎣

0 0 0
v2,1 0 0
v3,1 v3,2 0
v4,1 v4,2 v4,3

⎤
⎥⎥⎦
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Algorithm 1. nSimplexBuild
Input: n + 1 points p1, . . . , pn+1 ∈ (U, d)
Output: n-dimensional simplex in �n2 represented by the matrix Σ ∈ R

(n+1)×n

1 Σ = 0 ∈ R
(n+1)×n;

2 if n = 1 then
3 δ = d(p1, p2);

4 Σ =

[
0
δ

]
;

5 return Σ;

6 end
7 ΣBase = nSimplexBuild(p1, . . . , pn);
8 Distances = 0 ∈ R

n;
9 for 1 ≤ i ≤ n set Distances[i] = d(pi, pn+1);

10 newApex = ApexAddition(ΣBase, Distances);
11 for 1 ≤ i ≤ n and 1 ≤ j ≤ i − 1 set Σ[i][j] to ΣBase[i][j];
12 for 1 ≤ j ≤ n set Σ[n + 1][j] to newApex[j];
13 return Σ;

For all such matrices Σ, the invariant that vi,j = 0 whenever j ≥ i can
be maintained without loss of generality; for any simplex, this can be achieved
by rotation and translation within the Euclidean space while maintaining the
distances among all the vertices. Furthermore, if we restrict vi,j ≥ 0 whenever
j = i − 1 then in each row this component represents the altitude of the ith

point with respect to a base face represented by the matrix cut down from Σ by
selecting elements above and to the left of that entry.

4.1 Simplex Construction

This section gives an inductive algorithm (Algorithm1) to construct a simplex
in n dimensions based only on the distances measured among n + 1 points.

For the base case of a one-dimensional simplex (i.e. two points with a single

distance δ) the construction is simply Σ =
[
0
δ

]
. For an n-dimensional simplex,

where n > 1, an (n − 1)-dimensional simplex is first constructed using the dis-
tances among the first n points. This simplex is used as a simplex base to which
a new apex, the (n + 1)th point, is added by the ApexAddition algorithm (Algo-
rithm2).

For an arbitrary set of objects si ∈ S, the apex φn(si) can be pre-calculated.
When a query is performed, only n distances in the metric space require to be
calculated to discover the new apex φn(q) in �n

2 .
In essence, the ApexAddition algorithm is derived from exactly the same

intuition as the lower-bound property explained earlier, at each stage lifting the
final dimension out of the same hyperplane into a new dimension to capture
the measured distances. Proofs of correctness for both the construction and the
lower-bound property are available in [6].
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4.2 Bounds

Because of the method we use to build simplexes, the final coordinate always
represents the altitude of the apex above the hyperplane containing the base
simplex. Given this, two apexes exist, according to whether a positive or negative
real number is inserted at the final step of the algorithm.

Algorithm 2. ApexAddition
Input: A (n − 1)-dimensional base simplex and the distances between a new

(unknown) apex point and the vertices of the base simplex:

ΣBase =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

v2,1 0 0
v3,1 v3,2

. . .

:
. . . 0

vn,1 · · · vn,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n−1

Distances =
[
δ1 · · · δn

] ∈ R
n

Output: The cartesian coordinates of the new apex point

1 Output =
[
δ1 0 · · · 0

] ∈ R
n;

2 for i = 2 to n do
3 l = �2(ΣBase[i], Output);
4 δ = Distances[i];
5 x = ΣBase[i][i − 1];
6 y = Output[i − 1];
7 Output[i − 1] = y − (δ2 − l2)/2x;

8 Output[i] = +
√

y2 − (Output[i − 1])2;

9 end
10 return Output

As a direct result of this observation, and those given in Sect. 3, we have the
following bounds for any two objects s1 and s2 in the original space:

Let

φn(s1) = (x1, x2, . . . , xn−1, xn)
φn(s2) = (y1, y2, . . . , yn−1, yn)

then
√√√√

n∑
i=1

(xi − yi)2 ≤ d(s1, s2) ≤
√√√√n−1∑

i=1

(xi − yi)2 + (xn + yn)2
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From the structure of these calculations, it is apparent that they are likely to
converge rapidly around the true distance as the number of dimensions used
becomes higher, as we will show in Sect. 5. It can also be seen that the cost
of calculating both of these values together, especially in higher dimensions, is
essentially the same as a simple �2 calculation.

Finally, we note that the lower-bound function is a proper metric, but the
upper-bound function is not even a semi-metric: even although it is a Euclidean
distance in the apex space, one of the domain points is constructed by reflection
across a hyperplane and thus the distance between a pair of identical points is
in general non-zero.

5 Measuring Distortion

We define distortion for an approximation (U ′, d′) of a space (U, d) mapped by
a function f : U → U ′ as as the smallest D such that, for some scaling factor r

r · d′(f(ui), f(uj)) ≤ d(ui, uj) ≤ D · r · d′(f(ui), f(uj))

We have measured this for a number of different spaces, and present results
over the SISAP colors benchmark set which are typical and easily reproducible.
Summary results are shown in Fig. 2.

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

1 10 100

Di
st

or
on

N

SISAP Colors- ℓ2

 JL fla ening
 LMDS
 N-simplex
 PCA
 N-simplex (PCs as pivots)

1.00

10.00

100.00

1000.00

10000.00

1 10 100

Di
st

or
on

N

SISAP Colors- JSD

 LMDS

 N-simplex

Fig. 2. Distortion measurements for various dimensionality reduction strategies for the
colors data set. The left figure gives measurements for Euclidean distance, the right for
Jensen-Shannon distance where only LMDS and n-simplex are applicable. The colors
data set has 112 physical dimensions.

In each case, the X-axis represents the number of dimensions used for the
representation, with the distortion plotted against this. For Euclidean distance,
there are two entries for n-simplex: one for randomly-selected reference points,
and the other where the choice of reference points is guided by the use of PCA.
In the latter case we select the first n principal components (eigenvectors of the
covariance matrix) as pivots.

It can be seen that n-simplex outperforms all other strategies except for
PCA, which is not applicable to non-Euclidean spaces. LMDS is the only other
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mechanism applicable to general metric spaces1; this is a little more expensive
than n-simplex to evaluate, and performs relatively badly. The comparison with
JL is a slightly unfair, as the JL lemma applies only for very high dimensions
in an evenly distributed space; we have also tested such spaces, and JL is still
out-performed by n-simplex, especially at lower dimensions.

The distortion we show here is only for the lower-bound function of n-simplex.
We have measured the upper-bound function also, which gives similar results.
Unlike the lower-bound, the upper-bound is not a proper metric; however for
non-metric approximate search it should be noted that the mean of the lower-
and upper-bound functions give around half the distortion plotted here.

The implications of these results for exact search should be noted. For
Euclidean search, the distortion has dropped to almost zero at between 20 and
30 dimensions, implying the possibility of accurate search using data which is
less than one-quarter of the original size. For Jensen-Shannon, more dimensions
will be required, but the cost of the �2 metric required to search the compressed
space is around one-hundredth the cost of the original metric. In the next section
we present experimental results consistent with these observations.

6 Exact Search: Indexing with n-Simplex

The simplex-building mechanism, along with the observations of upper and lower
bounds, might be used in many different metric search contexts. Here, we exam-
ine only one of these to demonstrate the potential.

To this end we examine the use of n-simplex in the context of exact search,
using the lower and upper-bound properties. Any such mechanism can be viewed
as similar to LAESA [16], in that there exists an underlying data structure which
is a table of numbers, n per original object, with the intention of using this table
to exclude candidates which cannot be within a given search threshold.

In both cases, n reference objects are chosen from the space. For LAESA,
each row of the table is filled, for one element of the data, with the distances
from the candidate to each reference object. For n-simplex, each row is filled for
one element of the data with the Cartesian coordinates of the new apex formed
in n dimensions by applying these distances to an (n − 1)-dimensional simplex
formed from the reference objects.

The table having been established, a query notionally proceeds by measuring
the distances from the query object to each reference point object. In the case
of LAESA, the metric for comparison is Chebyshev: that is, if any pairwise
difference is greater than the query threshold, the object from which that row
was derived cannot be a solution to the query. For n-simplex, the metric used is
�2: that is, if the apex represented in a row is further than the query threshold
from the apex generated from the query, again the object from which that apex
was derived cannot be a solution to the query.

1 In [9] the authors note it works better for some metrics than for others; in our
understanding, it will work well only for spaces with the n-point property.
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In both cases, there are two ways of approaching the table search. It can be
performed sequentially over the whole table, in which case either metric can be
terminated within a row if the threshold is exceeded, without continuing to the
end of the row. Alternatively the table can itself be re-indexed using a metric
index. Although this compromises the amount of space available for the table
itself, it may avoid many of the individual row comparisons.

In the context of re-indexing we also note that, in the case of n-simplex, the
Euclidean metric used over the table rows itself has the four-point property, and
so the Hilbert Exclusion property as described in [5] may be used.

In all cases the result is a filtered set of candidate objects which is guaranteed
to contain the correct solution set. In general, this set must be re-checked against
the original metric, in the original space. For n-simplex however the upper-bound
condition is checked first; if this is less than the query threshold, then the object
is guaranteed to be an element of the result set with no further check required.

6.1 Experiment - SISAP colors

Any such mechanism will perform differently over data sets with different char-
acteristics and we cannot yet provide a full survey. To give useful comparisons
with other studies in the literature, we apply the techniques to the SISAP colors
[10] data set, using three different supermetrics: Euclidean, Cosine, and Jensen-
Shannon2. We chose this data set because (a) it has only positive values and is
therefore indexable by all of the metrics, and (b) it shows an interesting non-
uniformity, in that its intrinsic dimensionality [4] for all metrics is much less than
its physical dimensionality (112). It should thus give an interesting “real world”
context to assess the relative value of the different mechanisms. Although it is
a relatively small set, further experiments performed on much larger sets with
different properties give quite consistent results, which we do not have space to
report here.

For Euclidean distance, we used the three benchmark thresholds; for the
other metrics, we chose thresholds that return around 0.01% of the data. In all
cases the first 10% of the file is used to query the remaining 90%. Pivots are
randomly-selected both for LAESA and n-simplex approach.

For each metric, we tested different mechanisms with different allocations
of space: 5 to 50 numbers per data element, thus the space used per object is
between 4.5% and 45% of the original. All results reported are for exact search,
that is the initial filtering is followed by re-testing within the original space where
required. Five different mechanism were tested, as follows:

sequential LAESA (Lseq) each row of the table is scanned sequentially, each
element of each row is tested against the query and that row is abandoned if
the absolute difference is greater than the threshold.

reindexed LAESA (Lrei) the data in the table is indexed using a monotone
hyperplane tree, searched using the Chebyshev metric.

2 For precise definitions of the non-Euclidean metrics used, see [5].
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Table 1. Elapsed Times - SISAP colors, Euclidean distance. All times are in seconds,
for executing 11268 queries over 101414 data. The Tree times are independent of the
row as reference points are not used.

Dims t0 = 0.051768 t1 = 0.082514 t2 = 0.131163

Lseq Lrei Nseq Nrei Tree Lseq Lrei Nseq Nrei Tree Lseq Lrei Nseq Nrei Tree

5 18.6 28.0 13.8 5.8 5.5 33.4 80.9 22.4 29.0 18.1 56.2 201.6 34.9 70.4 54.4

10 17.7 22.1 15.0 3.3 30.3 67.9 20.3 14.7 58.1 220.3 25.5 50.6

15 16.3 15.2 14.6 3.0 26.7 59.7 20.2 12.1 45.8 159.5 24.4 44.7

20 19.0 16.3 18.9 3.3 28.2 56.6 19.4 11.5 46.8 189.3 27.8 48.3

25 22.5 16.9 20.4 3.4 27.4 56.8 22.3 13.4 45.5 167.5 26.2 40.1

30 20.9 16.8 20.4 3.5 28.6 57.3 24.5 13.6 45.9 181.2 28.5 45.1

35 22.0 16.4 21.3 3.9 28.7 65.0 22.5 13.9 43.9 163.0 31.2 44.9

40 23.1 17.3 22.1 4.0 28.8 55.9 22.8 14.3 49.4 180.5 34.2 46.1

45 22.5 18.7 22.2 4.4 32.0 61.5 27.7 15.0 48.5 169.8 37.1 44.9

50 21.3 17.1 18.9 4.5 32.0 59.0 24.0 15.5 55.2 207.6 34.5 45.3

sequential n-simplex (Nseq) each row of the table is scanned sequentially, for
each element of each row the square of the absolute difference is added to an
accumulator, the row is abandoned if the accumulator exceeds the square of
the threshold, and the upper-bound is applied if the end of the row is reached
before re-checking in the original space.

reindexed n-simplex (Nrei) the data in the table is indexed using a monotone
hyperplane tree using the Hilbert Exclusion property, and searched using the
Euclidean metric; the upper-bound is applied for all results, before re-checking
in the original space.

normal indexing (Tree) the space is indexed using a monotone hyperplane
tree with the Hilbert Exclusion property, without the use of reference points.

The monotone hyperplane tree is used as, in previous work, this has been
found to be the best-performing simple indexing mechanism for use with Hilbert
Exclusion.

Measurements different figures are measured for each mechanism: the elapsed
time, the number of original-space distance calculations performed and, in the
case of the re-indexing mechanisms, the number of re-indexed space calculations.
All code is available online for independent testing3.

The tests were run on a 2.8 GHz Intel Core i7, running on an otherwise
bare machine without network interference. The code is written in Java, and all
data sets used fit easily into the Java heap without paging or garbage collection
occurring.

3 https://richardconnor@bitbucket.org/richardconnor/metric-space-framework.git.

https://richardconnor@bitbucket.org/richardconnor/metric-space-framework.git
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Table 2. Elapsed Times - SISAP colors with Cosine and Jensen-Shannon distances,
and a 30-dimensional generated Euclidean space. All times are in seconds. The gen-
erated Euclidean space is evenly distributed in [0, 1]30, and gives the elapsed time for
executing 1,000 queries against 9,000 data, with a threshold calculated to return one
result per million data (t = 0.7269)

Dims SISAP colors 30-dim �302

Cosine (t = 0.042) Jensen-Shannon (t = 0.135)

Lseq Lrei Nseq Nrei Tree Lseq Lrei Nseq Nrei Tree Dims Lseq Lrei Nseq Nrei Tree

5 10.3 4.5 8.8 1.0 3.1 248.4 335.5 61.9 65.5 124.8 3 0.5 2.5 0.5 1.6 1.4

10 9.8 3.4 10.4 0.8 155.3 233.2 29.0 29.3 6 0.5 2.3 0.5 1.8

15 12.7 2.4 11.7 0.7 103.5 163.2 22.3 17.2 9 0.5 2.4 0.4 1.3

20 16.5 2.8 16.7 0.7 95.7 162.8 23.8 14.7 12 0.5 2.6 0.3 1.2

25 17.9 2.8 17.7 0.8 87.2 155.6 25.9 16.1 15 0.5 2.8 0.3 1.0

30 18.1 2.6 17.4 0.9 67.7 130.4 27.0 16.5 18 0.6 3.4 0.3 1.0

35 17.7 3.1 17.1 1.1 69.6 136.3 27.9 17.2 21 0.6 3.3 0.2 1.1

40 18.1 3.0 18.1 1.0 62.4 131.2 27.8 17.1 24 0.7 2.9 0.2 1.1

45 17.4 2.7 18.2 1.1 61.1 133.4 29.7 18.4 27 0.7 3.5 0.3 1.2

50 17.6 3.5 17.3 1.4 58.3 130.4 30.6 18.6 30 0.7 3.5 0.3 1.4

Results. As can be seen in Table 1, Nrei consistently and significantly outper-
forms the normal index structure at between 15 and 25 dimensions, depending
on the query threshold. It is also interesting to see that, as the query thresh-
old increases, and therefore scalability decreases, Nseq takes over as the most
efficient mechanism, again with a “sweet spot” at 15 dimensions.

Table 2 shows the same experiment performed with Cosine and Jensen-
Shannon distances. In these cases, the extra relative cost saving from the more
expensive metrics is very clear, with relative speedups of 4.5 and 8.5 times respec-
tively. In the Jensen-Shannon tests, the relatively very high cost of the metric
evaluation to some extent masks the difference between Nseq and Nrei, but we
note that the latter maintains scalability while the former does not. Finally, in
the essentially intractable Euclidean space, with a relatively much smaller search
threshold, Nseq takes over as the fastest mechanism.

Scalability. Table 3 shows the actual number of distance measurements made,
for Euclidean and Jensen-Shannon searches of the colors data. The number of
calls required in both the original and re-indexed spaces are given. Note that
original-space calls are the same for both table-checked and re-indexed mecha-
nisms; the number of original-space calls include those to the reference points,
from which the accuracy of the n-simplex mechanism even in small dimensions
can be appreciated. By 50 dimensions almost perfect accuracy is achieved for
Euclidean search 50 original-space calculations are made, but in fact even at
10 dimensions almost every apex value can be deterministically determined as
either a member or otherwise of the solution set based on its upper and lower
bounds. At 20 dimensions, only 10 elements of the 101414-element data set have
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Table 3. Distance Calculations Performed in Original and Re-indexed Space (figures
given are thousands of calculations per query)

Dims Euclidean (t = 0.051768) Jensen-Shannon (t = 0.135)

Original space Re-indexed Original space Re-indexed

L N Tree Lrei Nrei L N Tree Lrei Nrei

5 2.75 0.38 1.48 5.28 1.76 12.77 2.29 5.97 18.40 6.91

10 1.33 0.05 1.48 4.40 1.23 7.81 0.58 5.97 19.66 6.32

15 0.57 0.04 1.48 3.24 1.13 4.62 0.16 5.97 15.46 4.99

20 0.51 0.03 1.48 3.42 1.15 3.89 0.11 5.97 15.85 4.80

25 0.43 0.04 1.48 3.15 1.18 3.65 0.09 5.97 14.88 4.87

30 0.37 0.04 1.48 3.02 1.21 2.53 0.08 5.97 13.83 4.70

35 0.34 0.04 1.48 2.85 1.31 2.59 0.08 5.97 13.56 4.86

40 0.33 0.04 1.48 2.95 1.29 2.14 0.08 5.97 13.48 4.64

45 0.31 0.05 1.48 2.82 1.32 1.95 0.08 5.97 13.74 4.89

50 0.27 0.05 1.48 2.57 1.33 1.83 0.08 5.97 12.63 4.87

bounds which straddle the query threshold. This indeed reflects the results pre-
sented in Fig. 2 where it is shown that for n ≥ 20 the n-simplex lower bound is
practically equivalent to the Euclidean distance to search colors data.

Equally interesting is the number of re-indexed distance measurements. This
requires further investigation: for n-simplex, these are generally less than for
the original space. This seems to hold for all data other than perfectly evenly-
distributed (generated sets), for which the scalability is the same. The impli-
cation is that the re-indexed metric has better scalability properties than the
original, although we would have expected indexing over the lower-bound func-
tion to be less, rather than more, scalable.

7 Conclusions and Further Work

Based on observations made over half a century ago, we have observed that a
class of useful metric spaces have the n-point property. We have discovered a
practical application for this previously abstract knowledge, by showing that
irregular simplexes of any dimension can be constructed from only their edge
lengths. This then allows upper and lower bounds to be calculated for any two
objects, when the only knowledge available is their respective distances to a fixed
set of reference objects.

There are a number of ways in which this knowledge can be used towards
efficient search for suitable spaces. We have so far examined only one in detail,
where a Euclidean space is extracted and used to pre-filter exact search. Over
the benchmark SISAP colors data set, for some different metrics, this technique
gives the best-recorded performance for exact search. However we believe the
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real power of this technique will emerge with huge data sets and more expensive
metrics, and is yet to be experienced.
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Abstract. The k-nearest neighbor (k-NN) graph is an important data
structure for many data mining and machine learning applications. The
accuracy of k-NN graphs depends on the object feature vectors, which
are usually represented in high-dimensional spaces. Selecting the most
important features is essential for providing compact object representa-
tions and for improving the graph accuracy. Having a compact feature
vector can reduce the storage space and the computational complexity
of search and learning tasks. In this paper, we propose NNWID-Descent,
a similarity graph construction method that utilizes the NNF-Descent
framework while integrating a new feature selection criterion, Support-
Weighted Intrinsic Dimensionality, that estimates the contribution of
each feature to the overall intrinsic dimensionality. Through extensive
experiments on various datasets, we show that NNWID-Descent allows
a significant amount of local feature vector sparsification while still pre-
serving a reasonable level of graph accuracy.

Keywords: Intrinsic dimensionality · k-nearest neighbor graph · Fea-
ture selection · Vector sparsification

1 Introduction

The k-nearest neighbor (k-NN) graph is a key data structure used in
many applications, including machine learning, data mining, and information
retrieval. Some prominent examples for k-NN graph utilization include object
retrieval [21], data clustering [3], outlier detection [8], manifold ranking [9], and
content-based filtering methods for recommender systems [22]. In applications
such as multimedia and recommender systems where data objects are represented
by high-dimensional vectors, the so-called ‘curse of dimensionality’ poses a sig-
nificant challenge to k-NN graph construction: as the dimensionality increases,
the discriminative ability of similarity measures diminishes to the point where
methods such as k-NN graph search that depend on them lose their effectiveness.

The construction of k-NN graphs using brute-force techniques requires
quadratic time, and is practical only for small datasets [4]. One recent tech-
nique that efficiently constructs an approximate k-NN graph in a generic metric
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 110–124, 2017.
DOI: 10.1007/978-3-319-68474-1 8
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space is NN-Descent [4]. NN-Descent is an iterative algorithm that follows a
simple transitivity principle: two neighbors of a given data object have a higher
chance of being neighbors of each other. When ground truth class information
is available, the accuracy of a k-NN graph can be measured in terms of the
proportion of edges that connect nodes sharing the same class label. A common
approach for maximizing k-NN graph accuracy is to incorporate dimensionality
reduction techniques in the graph construction process. This can be done either
independently as a preprocessing step using techniques such as Sparse Principal
Component Analysis (Sparse PCA) [25], or integrated within the graph con-
struction process itself, such as feature weighting [7] or other supervised feature
selection approaches [23]. However, supervised feature selection would depend
on ground truth information, which may not be always available.

In [15], an unsupervised method is presented, NNF-Descent, that iteratively
and efficiently improves k-NN graph construction using the Local Laplacian
Score (LLS) as a feature selection criterion. LLS favors those features that have
high global variance among all objects, but less variance among the neighbor-
hood of a given target object. The NNF-Descent method identifies locally noisy
features relative to each object in the dataset — that is, those features hav-
ing larger LLS scores. The noisy features are then gradually modified using
a local sparsification process so as to decrease the distances between related
objects, and thereby increase k-NN graph accuracy. NNF-Descent has already
shown significant improvement in the semantic quality of the graphs produced,
and superior performance over its competitors on several image databases [15].
However, NNF-Descent is a conservative method in that only a fixed small num-
ber of noisy features are sparsified in each iteration. With greater rates of fea-
ture sparsification, the k-NN graph accuracy tends to decrease. This also occurs
when increasing the neighborhood size k beyond (roughly) 10. NNF-Descent is
designed for datasets with dense feature vectors. In sparse datasets, vectors may
contain very few non-zero features, in which case the sparsification process may
incorrectly remove valuable features [15].

In this paper, we address the problem of improving the tradeoff between
k-NN graph accuracy and the degree of data sparsification. We present the
NNWID-Descent similarity graph construction method, which utilizes the NNF-
Descent framework with a new feature selection criterion, Support-Weighted
Intrinsic Dimensionality (support-weighted ID, or wID) [14]. Support-weighted
ID is an extension of the Local Intrinsic Dimensionality (LID) measure intro-
duced in [1,12], and is used within NNWID-Descent to identify and retain rel-
evant features of each object. Unlike LLS, which is a variance-based measure,
support-weighted ID penalizes those features that have lower locally discrimina-
tive power as well as higher density. In fact, support-weighted ID measures the
ability of each feature to locally discriminate between objects in the dataset.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on the relevant feature selection research literature, and on unsupervised
approaches in particular. An overview of the NNF-Descent framework is pre-
sented in Sect. 3. We outline the proposed NNWID-Descent method in Sect. 4.
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In Sect. 5, the performance of our method — with experimental results and
analysis on several real datasets — is compared to NNF-Descent and other com-
peting methods from the literature. Finally, we conclude in Sect. 6 with a dis-
cussion of future research directions.

2 Related Work

A brief review of feature selection techniques is provided in this section, with a
particular emphasis on unsupervised methods.

2.1 Supervised Feature Selection and k-NN Graph Construction

Feature selections methods are commonly used in supervised learning methods
to maximize their predictive accuracy. For example, Han et al. [7] proposed
a Weight Adjusted k-Nearest Neighbor (WAKNN) classification scheme where
the weights of the features are learned using an iterative algorithm. In [23], a
supervised feature selection method is presented that uses an improved k-NN
graph-based text representation model to reduce the number of features and
predict the category of the text in the test set.

2.2 Unsupervised Feature Selection

In unsupervised feature selection methods, class information is not available, and
thus it is difficult to decide the importance of a feature — especially when many
of the features may be redundant or irrelevant [5]. Most existing unsupervised
feature selection approaches are customized to a particular search or clustering
algorithm.

Unsupervised feature selection methods can be further classified into global
feature selection methods and local feature selection methods. In global feature
selection methods, the features are selected based on their relevancy that has
been computed globally using the entire dataset. The Laplacian Score (LS) [10]
is one of the most popular unsupervised filter-based methods for generic data. LS
selects the features to be used for all objects in the dataset based on their ability
to discriminate among object classes. LS favors features that have high vari-
ance on the entire datasets and low variance within local neighborhoods. Local
feature selection methods are based on the idea that the discriminative power
and the importance of a feature may vary from one neighborhood to another;
they aim to select features based on their relevancy to a given neighborhood.
For example, Li et al. [18] introduced a localized feature selection algorithm for
clustering that is able to reduce noisy features within individual clusters. Their
algorithm computes, adjusts, and normalizes the scatter separability for indi-
vidual clusters before applying a backward search technique to find the optimal
(local) feature subsets for each cluster. Mitra et al. [20] introduced an algorithm
that partitions the original feature set into clusters based on a k-NN graph prin-
ciple. To detect and remove redundant features, their algorithm uses a pairwise
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feature similarity measure, the Maximum Information Compression index, that
find the linear correlation between features in the clusters. This algorithm has
a low computational complexity, since it does not involve any search for feature
subsets [20]. However, their model may be too restrictive for real datasets, since
correlations among features within clusters may not exist, or may be non-linear
when they do exist [24].

3 Overview of NNF-Descent

As the basis for the work presented in this paper, in this section we provide
an overview of the NNF-Descent algorithm [15]. We also describe its feature
selection criterion, the Local Laplacian score LLS, and discuss its utilization in
feature ranking and sparsification processes.

3.1 Local Laplacian Score, Feature Ranking, and Sparsification

Local Laplacian Score LLS is used for feature ranking with respect to individual
data objects. Assume we have a dataset X with n data objects, each represented
by a D-dimensional feature vector f = (f1, f2, . . . , fD). We further assume that
the vectors are normalized. Then, for an object xi ∈ X, the LLS score for each
of its feature fi can be computed using the following formula:

LLS(fi) =
∑

j

(fi − fj)2Sij

var(f)
(1)

where var(f) is the variance of feature f, and Sij is the (Gaussian) RBF kernel
similarity between two object vectors xi and xj defined as:

Sij =

{
exp(−‖xi−xj‖2

2σ2 ), if i and j are connected;
0, otherwise.

(2)

Here, σ is a bandwidth parameter. Sij favors neighboring objects xi and xj that
are likely to share the same class label. A smaller value for LLS(fi) indicates
that the feature is stable among the neighbors of object xi. The features are
ranked for each object in decreasing order of their LLS values, and the top-
ranked proportion Z of the ranked list is deemed to be noise. In the sparsification
process, the impact of noisy features is minimized by changing their values in
the feature vectors to the global mean, which is zero due to normalization.

3.2 NNF-Descent

The NNF-Descent framework interleaves k-NN graph construction using NN-
Descent [4] with a feature ranking and sparsification process. Algorithm 1 gives
the complete algorithm for NNF-Descent. After normalizing the original vectors
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of the dataset X, the algorithm starts by computing the initial approximate k-
NN graph using NN-Descent [4] (lines 1–2). The NN-Descent procedure depends
on the so-called local join operation. Given a target point p, the local join oper-
ation checks whether any neighbor of p’s neighbors is closer to p than any points
currently in its neighbor list, and also whether pairs of neighbors of p can like-
wise improve each other’s tentative neighbor list. Noisy features are gradually
identified using LLS, ranked, and then sparsified.

Algorithm 1. NNF-Descent
Input : Dataset X, distance function dist, neighborhood size K, sparsification

rate Z, number of iterations T
Output: k-NN graph G

1 Normalize the original feature vectors of X;
2 Run NN-Descent(X, dist,K) to convergence to obtain an initial k-NN graph G;
3 repeat
4 Generate a list L of all data points of X in random order;
5 foreach data point p ∈ L do
6 Rank the features of p in descending order of their LLS scores, as

computed over the current k-NN list of p;
7 Change the value of the top-ranked Z-proportion of features to 0;
8 Recompute the distances from p to its k-NN and RNN points;
9 Re-sort the k-NN lists of p and its RNNs;

10 For each pair (q, r) of points from the k-NN list and RNN list of p,
compute dist(q, r);

11 Use (q, dist(q, r)) to update the k-NN list of r, and use (r,dist(q, r)) to
update the k-NN list of q;

12 end

13 until maximum number of iterations T is reached ;
14 Return G

4 Improving NN-Descent Graph with Weighted ID

The NNF-Descent framework, which integrates feature ranking and sparsifica-
tion with k-NN graph construction, serves as the basis for the method presented
in this paper, NNWID-Descent. In NNWID-Descent, instead of feature variance,
a measure of the discriminability of features is used for feature ranking. In this
section, we first provide a brief overview of this measure of discriminability,
the Support-Weighted Local Intrinsic Dimensionality or support-weighted ID
(Sect. 4.1). The utilization of support-weighted ID as a feature selection crite-
rion is then presented in Sect. 4.2. Finally, the details of the proposed NNWID-
Descent algorithm is given in Sect. 4.3.
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4.1 Support-Weighted Local Intrinsic Dimensionality

As an alternative to the Local Laplacian Score, we propose in this paper a new
feature evaluation strategy based on the Local Intrinsic Dimension (‘Local ID’,
or ‘LID’) model originally appearing [12]. Given a distribution of distances with
a univariate cumulative distribution function F that is positive and continuously
differentiable in the vicinity of distance value x, the indiscriminability of F at x
is given by

IDF (x) � x · F ′(x)
F (x)

. (3)

The indiscriminability reflects the growth rate of the cumulative distance func-
tion at x; it can be regarded as a probability density associated with the neigh-
borhood of radius x (that is, F ′(x)), normalized by the cumulative density of the
neighborhood (that is, F (x)/x). The local intrinsic dimension has been shown to
be equivalent to a notion of local intrinsic dimensionality, which can be defined
as the limit ID∗

F = limx→0+ IDF (x). However, the notion of local ID as proposed
in [13,14] is considerably more general, in that the original model of [12] has been
extended to handle multivariate real-valued functions that are not necessarily
the cumulative distribution functions of distance distributions.

When considering a distance distribution on a space of many features, it is
natural to ask which variables or features are contributing most to the overall
discriminability of the function or cumulative distribution function (as the case
may be). Two variables or features with the same local ID value may not neces-
sarily have the same impact on the overall ID value. To illustrate this, let Φ and
Ψ be the respective cumulative distribution functions of two univariate distance
distributions on distance variable x.

The indiscriminability IDΦ(x) can be thought of as having a ‘support’ equal
to the probability measure associated with distance x — namely, Φ(x); similarly,
the support for IDΨ (x) would be Ψ(x). Even when the indiscriminabilities IDΦ(x)
and IDΨ (x) are equal, if (say) the support Φ(x) greatly exceeded Ψ(x), one would
be forced to conclude that the features associated with IDΦ are more significant
than those of IDΨ , at least within the neighborhood of radius x.

For the comparison of the discriminabilities of different features in our pro-
posed adaptation of NNF-Descent, we will adopt the following Support-Weighted
ID complexity measure. This measure has the highly desirable theoretical advan-
tage of being additive across features (for more details we refer the reader to [14]).

Definition 1 (Support-Weighted ID [14]). Let F be a real-valued multivari-
ate function over a normed vector space (Rm, ‖ · ‖), and let x �= 0 ∈ R

m be a
vector of positive norm. The support-weighted indiscriminability of F at x is
defined as

wIDF (x) � F (x) IDF (x) = x · ∇F (x) . (4)

Estimating support-weighted ID for the purpose of assessing indiscriminabil-
ity can be complicated by the need to standardize the distance within which
the indiscriminabilities are measured — in a k-NN graph, each neighborhood is
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associated with its own potentially-unique k-NN distance. If each feature were
to assessed at widely-varying distances, there would be no basis for the fair
comparison of feature performance.

In practice, however, estimation of ID requires samples that are the result
of a k-nearest neighbor query on the underlying dataset. Across such samples,
standardization can be achieved using the local ID representation theorem:

Theorem 1 (Local ID Representation Theorem [13]). Let Φ : R → R be a
real-valued function, and let v ∈ R be a value for which IDΦ(v) exists. Let x and
w be values for which x/w and Φ(x)/Φ(w) are both positive. If Φ is non-zero and
continuously differentiable everywhere in the interval [min{x,w},max{x,w}],
then

Φ(x)
Φ(w)

=
( x

w

)IDΦ(v)

· GΦ,v,w(x), where (5)

GΦ,v,w(x) � exp
(∫ w

x

IDΦ(v) − IDΦ(t)
t

dt

)
, (6)

whenever the integral exists.

For a univariate cumulative distribution function Φ at distance x, we can use
Theorem 1 with v = 0 to relate the support Φ(x) with the support at another
desired distance w. If n is the size of the dataset that we are given, we choose the
distance at which over n selection trials one would expect k samples to fall within
the neighborhood — that is, w would satisfy Φ(w) = k/n. The support-weighted
ID would thus be:

wIDΦ(x) = Φ(x) IDΦ(x) =
k IDΦ(x)

n
·
( x

w

)ID∗
Φ · GΦ,0,w(x) . (7)

In [13] it is shown that (under certain mild assumptions) the function GΦ,0,w(x)
tends to 1 as x,w → 0 (or equivalently, as n → ∞); also, IDΦ(x) would tend to
ID∗

Φ, for which reliable estimators are known [1,11]. Thus, for reasonably large
dataset sizes, we could use the following approximation:

wIDΦ(x) ≈ k ID∗
Φ

n
·
( x

w

)ID∗
Φ

. (8)

4.2 Defining Support-weighted ID (wID) for each Feature

Let X = {x1, x2, x3, . . . , xn} be a dataset consisting of n objects such that
each object xi is represented as a feature vector in R

D. The set of features is
denoted as F = {1, 2, . . . ,D} such that j ∈ F is the j-th feature in the vector
representation. Since the factor k/n in Eq. 8 can be regarded as constant, the
support-weighted ID criterion for feature fj of object xi can be simplified:

wIDi(fj) = IDfj
·
(

af

wfj

)IDfj

(9)
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where IDfj
is the local intrinsic dimensional estimate for the neighborhood, and

wfj
is the distance to the k-th nearest neighbor with respect to feature fj ,

respectively. af is any positive constant representing the distance value x. For
simplicity, af can be set as an average of a sample of k-NN distances across
many objects for feature fj . Equation (9) helps to find the most discriminative
features by considering both the density of neighborhood around each object
and the complexity of local ID with respect to a particular feature fj .

For feature ranking, a straightforward method is used for selecting the most
local discriminative features for each object using wIDi, in which the D features
are ranked in descending order of wIDi(fj), and a proportion Z of the top-
ranked features are determined as candidates for sparsification. Assuming that
the feature vectors have been normalized, the sparsification process (described
in Sect. 3.1) will set the values of the least important features to 0.

4.3 NNWID-Descent

Algorithm 2 shows how NNWID-Descent proceeds. The input parameters are K,
Z, and T , where K ≥ k is the working neighborhood size during the construction
of the output k-NN graph, Z is a fixed proportion of features that are sparsified
in each iteration, and T is the total number of desired iterations. The feature
sparsification rate Z should be relatively small.

The algorithm has two phases: an initialization phase, and a sparsification
and refinement phase. In the initialization phase, the algorithm computes a K-
NN graph using NN-Descent after normalizing the original vectors of the dataset
X (lines 2–4). This step is crucial, since a neighborhood of reasonably high
quality is needed for the subsequent refinement phase to be effective.

In line 4, the value of af for each feature is precomputed for use in calculating
wID values, during the sparsification and refinement phase. As will be described
in Sect. 5.4, the value af can be computed as the average of the K-NN distances
using the feature f alone, over a sample of the data objects. The K-NN graph
entries are then improved using the sparsification and refinement phase (Lines
6–16). This phase includes three steps: feature ranking, sparsfication, and graph
updating. In lines 9–10, the features are ranked in decreasing order according
to the wID values obtained from the set of K-NN distances determined by each
feature alone. For each object p, the top Z-proportion of features are then spar-
sified (line 11). As will be described in Sect. 5.4, the value Z is chosen depending
on the density of the dataset X. As in [15], only non-zero features are candi-
dates for sparsification, since features with value 0 do not provide discriminative
information in the vicinity of p, and thus do not affect the quality of the K-NN
graph. Ignoring zero features will ensure that once sparsified, a feature will not
be evaluated again in subsequent iterations. Sparsifying a feature vector for p
in one iteration will more likely change the nearest neighbors for each feature of
p; for this reason, to determine the correct wID value in subsequent iterations,
recomputation of the K-NN distances is required for each feature.

Lines 12–14 correspond to Lines 8–11 in NNF-Descent (Algorithm 1) which
identify the local join operation and graph update step to improve the graph
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Algorithm 2. NNWID-Descent
Input : Dataset X, distance function dist, neighborhood size K, sparsification

rate Z, number of iterations T
Output: k-NN graph G

1 {Initialization Phase}
2 Normalize the original feature vectors of X;
3 Run NN-Descent(X, dist,K) to convergence to obtain an initial K-NN graph G;
4 For each feature f , set the value of af to the average of K-NN distances

computed for the feature over a sample of objects.
5 {Sparsification and Refinement Phase}
6 repeat
7 Generate a list L of all data points of X in random order;
8 foreach data point p ∈ L do
9 For each feature, compute the K-NN distances from p with respect to X;

10 Rank the features of p in descending order of their wID scores (Eq. 9),
as computed over the current K-NN list of p;

11 Change the value of the top-ranked Z-proportion of features to 0;
12 Recompute the distances from p to its K-NN and RNN points;
13 Re-sort the K-NN lists of p and its RNNs;
14 For each pair (q, r) of points from the K-NN list and RNN list of p,

compute dist(q, r);
15 Use (q, dist(q, r)) to update the K-NN list of r, and use (r, dist(q, r)) to

update the K-NN list of q;
16 end

17 until maximum number of iterations T is reached ;
18 Return G

accuracy. In the implementation, we set K ≥ k to be the length for both RNN
and NN lists used in computing wID.

The time complexity of NNWID-Descent can be divided according to its
phases as follows: For the initialization phase, data normalization and NN-
Descent —in terms of distance computation until convergence— take O(Dn)
and O(K2Dn) time, respectively. Computing the values of af for all features
using average k-NN distances takes O(Dn2). For each iteration of the sparsi-
fication and refinement phase, feature ranking and selection using wID takes
O(KDn + D log D) time per object, with total time in O(KDn2 + Dn log D)
over all objects. As with NN-Descent, assuming that the lengths of the RNN
lists are in O(K), each iteration of NNWID-Descent takes O(K2Dn) time for
the neighbor list update step. However, the optimizations that have been defined
for NN-Descent in [4] can also applied for NNWID-Descent to speed up the local
join operation and update steps.
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5 Experiments

For the comparison of NNWID-Descent with competing methods, we conducted
experiments to study the influence on performance of varying the feature spar-
sification rate Z and the working neighbor list size K.

5.1 Datasets

Six real datasets of varying sizes and densities were considered, of which five are
image sets:

– The Amsterdam Library of Object Images (ALOI) [6] contains 110,250 images
of 1000 small objects. Each image is described by a 641-dimensional feature
vector based on color and texture histograms.

– The MNIST dataset [17] contains 70,000 images of handwritten digits. Each
image is represented by 784 gray-scale texture values.

– Google-23 [16] contains 6,686 faces extracted from images of 23 celebrities.
The dimension of the face descriptors is 1,937.

– The Isolated Letter Speech Recognition dataset (ISOLET) [19] contains 7797
objects generated by having 150 subjects speak the name of each letter of the
alphabet twice. Each object is described by 617 features, and were scaled so
that all values lie in the interval [−1.0, 1.0].

– The Human Activity Recognition Using Smartphones dataset (HAR) [2] con-
tains 10,299 instances of accelerometer and gyroscope data from 30 subjects
performing 6 different activities. Each instance is represented by a feature
vector of 561 time and frequency domain variables.

– The Relative Location of CT dataset (RLCT) [19] contains 53500 axial CT
slice images from 74 different patients. Each CT slice is described by two
histograms in polar space. The feature vectors of the images are of 385
dimensions.

5.2 Competing Methods

The performance of NNWID-Descent is contrasted with that of 3 competitors:

– NNF-Descent: uses LLS criterion for feature ranking and sparsification (as
described in Sect. 3).

– Random: as per NNF-Descent, except that for each object the features to be
sparsified are selected randomly. The rationale for the comparison with this
method is to establish a baseline for the performance of the feature ranking
and sparsification criterion.

– Sparse PCA: is similar to wID in such that it takes into account the dataset
sparsity. In this method, the feature extraction and graph construction are
conducted as two separate processes. To allow a fair comparison with other
methods, after choosing the highest principal components, an exact k-NN
graph is computed (at a computation cost of O(Dn2)).
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5.3 Performance Measure

We use the graph accuracy as a performance measure. The class labels of data
objects were used to measure the quality of the resulting k-NN graph at every
iteration. The accuracy of the resulting k-NN graph is evaluated, as in [15], using
the following formula:

graph accuracy =
#correct neighbors

#data × K
, (10)

where the ‘correct’ neighbors share the same label as the query object.

5.4 Default Parameters

Except for the case of Sparse PCA, the feature vectors were normalized within
each dataset in each experiment performed, and the Euclidean (L2) distance was
employed. In NNWID-Descent, for the datasets Google-23, HAR, and ISOLET,
the value of af in the weight parameter of Equation (9) is set to be the average
of distances (using feature f) computed from the neighbors of all objects in
the dataset; for ALOI, MNIST, and RLCT, the average was computed over
a random sample of 100 objects. Furthermore, for all features, the value af is
precomputed in advance using the original feature vectors without sparsification.
For simplicity, the number of neighbors used for computing wID and LLS is set
to be equal to the input parameter K.

5.5 Effects of Varying the Sparsification Rate Z

Parameter Setting. In this experiment, we tested the effect on performance of
varying Z while keeping K fixed. The choices of Z is varied with different datasets
as it depends heavily on the density of the feature vectors. For example, in each
iteration, smaller choice of Z (= 0.0025%) for the sparse datasets (MNIST,
ALOI, ISOLET, and RLCT) was required to produce gradual changes in graph
accuracy with acceptable performance. On the other hand, the dense datasets
(Google-23 and HAR) require a larger starting point for Z (= 0.1%)to produce
perceptible changes in performance from iteration to iteration. For Sparse PCA,
the parameter controlling sparsity was set to Z, and the number of principle
components selected were set to ZD. The total number of iterations T is set to
70 for all datasets except ALOI, for which T is set to 40. For all methods in the
comparison, the value of K is fixed at 100. Figure 1 shows plots of the graph
accuracy in each iteration for all the methods, across a range of Z values.

Results and Analysis. On five of the six datasets, compared with its competi-
tors, NNWID-Descent achieves consistent improvements for graph accuracy and
resistance to performance degradation as sparsification increases — for ISOLET,
it is outperformed only by Random. For the MNIST dataset, Sparse PCA has
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Fig. 1. Performance of NNWID-Descent with varying values of Z, and K = 100.

a performance comparable to that of NNWID-Descent for small sparsification
rates.

It is important to realize that obtaining accurate estimates of wID requires
that the neighborhood be of generally good quality. In NNWID-Descent, the
recomputation of neighborhoods after sparsification at each iteration is essential
to the quality of wID estimation. However, using distance values computed from
the current k-NN graph may lead to less accurate ID estimation, if the initial
graph is of low quality.

Execution Time. The cost of sparsification and refinement dominates the
overall computational performance of the three methods that employ this strat-
egy. For these methods, the execution time for the sparsification and refinement
phase is displayed in Table 1. The displayed times account for the operations of
feature ranking, sparsification, and updating of neighbor lists. The table shows
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Table 1. Average time in seconds per iteration.

NNF-Descent Random NNWID-Descent

Google-23 320.96 70.77 1431.56

ISOLET 204.92 73.34 1152.43

HAR 248.75 141.46 1275.44

MNIST 5274.55 4429.77 8281.03

ALOI 13053.55 11183.65 55363.56

RLCT 3125.64 2853.78 9549.33

the average running time in seconds per iteration for all datasets under consid-
eration.

Since the time for sparsification and neighbor list updating is expected to
be the same for all three methods, the observed differences in execution time
related to differences in the costs of the feature ranking step. As can be observed
from Table 1, NNWID-Descent has the highest execution cost. This is due to the
necessity of computing neighborhood distances for each object per feature in each
iteration. Despite its larger running time relative to its competitors, NNWID-
Descent shows a better potential for the improvement of graph accuracy, and
better resistance to performance degradation as sparsification increases.

5.6 Effects of Varying the Neighbor List Size K

Parameter Setting. In this experiment, we compare the performance of
NNWID-Descent against NNF-Descent and Sparse PCA as the neighbor list
size increases beyond K = 100. We show the results only for the largest datasets
(ALOI, MNIST and RLCT), as the values of K are too large relative to the
size of the other datasets. Concretely, K is set to 100, 200, 400, and 800, and
Z is fixed at 4% for MNIST and RLCT, and at 2% for ALOI. These Z val-
ues represent approximately the peak graph accuracy achieved in Fig. 1. The
performances across these choices of K are plotted in Fig. 2.

Results and Analysis. We note that for ALOI and RLCT, NNWID-Descent
still provides better accuracy than other methods as the neighborhood list size
K is increased. With MNIST, Sparse PCA outperforms other methods as K
increases, which indicates that this method can lead to a reasonable graph accu-
racy for a sparse dataset when Z is small. For all methods, the performance
degrades as K increases. In addition, we observe that the relative performances
of all methods shown when varying K (Fig. 2) is still consistent with the perfor-
mances observed when varying Z (Fig. 1).
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Fig. 2. Performance of NNWID-Descent with different values of K and fixed Z (Z =
4% for RLCT, MNIST, and 2% for ALOI).

6 Conclusion and Future Work

In this paper, we presented the NNWID-Descent similarity graph construction
method, which utilizes the NNF-Descent framework with a new unsupervised
feature selection criterion. This method aimed to improve or maintain k-NN
graph accuracy while achieving a significant amount of sparsification of object
feature vectors. We proposed the use of support-weighted ID (wID) to identify
relevant features with higher discriminative power local to each object. NNWID-
Descent ranks the features according to their wID values, then sparsifies those
features achieving the smallest values.

With respect to the correctness of k-NN graph produced using six real
datasets, NNWID-Descent has been shown to generally outperform its closest
competitors, NNF-Descent and Sparse PCA. NNWID-Descent can be applied to
obtain more compact representations for high-dimensional features vectors, which
is important to reduce the storage and computational complexity for many appli-
cations. However, the ID estimator used in NNWID-Descent generally requires
relatively large dataset sizes to provide a reasonable accuracy. Of the six datasets
used in our experiments, three are considered too small for the extreme-value-
theoretic LID model to be applicable. Further improvement of NNWID-Descent
could be achieved through the development of ID estimators that can more accu-
rately handle smaller dataset sizes and smaller neighborhood sample sizes.
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Abstract. Finding similar time series is an important task in multime-
dia retrieval, including motion gesture recognition, speech recognition, or
classification of hand-written letters. These applications typically require
the similarity (or distance) measure to be robust against outliers and
time warps. Time warps occur if two time series follow the same path
in space, but need specific time adjustments. A common distance mea-
sure respecting time warps is the dynamic time warping (DTW) function.
The edit distance with real penalties (ERP) and the dog-keeper distance
(DK) are variations of DTW satisfying the triangle inequality. In this paper
we propose a novel extension of the DK distance called windowed dog-
keeper distance (WDK). It operates on sliding windows, which makes it
robust against outliers. It also satisfies the triangle inequality from the
DK distance. We experimentally compare our measure to the existing
ones and discuss the conditions under which it shows an optimal clas-
sification accuracy. Our evaluation also contributes a comparison of DK

and DTW. For our experiments, we use well-known data sets such as the
cylinder-bell-funnel data set and data sets from the UCI Machine Learn-
ing Repository.

Keywords: Time series · Metric · Multimedia retrieval

1 Introduction

Many applications require to find similar time series to a given pattern. One com-
mon application of finding similar time series is multimedia retrieval, including
motion gesture recognition, speech recognition, and classification of handwritten
letters. All these tasks have in common that the time series of same classes (e.g.,
same spoken words or same gestures) follow the same path in space, but have
some temporal displacements. Another example is tracking the GPS coordinates
of two cars driving the same route from A to B. Although we want these time
series to be recognized as being similar, driving style, traffic lights, and traf-
fic jams might result in large temporal differences. Distance functions such as
dynamic time warping (DTW) [11], edit distance with real penalties (ERP) [4], and
the dog-keeper distance (DK) [6] respect this semantic requirement.

c© Springer International Publishing AG 2017
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Another requirement for similarity functions is their computational perfor-
mance since it is common to compare a sample time series to a large set of time
series. To improve performance we might improve the computation time of one
time series comparison or we might reduce the number of comparisons. Assum-
ing that SETH [3] holds, Bringmann and Künnemann proved that there is no
algorithm computing the exact value of DTW in less than quadratic time [3].
Similar results were proven for the DK distance [2] and the edit distance [1]. How-
ever, we are usually not interested in the exact distance values, but in the set
of the nearest neighbours. A common approach for pruning elements as possible
candidates are lower bounds to the distance function.

Keogh and Ratanamahatana exhaustively compared nine different time series
distance functions including DTW and ERP on 38 time series data sets coming from
different domains [5]. They also compared eight different time series representa-
tions including Discrete Fourier Transformation (DFT) and Symbolic Aggregate
approXimation (SAX) [10]. In their work, they investigated contradictory claims
about the effectiveness of different time series distance functions and representa-
tions. Their first major insight is that there is little difference in the effectiveness
between different time series representations excluding some rare cases. They
say there is no clear winner for the choice of the time series distance function,
although elastic distance functions, such as DTW, ERP, LCSS, or EDR are more
accurate, especially on small data sets.

To the best of our knowledge, DTW has not been compared to the DK distance.
If DTW is the time warping equivalent to the L1-norm, then the DK distance is
the equivalent to the L∞-norm and thereby more sensitive to noise or outliers
within time series. On the other hand, we could observe a speed-up by an order
of magnitude in our experimental evaluation. Why does the DK distance perform
much better although the algorithm is quite similar to that of DTW? Can we
improve the robustness of the DK distance?

The first contribution of our paper is the windowed DK distance (WDK), which
is a modification of the DK distance to satisfy the triangle inequality. We evaluate
the performance of the four time warping distance functions DTW, ERP, DK, and
WDK by comparing the results of k-nearest neighbour classifiers on four different
multimedia time series data sets coming from different domains. The second
contribution is that we also investigate the reason for the low computation time
of the DK and WDK distance functions.

The rest of this paper is structured as follows. Section 2 introduces basic
terms and notations and reviews the time series distance functions DTW, ERP,
and DK. Section 3 defines the WDK distance function and provides an algorithm
for its computation. Section 4 evaluates these four distance functions on four
multimedia time series data sets. Section 5 concludes the paper.

2 Preliminaries and Concepts

This section introduces basic notations and concepts used in this paper.
It is hard to find an open access proof for the triangle inequality of the DK

distance in modern mathematical language. Therefore we provide a new proof in
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this section that shows this well known fact again. This also proves the triangle
inequality for the WDK distance proposed in this paper.

Basic Notation: With N, R, R�c we denote the set of non-negative integers, the
set of reals, and the set of all reals � c, for some c ∈ R, respectively. An m × n
matrix is denoted by A = (ai,j). Given a matrix A, Ai,j denotes the element in
the i-th row and j-th column.

By R
k, for k ∈ N, we denote the set of all vectors of length k. For a vector

v ∈ R
k we write vi for the entry at position i.

For mappings f : A −→ B and g : B −→ C, we denote the image of f as
f(A) := {f(x) | x ∈ A} and g ◦ f : x �→ g(f(x)) the concatenation of g and
f . Furthermore, inf f and sup f are the infimum and the supremum of f(A)
respectively.

Norms and Metric Spaces: By ‖·‖p, for p ∈ R�1, we denote the well known

Lp-norm on R
k; i.e., ‖v‖p =

(∑k
i=1 |vi|p

)1/p for all v ∈ R
k.

Recall that a pseudo metric space (M, d) consists of a set M and a distance
function d : M × M −→ R�0 satisfying the following axioms:

∀ x, y ∈ M : d(x, y) = d(y, x).
∀ x, y, z ∈ M : d(x, z) � d(x, y) + d(y, z).

A metric space is a pseudo metric space which also satisfies ∀ x, y ∈ M :
d(x, y) = 0 ⇐⇒ x = y. Note that if ‖·‖ is an arbitrary vector norm and
d(·, ·) is defined as d(u, v) := ‖u − v‖, then (Rk, d) is a metric space. By dp, for
p ∈ R�1, we denote the usual Lp-distance, i.e., the particular distance function
with dp(x, y) = ‖x − y‖p.

Time Series: A time series T of length � over a metric space M is a sequence
T = (t1, · · · , t�) with ti ∈ M for 1 � i � �. We denote Tail(T ) := (t2, · · · , tn) as
the time series when removing first element. In the rest of the paper, we consider
M = R

k for some k ∈ N. We denote time series with the letters S, T , and R.

Time Series Distances: The algorithms for the computation of DTW, ERP, and
DK are very similar. They differ in how they handle a time warping step and
whether they take the maximum along a warping path or sum up these values.
DTW and ERP sums the values up while the DK distance takes the maximum.

For a formal definition, let S = (s1, · · · , sm) and T = (t1, · · · , tn) be two
time series, gap a globally constant element (0 as proposed by [4]), and d(s, t)
a distance function for the elements of the time series. The well known distance
function DTW is defined as follows.

DTW(S, ()) = ∞ DTW((), T ) = ∞ DTW((s), (t)) = d(s, t)

DTW(S, T ) = min

⎧
⎪⎨

⎪⎩

d(s1, t1) + DTW(Tail(S), Tail(T ))
d(s1, t1) + DTW(S, Tail(T ))
d(s1, t1) + DTW(Tail(S), T )
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ERP differs from DTW by including gap elements to the time series on warping
steps.

ERP(S, ()) = ∞ ERP((), T ) = ∞ ERP((s), (t)) = d(s, t)

ERP(S, T ) = min

⎧
⎪⎨

⎪⎩

d(s1, t1) + DTW(Tail(S), Tail(T ))
d(s1, gap) + DTW(S, Tail(T ))
d(gap, t1) + DTW(Tail(S), T )

The DK distance is similar to DTW and differs by taking the maximum distance
along a warping path instead of the sum.

DK(S, ()) = ∞ DK((), T ) = ∞ DK((s), (t)) = d(s, t)

DK(S, T ) = min

⎧
⎪⎨

⎪⎩

max {d(s1, t1), DK(Tail(S), Tail(T ))}
max {d(s1, t1), DK(S, Tail(T ))}
max {d(s1, t1), DK(Tail(S), T )}

Note that ERP and DK satisfy the triangle inequality and therefore are metric
distance functions [4,7]. See Fig. 1 for sketches of the behaviour of these distance
functions.

Fig. 1. Example time series with example warping paths sketching the behaviour of DTW
(left), DK (center), and ERP (right). Distances between states are marked with solid lines
while the circled and squared time series are connected using dashed lines. DTW sums up
the distances along the warping path (all solid lines). DK is the largest distance along
the warping path (longest solid line). ERP sums up the distances along the warping path
(all solid lines). However, when warping (second circle from the left and third square
from the right), states are compared to the gap element (empty square).

Algorithm 1 shows a pseudo code for computing the DK distance between
two time series similar to the algorithm proposed by Eiter and Mannila [6].
We extended the algorithm considering a threshold as third parameter for early
abandoning. The idea of early abandoning works the same in all algorithms
for the mentioned time series distance functions. After computing the next row
(or column) of the matrix D, the minimum value in that row is a lower bound
for the final distance value. If that value already exceeds the threshold, the
algorithm stops and returns the lower bound.

Dog-Keeper is a Metric: Satisfying the triangle inequality might be an oppor-
tunity for indexing the data using metric index structures. In the following we
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Algorithm 1. Pseudo Code for the Dog-Keeper Distance with Early Abandoning

1 Input: S = (s1, · · · , s�), T = (t1, · · · , tm), τ
2 Output: Lower bound for the dog-keeper distance
3

4 D1,1 = d(s1, t1)
5 if D1,1 � τ
6 return D1,1

7 for i in 2, · · · , �
8 Di,1 = max {Di−1,1, d(si, t1)}
9 for j in 2, · · · ,m

10 ε = ∞
11 for i in 1, · · · , �
12 pred = min {Di−1,j ,Di,j−1,Di−1,j−1}
13 Di,j = max {d(si, tj), pred}
14 ε = min {ε,Di,j}
15 if ε � τ
16 return ε
17 return D�,m

want to provide a new proof in modern mathematical language that shows that
the dog-keeper distance satisfies the triangle inequality. Therefore, we prove the
triangle inequality for th Fréchet distance. Since the dog-keeper distance is the
discrete special case of the Fréchet distance, the proof also holds for the dog-
keeper distance.

Let M := R
k be the space of states, d : M × M −→ R�0 be a metric on all

states. We denote the set of all (piecewise continous) curves over [0, 1] ⊂ R by

T := {f : [0, 1] −→ M}

and the set of all time warps over [0,1] by

Σ := {σ : [0, 1] −→ [0, 1]} ,

where all τ ∈ Σ are continuous, strictly monotonically increasing, and inf τ = 0,
sup τ = 1. For f, g ∈ T , let δ∞(f, g) := maxx∈[0,1] d(f(x), g(x)) be the maximum
distance of f and g.

Definition 1 (Fréchet Distance). Let f, g ∈ T be two curves over [0, 1]. The
Fréchet distance DK of f and g is defined as

DK(f, g) := inf
σ,τ∈Σ

δ∞(f ◦ σ, g ◦ τ)

Using this notation we prove the following theorem.

Theorem 1. The Fréchet distance DK satisfies the triangle inequality, i.e.,

∀f, g, h ∈ T : DK(f, h) � DK(f, g) + DK(g, h).
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To prove the triangle inequality, we first prove the following lemma showing
that the δ∞ distance does not change when applying the same temporal adjust-
ment to both curves. The second lemma then reduces the search to all warping
functions applied to one time series only.

Lemma 1. Let f, g ∈ T be two arbitrary curves and σ ∈ Σ be an arbitrary time
warp. Then, the following equation holds:

δ∞(f, g) = δ∞(f ◦ σ, g ◦ σ)

Proof. Consider the mapping

θ : [0, 1] −→ R�0

x �−→ d(f(x), g(x)).

Then,

δ∞(f, g) = sup (θ([0, 1])) , and
δ∞(f ◦ σ, g ◦ σ) = sup (θ ◦ σ([0, 1]))

Since θ([0,1]) = θ(σ([0, 1])), the desired equation δ∞(f, g) = δ∞(f ◦ σ, g ◦ σ)
follows. �

Lemma 2. Let f, g ∈ T be two arbitrary curves. Then the following equation
holds:

DK(f, g) = inf
σ∈Σ

δ∞(f, g ◦ σ)

Proof. Consider two sequences (σi)i∈N and (τi)i∈N with σi, τi ∈ Σ for i ∈ N, such
that

δ∞(f ◦ σi, g ◦ τi)
i→∞−−−−−−−→ DK(f, g).

Since each σi is invertable, Lemma 1 can be applied on δ∞(f ◦ σi, g ◦ τi) with
σ−1

i , i.e. we obtain

δ∞(f, g ◦ τi ◦ σ−1
i ) = δ∞(f ◦ σi ◦ σ−1

i , g ◦ τi ◦ σ−1
i )

= δ∞(f ◦ σi, g ◦ τi)
i→∞−−−−−−−→ DK(f, g).

Thus, we have a sequence (θi)i∈N := (τi ◦ σ−1
i )i∈N with θi ∈ Σ for i ∈ N, such

that δ∞(f, g ◦ θi)
i→∞−−−−→ DK(f, g).

On the other hand,

inf
σ,τ∈Σ

δ∞(f ◦ σ, g ◦ τ) � inf
θ∈Σ

δ∞(f, g ◦ θ).

Hence, DK(f, g) = infθ∈Σ δ∞(f, g ◦ θ). �
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Proof (Proof of Theorem 1). Consider some arbitrary but fixed f, g, h ∈ T . Since
DK(f, g) = infσ∈Σ δ(f, g ◦ σ) (Lemma 2), an infinite sequence (σi)i∈N

exists with
σi ∈ Σ for all i ∈ N, such that

δ∞(f, g ◦ σi)
i→∞−−−−−−−→ DK(f, g).

Analogously, a sequence (τ ′
i)i∈N

with τ ′
i ∈ Σ for all i ∈ N exists, such that

δ∞(g, h ◦ τ ′
i)

i→∞−−−−−−−→ DK(g, h).

Considering the sequence (τi)i∈N
with τi = τ ′

i ◦ σi ∈ Σ and using Lemma 1, we
obtain

δ∞(g ◦ σi, h ◦ τi) = δ∞(g, h ◦ τ ′
i)

i→∞−−−−−−−→ DK(g, h).

Recall that (T , δ∞) is a metric space, thus the triangle inequality holds for each
i ∈ N:

δ∞(f, h ◦ τi) � δ∞(f, g ◦ σi) + δ∞(g ◦ σi, h ◦ τi)

Since DK(f, h) = infτ∈Σ δ∞(f, h ◦ τ), we obtain the triangle inequality:

DK(f, h) � lim
i→∞

δ∞(f, h ◦ τi) � DK(f, g) + DK(g, h) �

3 Windowed Dog-Keeper Distance

If there is one outlier in a time series, then this outlier dominates the DK distance,
i.e. it dominates the maximum along a path through the matrix in Algorithm 1.
Hence, the DK distance is not robust against outliers. In the case of DTW or ERP,
the error of the outlier is relatively small compared to the sum of all small errors.
One of our contributions is the windowed dog-keeper distance described below.

By comparing sliding windows with the L1-norm instead of single elements,
the same behaviour is possible for the DK distance. If there is an outlier within one
time series, the error will not dominate the sum of distances within two sliding
windows. For a formal definition, consider the sequence of sliding windows as a
new time series.

Definition 2 (Windowed Time Series). Let n ∈ N be an arbitrary window
size and T = (t1, . . . , t�) be an arbitrary time series. The k-th n-window of T is
the subsequence

Tn
k = (tk, . . . , tk+n−1)

The n-windowed time series of T is the sequence

Tn =
(
Tn

1 , . . . , Tn
k+n−1

)
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Comparing two time series now is based on comparing windows. Here we
might use the advantage of the L1-metric to improve the robustness against
outliers.

Definition 3 (Window Distance). Consider two n-windows P = (p1, · · · , pn)
and Q = (q1, · · · , qn). Then

d(P,Q) =
n∑

i=1

d(pi, qi)

We now define the windowed dog-keeper distance (WDK).

Definition 4 (Windowed Dog-Keeper Distance). Let S and T be two time
series and n be an arbitrary window size. The n-windowed dog-keeper distance
(n-WDK) of S and T is the dog-keeper distance of their n-windowed time series,
i.e.

WDKn(S, T ) := DK(Sn, Tn)

If it is clear from the context, we omit the parameter n.

Corollary 1. The windowed distance is a metric.

Note that the 1-WDK distance is equivalent to the DK distance, thus n-WDK can
be seen a generalization of the DK distance.

The WDK distance is more robust against outliers as the experiments show.
However, it comes with a price. The distance measure is less robust against local
time warping, since the time series can drift apart within one window. Hence, the
window size is a tuning parameter to choose between robustness against outliers
and robustness against time warps. The larger the window size is, the more we
gain robustness against outliers. With shrinking window size we increase the
robustness against strong time warps.

Computation: When computing the WDK distance the naive way, there is a lot
of redundancy. For example, computing the 2-window distances d(S1, T 1) =
d(s1, t1) + d(s2, t2) and d(S2, T 2) = d(s2, t2) + d(s3, t3) each includes computing
d(s2, t2). The first improvement of the WDK algorithm caches these values.

The second improvement optimizes the computation of the sum of the dis-
tance values along an n-window by first computing integral matrices. For time
series S and T of length m and n respectively, the integral matrix

∫
(S, T ) is

defined as
∫

(S, T )i,j =

{∑i−1
k=0 d (si−k, tj−k) if i � j

∑j−1
k=0 d (si−k, tj−k) else

(1)

where
∫

(S, T )i,j is the entry in the i-th row and the j-th column. Less formally,
we sum up the values of the matrix (d(si, tj)) along diagonals. The n-window
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distance d(Tn
i , Sn

j ) is computed as a difference of two matrices:

d(Tn
i−n+1, S

n
j−n+1) =

{∫
(S, T )i,j −

∫
(S, T )i−n,j−n if i, j � n

∫
(S, T )i,j else

(2)

Finally, the Fréchet distance is computed based on the window distance. Algo-
rithm 2 represents the algorithm in pseudo code. Line 5 to 11 compute the
integral matrix, line 14 to 16 compute the window distances. For time series of
length � and m, these sections have complexity O(� · n). The rest of the code
computes the Fréchet Distance similarly to Algorithm 1 but on the window dis-
tances thus the overall complexity is O(� · n). Furthermore, the complexity does
not depend on the window size.

Example 1. Consider the following example: S = (1, 2, 1, 5, 6), T = (2, 1, 6, 5, 6).
When computing the 3-WDK distance function, the matrices in Algorithm will
contain the following elements if they did not stop because of early abandoning:

I =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 1 0 5 4 5
0 0 2 4 8 8
0 1 0 7 8 13
0 3 5 1 7 9
0 4 8 5 2 7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

W =

⎛

⎝
7 8 13
1 6 9
5 2 5

⎞

⎠ D =

⎛

⎝
7 8 13
7 7 9
7 7 7

⎞

⎠

Thus, the 3-WDK distance of S and T is 7.

4 Experimental Evaluation

We evaluate the performance of the time series distance functions DTW, ERP,
DK, and WDK on four data sets. Our first choice is the well-known cylinder-bell-
funnel data set (CBF) as an example of noisy data. The other three data sets
come from the UCI Machine Learning Repository [9]. We chose the following
labeled multidimensional multimedia data sets: the Character Trajectories sata
set (CT), the Spoken Arabic Digit data set (SAD), and the Australian Sign
Language signs (High Quality) data set (ASL) [8].

Data Preparation: We prepared the data sets by normalizing them individually.
The CT data set consists of three-dimensional time series holding the derivative
of the trajectory and the pressure of the pen. We first integrated the deriva-
tive to retrieve the actual pen coordinates. The resulting time series have been
normalized using the L2-norm.

The Spoken Arabic Digits data set has been normalized using the L1-norm.
Furthermore, we removed the 23 shortest time series to assure that each time
series has a length of at least 20 elements, such that we can evaluate the WDK
distance for window sizes up to 20.

The ASL data set consists of 22-dimensional time series, 11 dimensions for
each hand holding position, rotation and five finger bend information. We nor-
malized the position information of the hands using the L2 norm.



136 J.P. Bachmann and J.-C. Freytag

Algorithm 2. Pseudo Code for the n-Windowed Dog-Keeper Distance

1 Input: S = (s1, · · · , s�), T = (t1, · · · , tm), τ
2 Output: Lower bound for the dog-keeper distance
3

4 // compute integral matrix Ii,j =
∫

(S, T )i,j as in Equation (1)
5 for i in 0, · · · , �
6 Ii,0 = 0
7 for j in 1, · · · ,m
8 I0,j = 0
9 for i in 1, · · · , �

10 for j in 1, · · · ,m
11 Ii,j = Ii−1,j−1 + d(si, tj)
12

13 // compute the n−window distances Wi,j = d(Tn
i , Sn

j ) as in Equation (2)
14 for i in n + 1, · · · , � + 1
15 for j in n + 1, · · · ,m + 1
16 Wi−n,j−n = Ii−1,j−1 − Ii−n−1,j−n−1

17

18 // compute the DK distance as in Algorithm 1.
19 D1,1 = W1,1

20 if D1,1 � τ
21 return D1,1

22 for i in 2, · · · , � − n + 1
23 Di,1 = max {Di−1,1,Wi,1}
24 for j in 2, · · · ,m − n + 1
25 ε = ∞
26 for i in 1, · · · , � − n + 1
27 pred = min {Di−1,j ,Di,j−1,Di−1,j−1}
28 Di,j = max {Wi,i, pred}
29 ε = min {ε,Di,j}
30 if ε � τ
31 return ε
32 return D�−n+1,m−n+1

Retrieval Correctness: We use the data sets to evaluate the quality of the dis-
tance functions experimentally. Since we have chosen labeled time series, we can
evaluate the correctness using a k-nearest neighbour classifier. We specifically
ran a Leave-One-Out cross-validation on each data set. In order to evaluate the
discriminability of the distance functions we ran the tests for different k from 1
to values larger than the class size.

Figure 2 shows that DTW has almost best retrieval results on the noisy CBF
data set. ERP decreases in quality with increasing k. For small k, all distance
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Fig. 2. Classification Accuracy on the CBF (top left), CT (top right), SAD (bottom
left) and ASL (bottom right) data sets.

functions provide similar quality. We did not expect the WDK distance to perform
well on that data set since it is very noisy (cf. Fig. 3).

In contrast to the CBF data set, Fig. 2 shows that the retrieval results
decrease linearly with increasing k on the CT data set. Although there is nearly
no difference in retrieval quality for small k, there is a clear tendency for large k.
DTW and ERP have identical behaviour, while the DK is way behind. This exper-
iment also shows that WDK improves the DK distance. Figure 3 shows two repre-
sentational examples from the data set. We could not find any outliers in the
data set and there is little need for warping. On the other hand, the distance
between two points along the characters differ on long parts of the path, thus
there are windows with a large distance to each other. This could be the reason
for the good performance of DTW and ERP but the bad performance of DK and
WDK.

Figure 2 shows the results for the SAD data set. The results are similar to
those on the CT data set. The WDK distance improves the DK distance but loses
against DTW and ERP.

Most interesting results for the WDK distance can be found in the ASL data
set, shown in Fig. 2. Since both distance functions DTW and ERP drop to around
90% correctness, 10-WDK is nearly 95%. Another interesting observation here is
that both “sum natured” functions DTW and ERP are increasing in correctness
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Fig. 3. Examples from the cylinder-bell-funnel (left) and the Character Trajectories
(right) data sets.

with increasing k while both “max natured” functions DK and WDK decrease. We
have not found a reasonable explanation yet, thus it remains future work.

Parameter Tuning: A disadvantage of the WDK distance is that it has a parameter
(the window size) as we need to calibrate it for each data set. However, in all
but the CBF data set, taking a window size of 25% of the mean time series
length provided best results. For certain applications, the best parameter could
be evaluated on a sample of the data set beforehand.

Figure 4 shows that the window size adjusts a trade-off as we expected. There
is an optimal value and the classification Accuracy decreases monotone with
diverging window size.

Computation Time: Table 1 shows the relative computation times with DTW as
the base line for the 1-nearest neighbour classifier. Although the algorithms of all
distance functions are quite similar the DK and WDK distance functions ran faster

Fig. 4. Classification Accuracy on the CBF (left) and the Australian Sign Language
(right) data sets for WDK with different window sizes.
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by more than an order of magnitude. These differences can not be explained by
implementation details. The only plausible explanation is the early abandoning.

Since DTW and ERP sum up the errors along the warping path, the probability
for later abandoning increases. On the other hand, the DK distance takes the
maximum value along the best warping path and therefore aborts computation
most likely during the first step. We call the number of columns we need to
compute before the computation can be aborted the point of early abandoning.
The only exception is a value of 0 which means that the first elements of the
time series are compared only.

Table 1. Computation time in relation to the computation time of DTW

DTW ERP DK WDK

CBF 1 0.89 0.23 0.13

Spoken digits 1 1.2 0.06 0.04

Signs 1 1.24 0.05 0.08

Character 1 1.39 0.13 0.06

Table 2 shows measurements of the number of comparisons which are aborted
immediately after comparing the first elements of the time series on the ASL
data set. It shows that 94.9% and 99.6% of the computations of the DK and WDK
distance abort immediately, resp. The mean point of early abandoning for DTW
and ERP is more than 10, which means that in most cases more than 10 columns
of the matrix are filled.

Table 2. Point of early abandoning.

DTW ERP DK WDK

Immediate 0% 0% 94.9% 99.6%

Mean 10.8 13.3 0.39 0.21

5 Conclusion and Future Work

In this paper we compared the performance of different time warping distance
functions on multimedia time series data sets. We have chosen data sets for
motion gesture recognition, speech recognition, and classification of handwrit-
ten letters. This work extends existing evaluations by comparing the dog-keeper
distance against DTW and ERP on these data sets. Although DTW has the best clas-
sification results on most data sets, we could show that the dog-keeper distance
has nearly same results. For 1-nearest neighbour classification, the error rate of
the dog-keeper distance was no more than 3% worse.
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We also observed a significant difference in computation time. Our investi-
gation showed that the reason is the very early abandoning.

We also improved the dog-keeper distance by comparing sliding windows
instead of single elements. Our experimental evaluation shows that this mod-
ification did increase the classification correctness of the dog-keeper distance.
On the Australian Sign Language data set (ASL), it even outperforms the other
distance functions in retrieval quality. Furthermore, it inherited the property of
early abandoning from the dog-keeper distance and even improved these values.
On the Australian Sign Language data set, 99.6% of the comparisons already
stopped after comparing the first elements of the time series. Hence, it seems
there is no need for any further optimization using lower bounds.

It remains future work to investigate and compare to these functions with the
Sakoe Chiba band [11] applied. We expect nearly the same behaviour from the
dog-keeper and windowed dog-keeper distances. However, there are lower bounds
to DTW with a Sakoe Chiba band applied which drastically improve retrieval
times.
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Abstract. The Earth Mover’s Distance (EMD) is a similarity mea-
sure successfully applied to multidimensional distributions in numer-
ous domains. Although the EMD yields very effective results, its high
computational time complexity still remains a real bottleneck. Existing
approaches used within a filter-and-refine framework aim at reducing
the number of exact distance computations to alleviate query time cost.
However, the refinement phase in which the exact EMD is computed
dominates the overall query processing time. To this end, we propose to
speed up the refinement phase by applying a novel feasible initialization
technique (INIT) for the EMD computation which reutilizes the state-
of-the-art lower bound IM-Sig. Our experimental evaluation over three
real-world datasets points out the efficiency of our approach (This work
is partially based on [12]).

Keywords: Earth Mover’s Distance · Similarity search · Lower bound ·
Filter distance · Initialization · Refinement phase

1 Introduction

The Earth Mover’s Distance (EMD) [9] is a prominent effective distance-based
similarity measure which computes the minimum amount of work required to
transform one data representation into the other. Since the EMD is robust to
outlier noise, it has been used and investigated in numerous fields, such as com-
puter vision [8] and multimedia [1,13]. The EMD is applied to feature-based data
representations, such as a histogram denoting a predefined shared set of features
in a feature space, or a signature which comprises an object-specific set of fea-
tures. Signatures denoting individual binning have been utilized to represent
various kinds of data, such as biological [5] and multimedia data [13].

The EMD-based similarity search and query processing yield very effective
results, however, at the cost of high computational query time. Since the EMD
is a transportation problem, it can be solved by efficient linear programming
techniques, such as interior point [3] and transportation simplex algorithms [4].

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-68474-1 10
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The empirical computational time complexity of the EMD is super-cubic in
the feature dimensionality [9]. Hence, there has been much research devoted to
accelerate the EMD-based similarity search [1,2,6,9,13,16,17]. These existing
works are based on a filter-and-refinement framework which aims at reducing
the number of the exact EMD computations. However, with increasing feature
dimensionality and data cardinality, it is becoming a real challenge to attain high
efficiency for the EMD-based query processing. The main reason here lies in the
expensive EMD computation performed in the refinement step which dominates
the whole query processing time cost.

In this paper, our aim is to improve the efficiency of the refinement phase
of the EMD-based query processing within a filter-and-refine framework which
utilizes the state-of-the-art IM-Sig as a filter distance function. As the refine-
ment phase requires much time due to the expensive EMD computation, we
focus on the acceleration of the refinement phase by the explicit reutilization of
the filter distance which has already been computed in the filter step. Unlike
most of the existing filters, IM-Sig is an optimization problem and constraint
relaxation of the EMD. This property of the IM-Sig allows for the derivation
of a particular initialization for the computation of the EMD. In this way, the
EMD computation in the refinement phase does not start with an arbitrary
standard initialization, instead, it makes use of an elaborate initialization which
reutilizes the IM-Sig filter distance information already obtained in the previous
phase. Furthermore, we use an early pruning algorithm which adapts the opti-
mal multi-step algorithm [11] and generates lower bounds to the EMD in the
intermediate steps of the EMD computation. This is carried out by making use
of the advantageous dual feasibility property of the interior point methods in
operations research. Any dual feasible objective function value in each step of
the EMD computation is a lower bound to the EMD. In this way, it is possible to
safely prune any non-promising data object in the intermediate steps of a single
EMD computation, which overall leads to high efficiency improvement.

In summary, our key contributions are listed as follows: We introduce an
efficient feasible initialization technique INIT reusing IM-Sig filter to efficiently
compute EMD in the refinement phase (Sect. 4.1). We use an early pruning
optimal multi-step algorithm EP which further boosts the refinement phase
(Sect. 4.2). Our extensive experimental evaluation over three real-world datasets
indicates the high efficiency improvement of our proposed technique INIT and
algorithm EP (Sect. 5). Results report that the application of the state-of-the-art
filter IM-Sig within a filter-and-refine framework is remarkably outperformed by
the application of our proposals.

2 Preliminaries

2.1 Earth Mover’s Distance (EMD)

The EMD [9] is a similarity measure which determines the dissimilarity between
any two signatures by transforming one signature into the other. A signature Q =
{〈qi, hi〉} = {〈q1, h1〉 , · · · , 〈qn, hn〉} is a set of tuples each of which is denoted
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by a feature qi ∈ F and a weight hi ∈ R
+ associated with that feature, where F

denotes a feature space. Signatures may have different number of features, and
features of a signature may differ from those of another signature. To compute
the EMD between signatures Q and P , features of Q and P are considered as
earth hills and holes, respectively, where the EMD denotes the minimum amount
of work performed to transfer the earth from hills to holes. In our paper, for the
sake of simplicity, we comply with the presentation of the linear optimization
problems and use the following notations: The earth movement between the
features qi and pj is indicated by the flow xij , and the ground distance between
those features is given by δij . The definition of the EMD is given below.

Definition 1 (EMD). Given signatures Q = {〈qi, hi〉} and P = {〈pj , tj〉} of
normalized total weight m =

∑
i hi =

∑
j tj satisfying for index sets IQ, IP

∀i ∈ IQ = {1, · · · , nq} hi ∈ R
+ and ∀j ∈ IP = {1, · · · , np} tj ∈ R

+, EMD(Q,P )
is computed by solving the following linear program:

EMD(Q,P ) = min
∑

i∈IQ

∑

j∈IP

xij · δij

m
, subject to:

∀i ∈ IQ

∑
j∈IP

xij = hi (Source constraint)
∀j ∈ IP

∑
i∈IQ

xij = tj (Target constraint)
∀i ∈ IQ ∀j ∈ IP xij ≥ 0 (Non-negativity constraint)

For the primal minimization problem above, the source constraints guarantee
that for any feature qi the sum of all outgoing flows xij may not exceed its
capacity. Similarly, the target constraints state that for any target feature pj the
sum of all incoming flows xij may not exceed the capacity of pj .

Since in the upcoming sections we will deal with dual linear programs to
derive our proposed initialization technique, we present the dual maximization
problem of the EMD which has the same optimum value as calculated by the
minimization problem given in Definition 1:

EMD(Q,P ) = max
∑

i∈IQ

ui · hi +
∑

j∈IP

vj · tj , subject to:

∀i ∈ IQ ∀j ∈ IP ui + vj + zij =
δij

m
∀i ∈ IQ ui ∈ R

∀j ∈ IP vj ∈ R

∀i ∈ IQ ∀j ∈ IP zij ∈ R
≥0. (1)

In the dual problem above, each variable ui and vj corresponds to a source
constraint and a target constraint in the primal problem, respectively. The uti-
lization of the slack variables zij ∈ R makes it possible to define constraints
as equalities. Note that solving the dual EMD problem with the maximization
objective function yields the same optimum result as the primal EMD.
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2.2 Filter-and-refine Framework

While theoretical time complexity of the EMD computed by simplex algorithms
is exponential in the feature dimensionality, the empirical time complexity is
super-cubic. We focus on the most prominent and often utilized k-nearest-
neighbor (k-nn) query in databases, since it does not require the determination
of any parameter. The optimal multi-step algorithm in [11] has been proven to
be optimal in the number of exact distance computations. Given a query sig-
nature Q and a database D of signatures, the key idea is to apply two steps in
order to process the k-nn query efficiently. In the filter step, a lower-bounding
filter distance function is applied to D in order to generate a ranking of lower
bounds in ascending order. In each iteration, an unprocessed object is retrieved
from the ranking if its lower bound does not exceed the current k-nn distance
threshold. In the refinement phase, such an object is considered as a candidate,
i.e. the exact distance to the query is computed. If the exact distance does not
exceed the current k-nn distance threshold, the object is inserted into the result
set and the threshold is updated to indicate the distance of the k-th object in
the result set. The algorithm terminates when an unprocessed object is retrieved
from the ranking with a lower bound exceeding the threshold distance. Since the
applied filter distance function is a lower bound to the exact distance function,
the generated result set preserves completeness.

3 Related Work

Approaches in [1,10,16,17] focus on effective filtering by introducing lower
bounds on histogram distributions. Hence, they are bounded by fixed predefined
features in the underlying feature space, i.e. histograms share the same features
in a feature space. However, individual object-specific distributions (a.k.a. signa-
tures) come up in numerous applications and domains, and the techniques given
above cannot be applied to signatures. Fortunately, researchers have proposed
lower bounds applicable to signatures reflecting individual distributions per data
object [2,6,9,13]. The projected emd (Pemd) [2] lower-bounds the EMD on sig-
natures by computing the EMD for projected signatures where each of them
comprises features projected on an individual dimension of the feature space.
The simple relaxation (sRelax) lower bound [6] moves the entire earth (capac-
ity) of each feature i of a source signature to the nearest-neighbor feature in
a target signature. The centroid-based (Rubner) lower bound [9] is another fil-
ter which computes the distance between mean signatures. Although the filter
time is considerably low, the efficiency of the query processing is hindered by
the high number of exact EMD computations, as analyzed in [13]. The IM-Sig
lower bound [13] is another lower bound which replaces the target constraint of
the EMD by a new one stating that each flow may not exceed the target capac-
ity. The drawback of all these techniques is that they attempt to derive lower
bounds for the filter phase of the filter-and-refine framework to reduce the num-
ber of candidates. However, as mentioned before, the expensive EMD computa-
tion in the refinement phase is a bottleneck, causing high query time cost [13].
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While the state-of-the-art IM-Sig successfully and remarkably reduces the num-
ber of exact EMD computations, the refinement phase still results in efficiency
degradation with increasing feature dimensionality (Fig. 8 in [13]) and data cardi-
nality. Thus, the existing results have been encouraging enough to merit further
investigation into accelerating the refinement phase, which we will immediately
present in the upcoming section.

4 Speeding up Refinement Phase

In this section, we first introduce our efficient feasible initialization technique
INIT reusing the IM-Sig filter to efficiently compute the EMD in the refine-
ment phase (Sect. 4.1). Then, we use a modified algorithm early pruning opti-
mal multi-step algorithm EP which safely discards non-promising objects and
further boosts the refinement phase (Sect. 4.2).

For the remainder of this paper, we use the following notations: Regarding
the computation of the IM-Sig or EMD, the earth is transferred from a signa-
ture Q = {〈qi, hi〉} to a signature P = {〈pj , tj〉} of normalized total weight
m =

∑
i hi =

∑
j tj = 1. Furthermore, IQ = {1, · · · , nq} and IP = {1, · · · , np}

represents the set of indices of features in Q and P , respectively. In addition, fea-
ture capacities take positive real numbers: ∀i ∈ IQ hi ∈ R

+ and ∀j ∈ IP tj ∈ R
+.

The ground distance between two features qi and pj is denoted by δ(qi, pj) while
the linear programs of the EMD and IM-Sig require it to be a constant δij , hence,
we use δ(qi, pj) and δij interchangeably, where necessary. In the linear problems
of the EMD, xij is a primal variable representing the flow between features qi

and pj . Dual variables and slack variables are denoted by ui, vj and zij , respec-
tively. Similarly, for the IM-Sig, xI

ij is a primal variable, and dual variables are
represented by uI

i , v
I
ij . Below, we present the IM-Sig lower bound [13] as a linear

program which we will use later on.

Definition 2 (IM-Sig). Given signatures Q = {〈qi, hi〉} and P = {〈pj , tj〉},
the Independent Minimization for Signatures IM-Sig(Q,P ) is computed by solv-
ing the following linear program:
IM-Sig(Q,P ) = min

∑

i∈IQ

∑

j∈IP

xI
ij · δij

m , subject to:

∀i ∈ IQ

∑
j∈IP

xI
ij = hi (Source constraint)

∀i ∈ IQ∀j ∈ IP xI
ij ≤ tj (IM-Sig target constr.)

∀i ∈ IQ ∀j ∈ IP xI
ij ≥ 0 (Non-negativity constraint)

The dual feasible solution to the IM-Sig is used to initialize the EMD com-
putation. To this end, we will use the dual maximization problem of the IM-Sig
which has the same optimum value as calculated by the minimization problem
given in Definition 2:
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IM-Sig(Q,P ) = max
∑

i∈IQ

uI
i · hi +

∑

i∈IQ

∑

j∈IP

vI
ij · tj , s.t.:

∀i ∈ IQ ∀j ∈ IP uI
i + vI

ij ≤ δij

m
(2)

∀i ∈ IQ uI
i ∈ R

∀i ∈ IQ ∀j ∈ IP vI
ij ≤ 0. (3)

In order to introduce the feasible initialization of the EMD computation
reusing the IM-Sig information, we first present some basic definitions and nota-
tions for the IM-Sig computation (c.f. Algorithm 1 in [13]). Given two signa-
tures Q = {〈qi, hi〉} and P = {〈pj , tj〉}, for any feature qi, a permutation
πi = (πi(1), · · · , πi(np)) of target feature indices {1, · · · , np} is built satisfying
δ(qi, pπi(k)) ≤ δ(qi, pπi(k+1)) with 1 ≤ i ≤ nq and 1 ≤ k < np. Hence, entries in
the permutation are determined according to the distances between the feature
qi and target features in signature P in ascending order. Let bi ∈ {1, · · · , np}
be the number of target features which receive earth from qi, i.e. the following

statements
bi−1∑

r=1
tπi(r) < hi and

bi∑

r=1
tπi(r) ≥ hi hold. We call pπi(bi) the boundary

feature of qi to indicate that it is the last feature in the permutation order to
receive earth from the source feature qi. By utilizing this notion, we can now
define target feature sets which we will use in the remainder of this section:

Definition 3 (target feature sets). Given a feature qi and its permutation
πi = (πi(1), · · · , πi(np)) of target feature indices, Fi and Bi are sets of target
features receiving earth from qi, and Zi is the set of target features which do not
receive any earth from qi:
Fi := {pπi(j)|1 ≤ j < bi}
Bi := {pπi(bi)}
Zi := {pπi(j)|bi < j ≤ np}.

The definition above states that we can partition the target features into
three sets with respect to earth transfer from a source feature qi: boundary
set Bi, f low set Fi and zero-flow set Zi. Bi consists of the boundary feature
which denotes the last feature receiving earth from the source feature qi in the
permutation order. In addition, the IM-Sig flow [13] is presented as follows:

Definition 4 (IM-Sig flow). IM-Sig flow between two given features qi and
pj is given by:

xI
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tj if pj ∈ Fi

hi −
bi−1∑

r=1
tπi(r) if pj ∈ Bi

0 else (pj ∈ Zi)

After giving the fundamental notations, below we present the details about
how to initialize the EMD computation which reutilizes the IM-Sig filter which
has already been computed in the filter phase.



Fast Similarity Search with the Earth Mover’s Distance 147

4.1 Feasible Initialization Technique (INIT)

We aim at using the IM-Sig filter as initialization of the interior point method
(IPM) used to compute the EMD. Moreover, we guarantee that this derived ini-
tialization starts with a dual feasible solution to the EMD so that each iteration
of the IPM preserves dual feasibility, i.e. each iteration yields a lower bound to
the EMD. As will be presented later, this valuable property of INIT requires a
considerably smaller number of IPM iterations to compute the EMD.

Fig. 1. Illustration of the feasible initialization technique INIT in four steps.

We present in 4 steps how to boost the refinement phase by the explicit
reutilization of the filter distance information (Fig. 1). For sake of simplicity, we
assume that signatures are 1-normalized signatures, i.e. the total weight of any
signature is equal to 1 (m in Definition 1). In the first step, the dual optimal
IM-Sig solution is derived from a given primal optimal IM-Sig solution computed
by the algorithm in [13]. Then, in the second step, a feasible solution to the dual
EMD problem is derived from the dual optimal IM-Sig solution. In the third
step, dual slack variables zij of the EMD problem are guaranteed to be strictly
positive, which is one of the two requirements of the IPM. In the fourth step, the
second requirement of the IPM is considered: a valid primal initialization for the
interior point method (IPM) is generated by ensuring strict positiveness of the
primal variables xij of the EMD problem. Overall, instead of starting with an
arbitrary initialization, the IPM starts with the targeted initialization reusing
the IM-Sig. Four steps to derive this initialization are presented below.

Step 1: Given a primal optimal IM-Sig solution computed by the algorithm
in [13], the dual optimal IM-Sig solution is generated in the first step. The
corresponding theorem is given as follows:

Theorem 1. (optimal dual im-sig). Given an optimal solution xI to the
primal IM-Sig problem, an optimal solution of the corresponding dual problem is
obtained by setting the dual variables of the IM-Sig as follows:

∀i ∈ IQ uI
i := δij , j = bi (4)

∀i ∈ IQ ∀j ∈ IP vI
ij :=

{
0 ifuI

i ≤ δij

δij − uI
i else

(5)
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Proof. First we show the feasibility of the dual solution of the IM-Sig, and then
prove the complementary slackness [14] which states that primal feasible and
dual feasible solutions are optimal.

Feasibility. To show the feasibility of the dual solution, we analyze the con-
straints in Eqs. 2 and 3, and show that they are fulfilled by using the dual
variables of IM-Sig (Eqs. 4 and 5) :

• Show uI
i +vI

ij ≤ δij (Eq. 2): For the case uI
i ≤ δij , it holds uI

i +vI
ij = uI

i +0 =
uI

i ≤ δij . For the case uI
i > δij , it holds uI

i + vI
ij = uI

i + (δij − uI
i ) = δij .

• Show vI
ij ≤ 0 (Eq. 3): For the case uI

i ≤ δij , it holds that vI
ij = 0, and for the

other case uI
i > δij , it holds that vI

ij = δij − uI
i < 0.

So far, we have seen that we obtain a dual feasible solution, if we are given
a primal optimal feasible solution and apply the variable assignment given in
Eqs. 4 and 5. Now, we prove the complementary slackness of the primal and
dual solution to the IM-Sig, which is required to show the optimality of the
solutions.

Optimality. According to the complementary slackness theorem [14], the primal
feasible solution xI and the dual feasible solution (uI , vI) to the IM-Sig are
optimal if and only if the following equations are fulfilled:

∀i ∈ IQ ∀j ∈ IP xI
ij · (δij − uI

i − vI
ij) = 0 (6)

∀i ∈ IQ uI
i ·

⎛

⎝hi −
∑

j∈IP

xI
ij

⎞

⎠ = 0 (7)

∀i ∈ IQ ∀j ∈ IP vI
ij · (tj − xI

ij) = 0 (8)

For the sake of simplicity, for any i ∈ IQ we denote pπi(j) and pπi(bi) by the
notation pj and pb, respectively. In this way, pb is the last target feature which
receives earth from the feature qi regarding the permutation considering distance
order (c.f. Definition 3).

• Show Eq. 6: By Eq. 4 and Definition 3, uI
i is equal to the distance between

the features qi and pb, i.e. uI
i = δib.

If pj ∈ Bi, then pj is exactly the boundary element pb which leads to uI
i = δib,

thus it holds xI
ij · (δib − δib − 0) = 0.

If pj ∈ Zi, then the feature pj does not receive any earth from qi, i.e. xI
ij = 0,

thus it holds 0 · (δij − uI
i − vI

ij) = 0.
If pj ∈ Fi, the amount of the earth transferred from qi to pj is equal to the
capacity of pj which is tj (Definition 4), and we consider three cases. Case
uI

i < δij : This case does not apply because uI
i = δib is greater than or equal

to δij , since ∀pj ∈ Fi δij ≤ δib by Definition 3. Case uI
i = δij : It holds vI

ij = 0,
hence xI

ij ·(δij−δij−0) = 0. Case uI
i > δij : It holds xI

ij ·(δij−uI
i −(δij−uI

i )) = 0.
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• Show Eq. 7: Since xI is a primal feasible solution, the constraint
∀i ∈ IQ

∑
j∈IP

xI
ij = hi is fulfilled, hence it holds uI

i ·
(
hi − ∑

j∈IP
xI

ij

)
= 0.

• Show Eq. 8: There are three cases we need to consider:
If pj ∈ Bi, then uI

i = δij holds. If pj ∈ Zi, then uI
i = δib ≤ δij holds.

If pj ∈ Fi, pj receives an amount of earth which is equal to its capacity
tj . Hence, vI

ij · (tj − xI
ij) = vI

ij · (tj − tj) = 0. Consequently, we proved the
optimality of the dual solution to the IM-Sig problem by using complementary
slackness.

Step 2: After obtaining a dual optimal IM-Sig solution computed by Theorem 1
a dual feasible EMD solution is generated which is formulated as below:

Theorem 2 (feasible dual emd). Given an optimal solution (uI , vI) to the
dual IM-Sig, a feasible solution (u, v) to the dual EMD is obtained as follows:

∀i ∈ IQ ui := uI
i (9)

∀j ∈ IP vj := min
i∈IP

vI
ij (10)

Proof. By using the equations in the theorem, we obtain ui + vj = uI
i +

mini∈IP vI
ij ≤ uI

i + vI
ij

Eq. 2

≤ δij (recall that m = 1 for the sake of simplicity
in this section).

Step 3: After generating a dual feasible solution (u, v) to the EMD in the second
step, now we will provide a valid dual initialization for the interior point method
(IPM). To this end, the dual slack variables zij of the EMD problem will be
guaranteed to be strictly positive, i.e. zij > 0. Since the given tuple (u, v) is a
feasible solution of the dual EMD problem, the constraint ui + vj + zij = δij

(Eq. 1) is fulfilled. We propose to modify the slack variables zij and dual variables
vj of the EMD as follows: We replace vj and zij by vj −ε and zij +ε, respectively
(ε ∈ R

>0). By substituting the variables in the constraint (Eq. 1), we obtain
ui + vj + zij = ui + (vj − ε) + (zij + ε) = δij . Thus, our modification preserves
the dual feasibility of the EMD solution, and since zij > 0 is fulfilled, a valid
dual initialization for the IPM is provided successfully.

Step 4: In the last step, a valid primal initialization for the interior point method
(IPM) is generated by ensuring strict positiveness of the primal variables xij of
the EMD problem. We propose to define the primal EMD variables as follows:
xij := max{xI

ij , ζ} where ζ ∈ R
>0 is a small real number used to provide the

strict positiveness of xij , i.e. xij > 0.
So far, we have seen that the application of four steps presented above leads

to a valid initialization of the interior point method used to compute the EMD
by utilizing the IM-Sig solution. Now, let us examine our proposed feasible ini-
tialization technique INIT on a single EMD computation between two signatures
of dimensionality 64, as depicted in Fig. 2. When the EMD computation starts
with a standard initialization, it first takes a value of -0.19 after which the
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Fig. 2. An example EMD computation between two signatures (of dimensionality 64)
with a standard initialization and our proposed technique INIT.

intermediate steps yield higher values. After 12.8 ms, the final EMD value is
reached (0.57). When, however, the EMD computation starts with our proposed
INIT technique starting with the IM-Sig filter distance which is computed as
0.5, the intermediate steps yield considerably higher values (i.e. lower bounds)
than those for the standard initialization. After 10.8 ms, the final EMD value is
reached and the EMD computation is finalized. As presented in this example,
making use of the IM-Sig filter distance by our proposed feasible initialization
technique INIT leads to higher values in the intermediate steps, and reaches the
EMD value in a shorter time than a standard initialization.

4.2 Early Pruning (EP)

The prerequisite of the early pruning algorithm is the dual feasibility of the
computation of the EMD. As stated in [3], if the dual constraints are fulfilled
at the current iteration of the interior point method algorithm, then the next
iteration’s intermediate solution preserves the dual feasibility, as well.

Recall that according to the weak duality theorem in the linear programming
field [14], we know that given a primal (minimization) problem, any feasible solu-
tion to the dual (maximization) problem yields an objective function value which
is smaller than or equal to the optimum value of the dual objective function.
Applying this notion to our proposed early pruning approach, the key idea is
to start with a dual feasible initialization which leads to dual feasible solutions
obtained in the intermediate steps of the algorithm. Since each dual feasible
solution is a lower bound to the exact distance (in our case EMD), it is directly
possible to verify whether each intermediate solution has already exceeded the
current k-nn distance or not. If the intermediate objective function value exceeds
the current k-nn distance, then there is no need to continue the distance com-
putation any more, as further iterations will not lead to smaller values than the
current k-nn distance. In this case, the object can be safely pruned due to the
lower-bounding property, which contributes to the alleviation of the computa-
tional time cost.
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5 Experimental Evaluation

5.1 Experimental Setup

Datasets. We use three real-world datasets: The first one is the prominent
medical image dataset IRMA [7] which includes 12,000 anonymous radiographs.
PUBVID [15] is the second dataset which comprises 250,000 public videos from
the internet. We generate the third dataset by downloading 500,000 videos from
the web site vine.co, and we refer to this dataset as SOCIAL. For signature gen-
eration, 10,000 pixels of each image in IRMA are extracted and represented in a
7-dimensional feature space comprising dimensions of the relative spatial infor-
mation (x, y values), color information (CIELAB values), and texture infor-
mation (contrast, coarseness values). Then, features are clustered by using a
k-means algorithm which outputs k clusters whose centroids represent represen-
tatives (features) of the generated signature. Hence, each feature of a signature
is denoted by a 7-dimensional feature vector. Any signature in PUBVID and
SOCIAL is generated by extracting 10,000 pixels from the associated video and
applying a k-means clustering algorithm in an 8-dimensional feature space.

Algorithms and Methods. We consider existing lower bounds to the EMD on
signatures mentioned in Sect. 3: projected EMD (Pemd) lower bound [2], simple
relaxation (sRelax) lower bound [6], centroid-based (Rubner) lower bound [9],
and the Independent Minimization for Signatures (IM-Sig) lower bound [13]. In
order to study the multi-step k-nearest-neighbor (k-nn) filter-and-refine frame-
work, we implemented two algorithms: The baseline is the optimal multistep
algorithm [11] for filter and refinement which is referred to as FAR, while the
second algorithm is its modified version, early pruning algorithm, represented
by EP. The aforementioned lower bounds are investigated associated with the
algorithms FAR and EP. Furthermore, since we are interested in boosting the
refinement phase, we investigate the performance of our proposed feasible ini-
tialization technique INIT and the standard initialization of the EMD computed
by the interior-point method [3].

System Setup. Results are averaged out of 100 queries randomly chosen from
the associated datasets. Table 1 gives the parameters regarding signature dimen-
sionality and data cardinality of each dataset (default values are shown in bold
and K represents 1,000).

Table 1. Parameter setting for datasets.

Signature size Data cardinality

IRMA 4 8 16 32 64 4K 6K 8K 10K 12K

PUBVID 4 8 16 32 64 50K 100K 150K 200K 250K

SOCIAL 4 8 16 32 64 100K 200K 300K 400K 500K
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The implementation of programs is performed in JAVA and experiments were
conducted on a (single-core) 2.2 GHz computer with Windows Server 2008 OS
and 6 GB of main memory. To determine the ground distance among features,
Manhattan (L1) distance is used. However, proposed technique and algorithm
are not restricted to any ground distance function. In addition, due to space lim-
itation we set the query parameter k to 100 for k-nn filter-and-refine algorithms.

5.2 Experimental Results

Figure 3(a)-(c) plots query time for lower bounds (Rubner, Pemd, sRelax, and
IM-Sig) associated with algorithms (FAR, EP) across signature dimensionality
over the datasets IRMA, PUBVID, and SOCIAL. Any chosen lower bound, the
number of EMD computations in the refinement phase of the FAR algorithm is
the same as for the EP algorithms which we omit due to space limitations. IM-
Sig exhibits the lowest number of exact distance computations with increasing
signature dimensionality. At signature size 64, when IM-Sig is applied, EMD
computations are performed for only 2.6% and 4.1% of the datasets PUBVID
and SOCIAL, respectively. Recall that the difference between FAR and EP is
that the latter applies early pruning within a single EMD computation in the
refinement phase thanks to provided dual feasibility of the interior point method
(IPM). This impacts on the efficiency of overall query time which can be noticed
in Fig. 3(a)-(c). For each dataset, it is observed that any lower bound utilized
within EP algorithm results in much smaller query time than for that lower
bound within FAR algorithm. At signature size 64, IM-Sig applied within EP
attains the best efficiency for all datasets, while IM-Sig applied within FAR
outperforms all lower bounds applied within FAR. For PUBVID at signature
size 64, EP with IM-Sig performs 1.72 times faster than FAR with IM-Sig, while
EP with sRelax, Pemd, and Rubner runs 2.4, 3.0, and 3.2 times faster than FAR
with these lower bounds, respectively.

Now we compare the query performance with the most successful filter IM-
Sig within filter-and-refine algorithms (FAR, EP) by utilizing two initializations
of the EMD computation. Recall that for any single EMD computation in the
refinement phase the standard initialization is used, while the EMD computation
using INIT is carried out by explicitly reutilizing the IM-Sig filter information.

Fig. 3. Experimental evaluation of lower bounds with the filter-and-refine (FAR) algo-
rithm and early pruning (EP) algorithm regarding query time.
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Figure 4(a)-(b) plots number of iterations of EMD computation and query
time for IM-Sig with the standard initialization and our initialization technique
INIT associated with FAR and EP algorithms across signature dimensionality
over IRMA. The application of INIT within EP algorithm (IM-Sig EP INIT in
the plot) leads to 3.3 times smaller number of iterations of IPM than those for
the standard initialization of EMD computations within FAR algorithm (IM-Sig
FAR in the plot) at signature size 64. The query response time of IM-Sig EP INIT
is 2.65 times faster than that for IM-Sig FAR. This can be elucidated by the fact
that INIT using the IM-Sig flow information for the initialization of the EMD
computation attains a reduction in IPM iterations. Thus, it leads to a speed up
in the refinement phase. Moreover, the dual feasibility of IPM enables the EP
algorithm to terminate earlier, contributing to the query time cost reduction. In
addition, the number of iterations of IPM and query time across data cardinality
are depicted in Fig. 4(c)-(d). All curves show a constant behavior where IM-Sig
EP INIT outperforms the other ones with increasing data size.

Figure 5 depicts results over PUBVID dataset where IM-Sig EP INIT out-
performs other combinations of methods with both increasing signature size and
data cardinality. IM-Sig EP INIT shows the lowest number of IPM iterations for
the EMD computation and the highest query efficiency improvement. It requires
3.8 times smaller number of IPM iterations than for IM-Sig FAR and is 2.11
times faster (signature size 64). Moreover, IM-Sig EP INIT remarkably shows
the best efficiency improvement by being 40.16 times faster than Rubner FAR.
Similarly, IM-Sig EP INIT indicates up to 3.81 times smaller number of IPM
iterations than for IM-Sig FAR with increasing data size. These results rely on
two facts: INIT attains tight lower bounds in the intermediate steps of the EMD
computation (c.f. Fig. 2). Moreover, EP checks each iteration of the EMD com-
putation in the refinement phase and interrupts the EMD computation if the
intermediate value of the objective function exceeds the current k-nn distance.

In order to determine the scalability of INIT and EP, we conduct experi-
ments on SOCIAL dataset. As Fig. 6 presents, the application of IM-Sig within
EP algorithm using INIT initialization (IM-Sig EP INIT in the plots) outper-
forms all other combinations of methods, exhibiting certainly similar behavior to
the previous plots in Figs. 4 and 5. This indicates the high stability of our feasible
initialization technique INIT and EP. In particular, IM-Sig EP INIT indicates

Fig. 4. Experimental evaluation of IM-Sig with standard and our initialization (INIT)
technique with FAR algorithm and EP algorithm on IRMA dataset.
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Fig. 5. Experimental evaluation of IM-Sig with standard and our proposed initializa-
tion (INIT) technique within FAR and EP algorithm on PUBVID dataset.

Fig. 6. Experimental evaluation of IM-Sig with standard and our initialization (INIT)
technique within FAR our proposed EP algorithm on SOCIAL dataset.

up to 3.9 times smaller number of IPM iterations than for IM-Sig FAR, being
1.9 times faster than the latter. IM-Sig EP INIT performs considerably well,
when compared to Rubner FAR which is beaten at a factor of 50.7 in terms of
efficiency. In addition, with increasing data cardinality, IM-Sig FAR with differ-
ent initializations exhibits a higher number of iterations, while IM-Sig applied
within EP shows considerably smaller slope in the plots. IM-Sig EP INIT shows
up to 3.9 times smaller number of IPM iterations than for IM-Sig FAR with
increasing data size, and exhibits the best efficiency improvement for SOCIAL
dataset.

6 Conclusion

In this paper, we study how to speed up the similarity search based on the Earth
Mover’s Distance (EMD) within a filter-and-refine architecture. Since the refine-
ment phase requires much time due to the expensive EMD computation, we
introduce the INIT technique and using a modified filter-and-refine algorithm.
To this end, we propose to speed up the refinement phase by a novel feasible ini-
tialization technique (INIT) which reutilizes the state-of-the-art lower bound IM-
Sig. Furthermore, we use an early pruning algorithm (EP) which safely prunes
any non-promising data object in the intermediate steps of a single EMD com-
putation, regardless of utilized lower bound. Our experimental evaluation over
three real-world datasets points out the efficiency of our approach.
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Abstract. The tree edit distance (TED), defined as the minimum-cost
sequence of node operations that transform one tree into another, is a
well-known distance measure for hierarchical data. Thanks to its intu-
itive definition, TED has found a wide range of diverse applications like
software engineering, natural language processing, and bioinformatics.
The state-of-the-art algorithms for TED recursively decompose the input
trees into smaller subproblems and use dynamic programming to build
the result in a bottom-up fashion. The main line of research deals with
efficient implementations of a recursive solution introduced by Zhang in
the late 1980s. Another more recent recursive solution by Chen found lit-
tle attention. Its relation to the other TED solutions has never been stud-
ied and it has never been empirically tested against its competitors. In
this paper we fill the gap and revisit Chen’s TED algorithm. We analyse
the recursion by Chen and compare it to Zhang’s recursion. We show
that all subproblems generated by Chen can also origin from Zhang’s
decomposition. This is interesting since new algorithms that combine
the features of both recursive solutions could be developed. Moreover,
we revise the runtime complexity of Chen’s algorithm and develop a new
traversal strategy to reduce its memory complexity. Finally, we provide
the first experimental evaluation of Chen’s algorithm and identify tree
shapes for which Chen’s solution is a promising competitor.

1 Introduction

Data featuring hierarchical dependencies are often modelled as trees. Trees
appear in many applications, for example, the JSON or XML data formats;
human resource hierarchies, enterprise assets, and bills of material in enterprise
resource planning; natural language syntax trees; abstract syntax trees of source
code; carbohydrates, neuronal cells, RNA secondary structures, and merger trees
of galaxies in natural sciences; gestures; shapes; music notes.

When querying tree data, the evaluation of tree similarities is of great inter-
est. A standard measure for the tree similarity, successfully used in numerous
applications, is the tree edit distance (TED). TED is defined as the minimum-
cost sequence of node edit operations that transform one tree into another. In
the classical setting [16,18], the edit operations are node deletion, node insertion,
and label renaming. In this paper we consider ordered trees in which the sibling
order matters. For ordered trees TED can be solved in cubic time, whereas the
problem is NP-complete for unordered trees.
c© The Author(s) 2017
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In 1989, Zhang and Shasha proposed a recursive solution for TED [18]. The
recursion decomposes trees into smaller subforests. New subforests are generated
by either deleting the leftmost or the rightmost root node of a given subforest. A
good choice (left or right) is essential for the runtime efficiency of the resulting
algorithm. We call Zhang decomposition an algorithm that implements Zhang
and Shasha’s recursive formula.

Most TED algorithms, including the following, are dynamic programming
implementations of the Zhang decomposition and differ in the strategy of left
vs. right root deletion. Zhang and Shasha’s own algorithm [18] runs in O(n4)
time and O(n2) space for trees with n nodes. Klein [11] proposes an algorithm
with O(n3 log n) time and space complexity. Demaine et al. [7] further reduce
the runtime complexity to O(n3) (O(n2) space), which is currently the best
known asymptotic bound for TED. The same bounds are achieved by Pawlik
and Augsten in their RTED [13] and AP-TED+ [14] algorithms. According to a
recent result [2] it is unlikely that a truly subcubic TED solution exists.

Although TED is cubic in the worst case, for many practical instances the
runtime is much faster. For example, Zhang and Shasha’s algorithm [18] runs
in O(n2 log2 n) time for trees with logarithmic depth. Pawlik and Augsten [13]
dynamically adapt their decomposition strategy to the tree shape and show
that their choice is optimal. They substantially improve the performance for
many practically relevant tree shapes. AP-TED+ [14] is a memory and runtime
optimized version of RTED and is the state of the art in computing TED.

In this paper we study an algorithm that does not fall into the mainstream
category of Zhang decompositions, namely the TED algorithm introduced by
Chen in 2001 [6]. Chen proposes an alternative recursive solution for TED and
provides a dynamic programming implementation of his recursion. In terms of
asymptotic runtime complexity, Chen’s algorithm is known to be more efficient
than all other algorithms for deep trees with a small number of leaves. Unfor-
tunately, this algorithm has received little attention in literature. In particular,
its relation to Zhang decompositions has never been studied. Further, we are
not aware of any implementation or empirical evaluation of the algorithm. We
revisit Chen’s algorithm and make the following contributions:

– We perform the first analytical comparison of the decompositions by Chen and
Zhang. Although the decompositions seem very different at the first glance,
we show that all subproblems resulting from Chen’s recursion can also be
generated in a Zhang decomposition. Chen mainly differs in the way solutions
for larger subproblems are generated from smaller subproblems. This is an
important insight and opens the path to future research that unifies both
decompositions into a single, more powerful decomposition.

– We revise the runtime complexity of Chen’s algorithm. In the original paper, a
significant reduction of the runtime complexity is based on the assumption of
a truly subcubic algorithm for the (min,+)-product of quadratic-size matrices.
Unfortunately, there is no such algorithm and even its existence remains an
open problem. We adjust the asymptotic bounds accordingly and discuss the
impact of the change.
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– Memory is a major bottleneck in TED computations. We propose a new
technique to reduce the memory complexity of Chen’s algorithm from O((n+
l2)min{l, d}) to O((n+ l2) log(n)) for trees with l leaves and depth d. This is
achieved by a smart traversal of the input trees that reduces the size of the
intermediate result. Our technique is of practical relevance and is used in our
implementation of Chen’s algorithm.

– We implement and empirically compare Chen’s algorithm to the state-of-the-
art TED solutions. We identify tree shapes for which Chen outperforms all
Zhang decomposition algorithms both in runtime and the number of interme-
diate subproblems. To the best of our knowledge, we are the first to implement
Chen’s algorithm and experimentally evaluate it.

The remaining paper is organised as follows. Section 2 analyses the relation-
ship between Chen’s algorithm and Zhang decompositions. In Sects. 3 and 4 we
revise the runtime complexity and improve the memory complexity of Chen’s
algorithm, respectively. We experimentally evaluate Chen’s algorithm in Sect. 5.
Section 6 draws conclusions and points to future research directions.

2 Chen’s Algorithm and Zhang Decompositions

In this section we analyse the relation of Chen’s algorithm to the mainstream
solutions for TED, namely Zhang decompositions. At the first glance, Chen’s
and Zhang’s approaches seem very different and hard to compare. We tackle
this problem in three steps: (1) We represent all subforests resulting from Chen’s
decomposition in the so-called root encoding, which was developed by Pawlik and
Augsten [13] to index the subforests of Zhang decompositions. (2) We rewrite
Chen’s recursive formulas using the root encoding and compare them to Zhang’s
formulas. (3) We develop a Zhang decomposition strategy that always generates
a superset of the subproblems resulting from Chen decomposition. These results
lead to the important conclusion that Chen and Zhang decompositions can be
combined into a single new decomposition strategy. This is a new insight that
may lead to new, more powerful algorithms in the future. We refer to the end of
this section for more details.

Trees, forests and nodes. A tree F is a directed, acyclic, connected graph
with labeled nodes N(F ) and edges E(F ) ⊆ N(F ) × N(F ), where each node
has at most one incoming edge. A forest F is a graph in which each connected
component is a tree; each tree is also a forest. We write v ∈ F for v ∈ N(F ). In
an edge (v, w), node v is the parent and w is the child, p(w) = v. A node with no
parent is a root node, a node without children is a leaf. Children of the same node
are siblings. A node x is an ancestor of node v iff x = p(v) or x is an ancestor
of p(v); x is a descendant of v iff v is an ancestor of x. A subforest of a tree F
is a forest with nodes N ′ ⊆ N(F ) and edges E′ = {(v, w) : (v, w) ∈ E(F ), v ∈
N ′, w ∈ N ′}. Fv is the subtree rooted in node v of F iff Fv is a subforest of F
and N(Fv) = {x : x = v or x is a descendant of v in F}.
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Node traversals. The nodes of a forest F are strictly and totally ordered such
that (a) v < w for any edge (v, w) ∈ E(F ), and (b) for any two nodes f, g, if
f < g and f is not an ancestor of g, then f ′ < g for all descendants f ′ of f . The
tree traversal that visits all nodes in ascending order is the left-to-right preorder.
The right-to-left preorder visits the root node first and recursively traverses the
subtrees rooted in the children of the root node in descending node order.

Example 1. In tree F in Fig. 1, the left (right) subscript of a node is its left-to-
right (right-to-left) preorder number.

2.1 Representing Relevant Subproblems

All TED algorithms are based on some recursive solution that decomposes the
input trees into smaller subtrees and subforests. Distances for larger tree parts
are computed from the distances between smaller ones. A pair of subtrees or sub-
forests that appears in a recursive decomposition is called a relevant subproblem.
To store and retrieve the distance results for relevant subproblems they must
be uniquely identified. Pawlik and Augsten [13] developed the root encoding to
index all relevant subproblems that can appear in a Zhang decomposition.

Definition 1 (Root Encoding). [13] Let the leftmost root node lF and the
rightmost root node rF be two nodes of tree F , lF ≤ rF . The root encoding
FlF ,rF

defines a subforest of F with nodes N(FlF ,rF
) = {lF , rF } ∪ {x : x ∈ F, x

succeeds lF in left-to-right preorder and x succeeds rF in right-to-left preorder}
and edges E(FlF ,rF

) = {(v, w) ∈ E(F ) : v ∈ FlF ,rF
∧ w ∈ FlF ,rF

}.
Example 2. In tree F in Fig. 1(a), subforest Fb,j in root encoding (black nodes)
is obtained from F by removing all predecessors of b in left-to-right preorder and
all predecessors of j in right-to-left preorder.

Chen [6] also uses a recursive formula, but the decomposition rules are differ-
ent from Zhang’s rules. The result of Chen’s decomposition are subtrees and sub-
forests. The subforests can be of two different types (using the original notation).
GF (l′, l′′) is a subforest of tree F composed of all maximum-size subtrees having
their leaf nodes between leaves l′ and l′′ in left-to-right preorder. FF (v[1..p])
is a subforest of tree F composed of the subtrees rooted in the first p children
of node v (left-to-right preorder). Interestingly, all subtrees and subforests in
Chen’s decomposition are expressible in the root encoding.

Example 3. Subforest GF (c, j) in Fig. 1(a) (root encoding Fb,j) consists of the
largest subtrees having all leaves between c and j. FF (a[1..2]) in Fig. 1(b) (root
encoding Fb,f ) consists of the subtrees rooted at the first two children of a.

Theorem 1. Every subtree and subforest that results from Chen’s recursive
decomposition can be represented in root encoding.

Proof. A subtree Fv is represented as Fv,v in root encoding. We show that both
subforest types, (a) GF (l′, l′′) and (b) FF (v[1..p]), also have a root encoding.
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(a) GF (c, j) = Fb,j
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(b) FF (a[1..2]) = Fb,f

Fig. 1. Subforests of an example tree F in Chen’s and root encodings.

(a): Let a and b be the leftmost and rightmost root nodes of the forest GF (l′, l′′).
Then, the leftmost leaf of Fa is l′ and the rightmost leaf of Fb is l′′. We
show that GF (l′, l′′) = Fa,b. The proof is by contradiction. (i) Assume a
node x ∈ Fa,b such that x /∈ GF (l′, l′′). Since x /∈ GF (l′, l′′), the subtree Fx

rooted in x must have a leaf l outside the range l′ to l′′ (by the definition of
GF (l′, l′′)), i.e., l < l′ or l > l′′. This, however, is not possible since l′ is the
leftmost leaf node of Fa and l′′ is the rightmost leaf node of Fb. (ii) Assume
a node y ∈ GF (l′, l′′) such that y /∈ Fa,b. Then, by Definition 1, y precedes
a in left-to-right preorder or y precedes b in right-to-left preorder. Consider
y < a in left-to-right preorder: all nodes that precede a in left-to-right
preorder are either to the left of a or are ancestors of a. However, the nodes
to the left of a are not in GF (l′, l′′) since they have leaf descendants to the
left of l′, and ancestors of a are not in GF (l′, l′′) since a is the leftmost
root node in GF (l′, l′′). Similar reasoning holds for y and b in right-to-left
preorder. Thus y must be in Fa,b, which contradicts our assumption.

(b): FF (v[1..p]) is a subforest composed of the subtrees rooted in the first p
children of node v. Let c1, . . . , cp be the first p children of node v. Then,
according to the definition of the root encoding, FF (v[1..p]) = Fc1,cp . c1
is the leftmost root node and cp is the rightmost root node of FF (v[1..p]).
Let l1 be the leftmost leaf of c1 and lp be the rightmost leaf of cp. All nodes
in the subtrees rooted at nodes c1, . . . , cp have their left-to-right preorder
ids between these of c1 and lp, and their right-to-left preorder ids between
these of cp and l1. Thus, by Definition 1, FF (v[1..p]) = Fc1,cp . ��

2.2 Comparing Recursions

Thanks to Theorem 1, which allows us to express all subforests of Chen’s decom-
position in root encoding, we are able to rewrite Chen’s recursive formulas with
root encoding. This makes them comparable to Zhang’s recursion, which also
has a root encoding representation.

The tree edit distance between two forests is denoted δ(F,G). The trivial
cases of the recursion are the same for both Chen and Zhang: δ(∅, ∅) = 0,



A New Perspective on the Tree Edit Distance 161

δ(F, ∅) = δ(F − v, ∅) + cd(v), δ(∅, G) = δ(∅, G − w) + ci(w), where F and G
may be forests or trees, and ∅ denotes an empty forest. cd(v), ci(w), cr(v, w) are
the costs of deleting node v, inserting node w, and renaming the label of v to the
label of w, respectively. F − v is the forest obtained from F by removing node v
and all edges at v. By F − Fv (v is a root node in forest F ) we denote the forest
obtained from F by removing subtree Fv. Given forest F and its subforest F ′,
F − F ′ is a forest obtained from F by removing subforest F ′.

Zhang. The recursion by Zhang and Shasha [18] distinguishes two cases.

(a) Both Fv and Gw are trees.

δ(Fv, Gw) = min

⎧
⎪⎨

⎪⎩

δ(Fv − v,Gw) + cd(v)
δ(Fv, Gw − w) + ci(w)
δ(Fv − v,Gw − w) + cr(v, w)

(1)

(b) FlF ,rF
is a forest or GlG,rG

is a forest.

δ(FlF ,rF
, GlG,rG

) = min

⎧
⎪⎨

⎪⎩

δ(FlF ,rF
− lF , GlG,rG

) + cd(lF )
δ(FlF ,rF

, GlG,rG
− lG) + ci(lG)

δ(FlF , GlG) + δ(FlF ,rF
− FlF , GlG,rG

− GlG)
(2)

In Eq. 2, instead of removing the leftmost root nodes and their subtrees (lF ,
lG, FlG , GlG) we can also remove their rightmost root node counterparts (rF ,
rG, FrG

, GrG
), respectively. The choice of left vs. right in each recursive step has

an impact on the total number of subproblems that must be computed.

Chen. The recursion by Chen [6] distinguishes four cases. roots(FlF ,rF
) and

leaves(FlF ,rF
) denote the set of all root resp. leaf nodes in forest FlF ,rF

.

(a) Both Fv and Gw are trees. In this case, Chen’s recursion is identical to Eq. 1.
(b) FlF ,rF

is a forest and Gw is a tree.

δ(FlF ,rF
, Gw) = min

⎧
⎨

⎩

δ(FlF ,rF
, Gw − w) + ci(w)

min
s∈roots(FlF ,rF

)
{δ(Fs, Gw) + δ(FlF ,rF

− Fs, ∅)} (3)

(c) Fv is a tree and GlG,rG
is a forest.

δ(Fv, GlG,rG
) = min

⎧
⎪⎨

⎪⎩

δ(Fv − v,GlG,rG
) + cd(v)

δ(Fv, GlG,rG
− GrG

) + δ(∅, GrG
)

δ(Fv, GrG
) + δ(∅, GlG,rG

− GrG
)

(4)
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(d) Both FlF ,rF
and GlG,rG

are forests.

δ(FlF ,rF , GlG,rG) =

min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δ(FlF ,rF , GlG,rG − GrG) + δ(∅, GrG)

δ(FlF ,rF , GrG) + δ(∅, GlG,rG − GrG)

min
l′∈leaves(FlF ,rF

)
{δ(FlF ,r′

F
, GlG,rG − GrG) + δ(Fl′′

F
,rF

, GrG)

+ δ(FlF ,rF − FlF ,r′
F

− Fl′′
F
,rF

, ∅)}

(5)

The nodes r′
F and l′′F in Eq. 5 are defined as follows. Let l′′ be the next leaf

node after l′ in FlF ,rF
and lca(l′, l′′) ∈ F the lowest common ancestor of the two

leaves l′ and l′′ (not necessarily lca(l′, l′′) ∈ FlF ,rF
). Then, r′

F (l′′F ) is the first
descendant of lca(l′, l′′) in FlF ,rF

that is on the path to l′ (l′′).
FlF ,rF

−FlF ,r′
F

−Fl′′F ,rF
is a path from lca(l′, l′′) to a root node (node without

a parent) in FlF ,rF
if lca(l′, l′′) ∈ FlF ,rF

, or it is an empty forest ∅ otherwise.
While this term cannot be expressed in root encoding, the distance in Eq. 5 can
be rewritten as follows: δ(FlF ,rF

−FlF ,r′
F

−Fl′′F ,rF
, ∅) = δ(FlF ,rF

, ∅)- δ(FlF ,r′
F
, ∅)−

δ(Fl′′F ,rF
, ∅). Similarly, δ(FlF ,rF

− Fs, ∅) = δ(FlF ,rF
, ∅) − δ(Fs, ∅) in Eq. 3.

The correctness of Chen’s recursion has only been shown for forests FlF ,rF

that are expressible in the form GF (l′, l′′), where l′ (l′′) is the leftmost (rightmost)
leaf descendant of lF (rF ); and forests GlG,rG

that are expressible in the form
FG(v[1..p]), where v is the parent of lG, and rG is the p-th child of v [6]. Other
forests shapes, although they may have root encoding, are not allowed.

Satisfying this restriction and thanks to the unified notation, we can observe
that the recursions by Zhang and Chen can be alternated. Since Chen’s decom-
position is more efficient for some tree shapes, combining the two formulas may
lead to better strategies and new, more efficient algorithms.

2.3 Comparing Relevant Subproblems

The choice of left vs. right in Zhang’s decomposition has an impact on the
number of relevant subproblems that must be computed (cf. Sect. 2.2). This has
first been discussed by Dulucq and Touzet [8]. The RTED algorithm by Pawlik
and Augsten [12] computes the optimal strategy and guarantees to minimize the
number of subproblems in the class of path decompositions. Path decompositions
constitute a subclass of Zhang decompositions that includes all currently known
Zhang decomposition algorithms. We design a path decomposition algorithm
ChenPaths that mostly resembles that of Chen and show that the subproblems
resulting from ChenPaths are a superset of Chen’s subproblems. We evaluate
the difference in the subproblems count (ChenPaths vs. Chen) in Sect. 5.

A path decomposition algorithm requires two ingredients [13]: a path strat-
egy that assigns a root-leaf path to each subtree pair (Fv, Gw) (v ∈ F,w ∈ G)
and a single-path function that is used to reassemble the results for larger sub-
forests from smaller ones (using dynamic programming). A path decomposition
algorithm works as follows: (step1 ) For the input trees (F,G), a root-leaf path
is looked up in the path strategy. (step2 ) The algorithm is called recursively
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for each subtree pair resulting from removal of the root-leaf path from the cor-
responding input tree. (step3 ) A single path function is executed for the input
trees. The single-path function decomposes a forest FlF ,rF

such that, if the right-
most root rF is on the root-leaf path assigned to F , then the leftmost root nodes
are used in Eq. 2, otherwise the rightmost root nodes are used. The path choice
affects the relevant subproblems resulting from (step2 ) and (step3 ).

We design ChenPaths with a path strategy that maps each subtree pair
(Fv, Gw) to the left path in Fv and ΔA single-path function [13]. Note that for
left paths we could apply ΔL single-path function that results in less subproblems
but possibly a subset of Chen’s subproblems.

Theorem 2. The subproblems resulting from ChenPaths algorithm are a super-
set of the subproblems resulting from Chen’s algorithm.

Proof. As discussed in [13], the subproblems of a path decomposition algorithm
are those encountered by all single-path functions executed for subtree pairs
resulting from (step2 ). For ChenPaths the subproblems are F(F, ΓL(F ))×A(G),
where F(F, ΓL(F )) (A(G)) is the set of all subtrees of F (G) and their subforests
obtained by a sequence of rightmost (leftmost and rightmost) root node dele-
tions. The subproblems of Chen’s algorithm are F (F ) × G (G), where F (F ) is
the set of all subtrees of F and their subforests of the form FF (v[1..p]), and
G (G) is the set of all subtrees and subforests of the form GG(l′, l′′). To show the
inclusion of the subproblems it is enough to show the following:

(a) F (F ) ⊆ F(F, ΓL(F )). Every subtree Fv, v ∈ F , is in both sets. Every
subforest of the form F (v[1..p]) can be obtained from the subtree Fv by a
sequence of rightmost root node deletions that delete root node v and v’s
children (and all their descendants) from the last child to p + 1-st. Every
subforests obtained this way is in F(F, ΓL(F )).

(b) G (G) ⊆ A(G). Every subtree Gw, w ∈ G, is in both sets. Due to Theorem 1,
every subforest of the form GG(l′, l′′) can be represented in root encoding.
A(G) is the set of all subforest of G that can be represented in root encoding.
��
In this section we showed that there are path decompositions – a subclass

of the more general class of Zhang decompositions – that can generate all sub-
problems of Chen’s algorithms. This brings Chen’s algorithm even closer to the
mainstream TED algorithms. It seems likely that the results of Chen may be
used to develop a new single-path function that, together with the results of [14],
can be used to reduce the number of subproblems needed for TED algorithms.
Furthermore, the cost of such a function can be used to compute the optimal-cost
path strategy for a given input instance. See [13] for the input/output require-
ments of a single-path function and [14] for a discussion on how to leverage costs
of new single-path functions for optimal strategies.
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3 Revisiting the Runtime Complexity

Chen [6] derives for his algorithm a runtime of O(n2 + l2n + l3.5) for two trees
with n nodes and l leaves. In his analysis, Chen uses a so called (min,+)-product
of two l × l matrices, which has a trivial O(l3)-time solution. In order to achieve
the term l3.5 in the runtime complexity, the (min,+)-product must be solved in
time O(l2.5). Without that improvement, the respective term becomes l4, and
the overall runtime complexity of Chen’s algorithm is O(n2 + l2n + l4).

Chen interpreted a result by Fredman [10] towards the existence of an effi-
cient (min,+)-product algorithm that runs in O(l2.5). Unfortunately, as recent
works point out [3,9], it is still a major open problem whether a truly subcu-
bic algorithm (an O(n3−ε)-time algorithm for some constant ε > 0) exists for
the (min,+)-product. Fong et al. [9] analyse the related difficulties, Zwick [19]
summarizes (in line with Fredman’s discussion [10]) that for every n, a separate
program can be constructed that solves the (min,+)-product in O(n2.5) time,
but the size of that program may be exponential in n. As Fredman points out,
these results are primarily of theoretical interest and may be of no practical use.

Summarizing, with the current knowledge on (min,+)-product algorithms,
the runtime complexity of Chen’s algorithm is O(n2 + l2n + l4). This is also
the complexity of our implementation, which does not use the (min,+)-product
improvement. Interestingly, even without that improvement, Chen’s algorithm is
an important competitor for some tree shapes. We discuss the details in Sect. 5.

4 Reducing the Memory Complexity

In this section we reduce the worst-case space complexity of Chen’s algorithm.
This is an important contribution for making the algorithm practically relevant.

Chen’s algorithm uses dynamic programming, i.e., intermediate results are
stored for later reuse. The space complexity of Chen’s algorithm is O((l2 +
n)min{l, d}) for two trees with n nodes, l leaves, and depth d. The complexity
is a product of two terms. The first term, (l2 + n), is the size of arrays used to
store intermediate results. The second term, min{l, d}, is the maximum number
of such arrays that have to be stored in memory concurrently throughout the
algorithm’s execution. We observe, that there are tree shapes for which Chen’s
algorithm requires 
n

2 � arrays, for example, a right branch tree (a vertically
mirrored version of the left branch tree in Fig. 2(a)). Then, the space complexity
has a tight bound of O((l2 + n)n), which is worse than O(n2) achieved by other
TED algorithms. In this section, we reduce the number of arrays that must be
stored concurrently from min{l, d} to log2(n).

By thoroughly analysing Chen’s algorithm we make a few observations.
(a) The algorithm traverses the nodes in one of the input trees, say F , and
executes one of two functions. These functions (called by Chen combine and
upward) take arrays with intermediate results as an input and return arrays as
an output. (b) Due to internals of the functions combine and upward, the tra-
versal of nodes in F must obey the following rules: children must be traversed
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before parents, and siblings must be traversed from left to right. These rules
resemble the so-called postorder traversal. (c) After a node v ∈ F is traversed,
exactly one array has to be kept in memory as a result of executing the necessary
functions for v and all its descendants. This array must be kept in memory until
the algorithm traverses the right sibling of node v.

Observations (b) and (c) suggest that the number of nodes that cause mul-
tiple arrays to be kept in memory concurrently, i.e., the nodes waiting for their
right siblings to be traversed, strongly depends on the tree shape. For example,
in left branch trees at most one node at a time is waiting for its right sibling,
whereas in right branch trees all leaf nodes are waiting for their right siblings
until the rightmost leaf node is traversed. Our goal is to minimise the number of
such nodes. Our solution is based on the so-called heavy-light decomposition [15]
which introduces a modification to the postorder traversal in observation (b).

We divide the nodes of a tree F into two disjoint sets: heavy nodes and light
nodes. The root of F is light. For each non-leaf node v ∈ F , the child of v that
roots the largest (in the number of descendants) subtree is heavy, and all other
children are light. In case of ties, we choose the leftmost child with the largest
number of descendants to be heavy. The heavy-light traversal is similar to the
postorder traversal with one exception: the heavy child is traversed before all
other children. The remaining children are traversed from left to right.

Theorem 3. Using the heavy-light traversal for tree F , the maximum number
of nodes that cause an additional array to be kept in memory concurrently is at
most �log2 n.
Proof. We modify observation (c) for the heavy-light traversal. An array has
to be kept in memory for a heavy node until its immediate left and right light
siblings (if any) are traversed. For a light node an array has to be kept in memory
until its right light sibling is traversed. Nodes never wait for their heavy siblings
because the heavy sibling is traversed first.

Consider a path γ in tree F . The number of arrays that have to be kept
in memory concurrently is proportional to the number of light nodes on γ. Let
L(γ) be all light nodes on path γ, and W (γ) be all immediate siblings waiting
for nodes in L(γ). The array for a node in W (γ) must be kept in memory
until its sibling in L(γ) is traversed. That brings us to the conclusion that the
maximum number of arrays that have to be kept in memory concurrently equals
the maximum number of light nodes on any path in F .

Let |F | = |N(F )| denote the size of tree F . For any light node v, its heavy
sibling has more nodes than v. It holds that |Fp(v)| > 2|Fv|, and |Fv| <

|Fp(v)|
2 .

Then, each light node v on a path γ decreases the number of consecutive nodes
on γ to be at most |Fp(v)|

2 . Hence, the maximum number of light nodes on any
path in F is at most �log2 |F |. ��

For example, consider left and right branch trees. The heavy-light traversal
causes at most one node at a time to wait for its sibling to be traversed. Thus,
at most one additional array has to be stored in memory at any time.
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With Theorem 3 we reduce the space complexity of Chen’s algorithm to
O((l2+n) log n). For trees with O(

√
n) leaves the complexity becomes O(n log n).

This is remarkable since all other TED algorithms require O(n2) space indepen-
dently of the tree shape. So far, space complexities better than O(n2) were
achieved only by approximations (for example, O(n)-space pq-gram distance by
Augsten et al. [1]), algorithms computing an upper bound for TED (for exam-
ple, O(n log n)-space constrained tree edit distance by Wang et al. [17]), and
algorithms computing the lower bound for TED (for example, O(n)-space string
edit distance by Chan [4]). Trees with the number of leaves in O(

√
n) are charac-

terised by long node chains, for example, tree representations of RNA secondary
structures [5].

5 Experimental Evaluation

In this section we experimentally evaluate Chen’s algorithm and compare it to
the classical algorithm by Zhang and Shasha (ZS) [18] and the state-of-the-art
algorithm AP-TED+ by Pawlik and Augsten [14]. All algorithms were imple-
mented as single-thread applications in Java 1.7. and executed on a single core
of a server machine with 8 cores Intel Xeon 2.40 GHz CPUs and 96GB of RAM.
The runtime results are averages over three runs.

(a) left branch tree (LB) (b) zig-zag tree (ZZ) (c) full binary tree (FB)

Fig. 2. Shapes of the synthetic trees

Implementation. We implemented the original algorithm by Chen without
the matrix multiplication extension (cf. Section 3). During the implementation
process we discovered some minor bugs in Chen’s algorithm that we fixed in
our implementation. We further extended the implementation with our new tra-
versal strategy to reduce the memory complexity (cf. Section 4). Our tests (not
presented due to space limitations) show that the memory usage reduction is
significant, for example, in the case of zig-zag trees we reduce the number of
arrays concurrently stored in memory from linear to constant. That translates
to a reduction of the memory footprint by one order of magnitude already for
small trees with 200 nodes. The improvement ratio grows with the tree size.

Datasets. Similar to Pawlik and Augsten [13], we generated trees of five different
shapes and varying sizes. Left branch (LB), zig-zag (ZZ), and full binary trees
(FB) are shown in Fig. 2. In addition, we created thin and deep trees which
favor Chen’s algorithm. Thin and deep left branch trees (TDLB) are obtained
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from LB trees by inserting node chains (of equal length) to the left child of
every node. Thin and deep zig-zag trees (TDZZ) are obtained from long node
chains by attaching leaf nodes at random positions (alternating between left and
right such that the resulting tree resembles a zig-zag tree). For thin and deep
trees, we vary the ratio of leaf nodes from 5% to 20%. It is worth mentioning
that LB/TDLB trees are the best-case input for ZS, while the performance of
AP-TED+ does not depend on the tree shape.

0001001

+

(a) Left branch (LB).

0001001

+

(b) Zig-zag (ZZ).

0001001

+

(c) Full binary (FB).

011

+

(d) Thin and deep left branch (TDLB).

011

+

(e) Thin and deep zig-zag (TDZZ).

0001001
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Fig. 3. Number of relevant subproblems for different tree shapes.

Number of relevant subproblems. The complexity of TED algorithms is
proportional to the number of subproblems that an algorithm has to compute.
Figure 3 shows the number of subproblems for different tree shapes. For the LB,
FB, and TDLB shapes the leaders are AP-TED+ and ZS, while Chen must
compute many more subproblems. For the ZZ shape, the winners are Chen and
AP-TED+, ZS performs poorly. For TDZZ trees Chen outperforms its competi-
tors. For TDZZ trees with the leaves ratio of 5% the difference is one order of
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magnitude (Fig. 3(f)). We vary the leaves ratio and observe that Chen results in
the smallest number of subproblems for all tested leave ratios between 5% and
20% (Fig. 3(e)). ZS and AP-TED+ require only a constant number of operations
for each relevant subproblem, while Chen must evaluate the minimum over a
linear number of options (see Eqs. 3 and 5). We count the overall number of
elements in the minima and report the result as ChenOP in Fig. 3. Although
the number of constant time operations is much larger then the number of sub-
problems in Chen’s algorithm, Chen remains the winner for TDZZ trees with
leaves ratio of 5%. With more than 10% leaf ratio Chen looses in favour of AP-
TED+, but is better than ZS for all ratios. Additionally, we mark the number
of subproblems of ChenPaths introduced in Sect. 2.3. The results confirm that
ChenPaths results in more subproblems than Chen and ZS. The latter is caused
by the path strategy and single-path function used in ChenPaths.
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Fig. 4. Runtime for different tree shapes.
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Runtime. We compare the runtime of the algorithms for different tree shapes
(Fig. 4). The trend is consistent with the results for the number of subproblems.
Chen wins only for TDZZ trees with 5% leaf ratio (Fig. 4(f)); the runtime differ-
ence to the runner-up AP-TED+ is marginal. Chen’s runtime quickly increases
with the leaf ratio.

6 Conclusion

In this paper we analysed and experimentally evaluated the tree edit distance
algorithm by Chen [6]. We revised the runtime and improved the space com-
plexity of Chen’s algorithm to O(n log(n)) for trees with O(

√
n) leaves. Our

experiments showed that Chen beats its competitors for thin and deep zig-zag
trees with few leaves. Our analytic results suggest that the recursions of Chen
and Zhang can be combined. For the future work, it is interesting to develop new
dynamic programming algorithms that can leverage both recursive decomposi-
tions. This requires a cost formula for combined Chen and Zhang strategies, and
an efficient bottom-up traversal for the dynamic programming implementation
of the combined strategy.
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Abstract. Outlier detection methods have used approximate neighbor-
hoods in filter-refinement approaches. Outlier detection ensembles have
used artificially obfuscated neighborhoods to achieve diverse ensemble
members. Here we argue that outlier detection models could be based
on approximate neighborhoods in the first place, thus gaining in both
efficiency and effectiveness. It depends, however, on the type of approx-
imation, as only some seem beneficial for the task of outlier detection,
while no (large) benefit can be seen for others. In particular, we argue
that space-filling curves are beneficial approximations, as they have a
stronger tendency to underestimate the density in sparse regions than in
dense regions. In comparison, LSH and NN-Descent do not have such a
tendency and do not seem to be beneficial for the construction of outlier
detection ensembles.

1 Introduction

Any algorithm will have different points of optimization. More often than not, it
is not the algorithm that needs to be optimized, but the actual implementation.
Implementation details can yield substantial performance differences, in particu-
lar when scripting languages such as R and Python or just-in-time optimization
such as in Java and Scala are used [29]. An implementation detail often not
even mentioned in passing in publications describing a novel outlier detection
algorithm is the computation of neighborhoods. Typical outlier detection algo-
rithms compute some property for characterizing outlying behavior based on the
nearest neighbors of some object and compare that property for a given object
with the corresponding properties of some context of neighboring objects [42].
Because of its complexity, a central bottleneck for all these algorithms is usually
the computation of object neighborhoods.

We demonstrate this in a motivating experiment, using the ELKI frame-
work [2] since it offers many algorithms as well as several index structures for
acceleration. In Table 1 we give runtime benchmark results running the LOF [10]
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 173–187, 2017.
DOI: 10.1007/978-3-319-68474-1 12
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algorithm (local outlier factor) on two larger data sets: the first data set con-
tains all GPS coordinates from DBpedia [31], the second 27 dimensional color
histograms for the Amsterdam Library of Object Images (ALOI, [17]). We expect
the first to be more amiable to index acceleration using spatial indexes such as
the k-d tree [9] and the R*-tree [8,19]. For each data set, we report the runtime
broken down into (i) loading the data from text files into memory, (ii) bulk-
loading the index, (iii) searching the kNN of each object, and (iv) computing
the LOF scores. We repeat the experiments using a linear scan, using a k-d
tree, and using a bulk-loaded R*-tree; we also give theoretical results on the
complexity of each step.

Table 1. Runtime breakdown of LOF (with k = 100) in ELKI 0.6.0

Data set DBpedia 475.000 instances, 2 dimensions

Index linear scan k-d tree R*-tree Theoretical complexity

(ms) (%) (ms) (%) (ms) (%)

Load Ascii data 990 0.04 1057 4.82 1035 5.99 O(n)

Bulk-load index 0 0.00 829 3.78 768 4.44 O(n logn)

kNN search 2672128 99.74 15740 71.72 11379 65.85 O(n2), maybe n log n

LOF 5879 0.22 4319 19.68 4099 23.72 O(nk)

Data set ALOI 75.000 instances, 27 dimensions

Index linear scan k-d tree R*-tree Theoretical complexity

(ms) (%) (ms) (%) (ms) (%)

Load Ascii data 2238 0.96 2232 0.50 2231 1.27 O(n)

Bulk-load index 0 0.00 624 0.14 996 0.56 O(n logn)

kNN search 230030 98.84 446653 99.28 172791 97.99 O(n2), maybe n log n

LOF 468 0.20 372 0.08 321 0.18 O(nk)

Both from a theoretical point of view as well as supported by the empirical
results presented here, step (iii), computing the kNN of each object, is the main
contributor to total runtime. However, it also becomes evident that the constant
factors in the runtime analysis should probably not be as easily dismissed (see
also the more extensive discussion by Kriegel et al. [29]). Bulk-loading the index
is usually in O(log n), while for kNN search with indexes an optimistic empirical
estimate is n log n, and the theoretical worst case supposedly is between O(n4/3)
and O(n2).1 Effectively these values differ by two to three orders of magnitude,
as constant factors with sorting are tiny. With a linear scan, finding the nearest

1 Results from computational geometry indicate that the worst case of nearest neigh-
bor search in more than 3 dimensions cannot be better than O(n4/3) [16]. Empirical
results with such indexes are usually much better, and tree-based indexes are often
attributed a n log n cost for searching.
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neighbors is in Θ(n2). Many implementations will also require Θ(n2) memory
because of computing a full distance matrix.

In particular on large data sets, finding the kNN is a fairly expensive opera-
tion, and traditional indexes such as the k-d tree and the R*-tree only work for
low dimensionality (for our 27 dimensional example data set, the k-d tree has
become twice as slow as the linear scan, and the R*-tree only yields small per-
formance benefits, as opposed to 2 dimensions, where the speed-up was over 200
fold). Furthermore, neither the k-d tree nor the R*-tree are easy to parallelize
in a cluster environment. Therefore, the use of approximate indexes is desirable
to reduce runtime complexity.

While there are several attempts to optimize the neighborhood computation
for outlier detection algorithms [3,7,14,23,27,36,37,43,46], these aim at com-
puting the exact outlier score as fast as possible or at approximating the exact
outlier score as closely as possible using approximate neighborhoods that are
as close to the exact neighborhoods as possible. Note, however, that any out-
lier score is itself only an approximation of some imprecise statistical property
and the “exact” outlier score is therefore an idealization that has probably no
counterpart in reality.

Here, we argue that using approximate neighborhoods as such can be benefi-
cial for outlier detection if the approximation has some bias that favors the isola-
tion of outliers, especially in the context of ensemble techniques, that need some
diversity among ensemble components anyway [48]. Using approximate neigh-
borhoods as diverse components for outlier ensembles has not been discussed in
the literature so far but it seems to be an obvious option. We show, however,
that using the approximate neighborhoods can be beneficial or detrimental for
the outlier detection ensemble, depending on the type of approximation. There
are apparently good and bad kinds of neighborhood approximations for the task
of outlier detection (and presumably also for clustering and for other data min-
ing tasks). We take this point here based on preliminary results and suggest to
investigate the bias of different neighborhood approximations methods further.

This paper is organized as follows: we review related work in Sect. 2, describe
our approach in Sect. 3, and present our experimental results in Sect. 4. We
conclude in Sect. 5.

2 Related Work

Existing outlier detection methods differ in the way they model and find the out-
liers and, thus, in the assumptions they, implicitly or explicitly, rely on. The fun-
damentals for modern, database-oriented outlier detection methods (i.e., meth-
ods that are motivated by the need of being scalable to large data sets, where
the exact meaning of “large” has changed over the years) have been laid in the
statistics literature. In general, statistical methods for outlier detection (also:
outlier identification or rejection) are based on assumptions on the nature of
the distributions of objects. The classical textbook of Barnett and Lewis [6]
discusses numerous tests for different distributions. The tests are optimized for
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each distribution dependent on the specific parameters of the corresponding dis-
tribution, the number of expected outliers, and the space where to expect an
outlier. Different statistical techniques have been discussed by Rousseeuw and
Hubert [40].

A broader overview for modern data mining applications has been presented
by Chandola et al. [12]. Here, we focus on techniques based on computing dis-
tances (and derived secondary characteristics) in Euclidean data spaces.

With the first database-oriented approach, Knorr and Ng [26] triggered the
data mining community to develop many different methods, typically with a
focus on scalability. A method in the same spirit [39] uses the distances to the
k nearest neighbors (kNN) of each object to rank the objects. A partition-based
algorithm is then used to efficiently mine top-n outliers. As a variant, the sum of
distances to all points within the set of k nearest neighbors (called the “weight”)
has been used as an outlier degree [4].

Aside from this basic outlier model, they proposed an efficient approximation
algorithm, HilOut, based on multiple Hilbert-curves. It is a strongly database
oriented technique capable of an efficient on-disk operation. It processes the
data set in multiple scans over the data, maintaining an outlier candidate list
and thresholds. For every point, its outlier score is approximated with an upper
and lower point. Objects whose upper bound becomes less than the global lower
bound can be excluded from the candidates. If after a certain number of scans
the candidate set has not yet reached the desired size, a final refinement step will
compute the pairwise distances from the candidates to the full data set. Hilbert-
curves serve a twofold purpose in this method. First, they are used to find good
neighbor candidates by comparing each object with its closest neighbors along
the Hilbert-curve only. Second, the Hilbert-curves are used to compute lower
bounds for the outlierness, as at least for a small radius they can guarantee
that there are no missed neighbors. For subsequent scans, the Hilbert-curves are
varied by shifting the data set with a multiple of 1

d+1 on each axis to both create
new neighbor candidates and to increase the chance of having a good guarantee
on the close neighbor completeness.

The so-called “density-based” approaches consider ratios between the local
density around an object and the local density around its neighboring objects,
starting with the seminal LOF [10] algorithm. Many variants adapted the original
LOF idea in different aspects [42]. Despite those many variants, the original LOF
method is still competitive and state of the art [11].

As for other approaches, also for several of the variants of LOF, approximate
variants have been proposed. For example the LOCI method [38] came already
in the original paper with an approximate version, aLOCI. For aLOCI, the data
are preprocessed and organized in (multidimensional) quadtrees. These have the
benefit of allowing a simple density estimation based on depth and occupancy
numbers alone, i.e., when an object is contained in an area of volume V which
contains n objects, the density is estimated to be n

V . Since this estimation can be
quite inaccurate when an object is close to the fringe of V , aLOCI will generate
multiple shifted copies of the data set, and always use the quadtree area where
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the object is located most closely to the center. Furthermore, as aLOCI consid-
ers multiple neighborhood sizes, the algorithm will check multiple such boxes,
which may come from different trees. This makes the parallelization of aLOCI
hard, while the required random accesses to the quadtree make this primarily
an algorithm for data that fits into main memory. Shifting is done by moving
the data set along a random vector in each dimension, cyclically wrapping the
data within the domain (which may, in turn, cause some unexpected results).

Several approximate approaches use random projection techniques [1,33,45]
based on the Johnson/Lindenstrauss lemma [24], especially in the context of
high dimensional outlier detection [51]. Wang et al. [46] propose outlier detec-
tion based on Locality Sensitive Hashing (LSH) [13,18,22]. The key idea of this
method is to use LSH to identify low-density regions, and refine the objects in
these regions first, as they are more likely to be in the top-n global outliers.
For local outlier detection methods there may be interesting outliers within a
globally dense region, though. As a consequence, the pruning rules this method
relies upon will not be applicable. Zhang et al. [47] combine LSH with isolation
forests [32]. Projection-indexed nearest-neighbours (PINN) [14] shares the idea
of using a random projection to reduce dimensionality. On the reduced dimen-
sionality, an exact spatial index is then employed to find neighbor candidates
that are refined to k nearest neighbors in the original data space.

Improving efficiency of outlier detection often has been implemented by
focussing on the top-n outliers only and pruning objects before refinement that
do not have a chance to be among the top-n outliers [3,7,23,27,36]. A broad and
general analysis of efficiency techniques for outlier detection algorithms [37] iden-
tifies common principles or building blocks for efficient variants of the so-called
“distance-based” models [4,26,39]. The most fundamental of these principles is
“approximate nearest neighbor search” (ANNS). The use of this technique in the
efficient variants studied by Orair et al. [37] is, however, different from the app-
roach we are proposing here in a crucial point. Commonly, ANNS has been used
as a filter step to discard objects from computing the exact outlier score. The
exact kNN distance could only become smaller, not larger, in case some neighbor
was missed by the approximation. Hence, if the upper bound of the kNN dis-
tance, coming along with the ANNS, is already too small to possibly qualify the
considered point as a top-n outlier, the respective point will not be refined. For
objects passing this filter step, the exact neighborhood is still required in order to
compute the exact outlier score. All other efficiency techniques, as discussed by
Orair et al. [37], are similarly based on this consideration and essentially differ
in the exact pruning or ranking strategies. As opposed to using approximate
nearest neighborhoods as a filter step, we advocate to directly use the resulting
set of an approximate nearest neighbor search to compute outlier scores, without
any refinement. Schubert et al. [43] based a single outlier model on combinations
of several approximate neighborhoods, studying space-filling curves and random
projections. Here, we compute the outlier score on each of the k approximate
nearest neighbors directly, without any refinement, instead of on the exact neigh-
borhood and combine them only afterwards. In addition, we compare different
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approximate neighborhood search methods: aside from space filling curves we
also study LSH (see above) and NN-Descent [15]. The basic idea of NN-Descent
is an iterative refinement of neighborhoods, checking the approximate neighbors
of the approximate neighbors (using both forward and reverse neighborhoods).
Starting from random neighborhoods, the iteration approximates surprisingly
quickly and well the true neighborhoods.

Many more approaches for the computation of approximate neighborhoods
could be tested and compared on their suitability for outlier detection (as well
as for other data mining tasks). However, most of them focus on a near-perfect
recall, and therefore may be unsuitable for our purposes. K-d-trees can be
parameterized to give approximation guarantees even when not exploring all
branches [5]. For example, randomized k-d-trees [44] build multiple k-d-trees
(randomly choosing the split axis amongst the best candidates) and search them
in parallel with an approximate search, while the priority search k-means tree [35]
uses recursive clustering.

Isolation forests [32] can be seen as an approximate density estimation ensem-
ble, which constructs multiple trees on different samples of the data, where the
height of a leaf (which determines “isolation”) is implicity used as a kind of
density estimate. As it does not find neighbors, but directly estimates density,
it cannot be used with methods such as LOF. ALOCI [38] uses a quadtree for a
similar purpose. Nevertheless, the idea of building an ensemble of simple outlier
detectors is a common idea with our approach, and our observations may yield
further insight into this method, too.

Our work here is thus to be seen as a first step towards embracing imprecision
of approximate nearest-neighbor search as a source of diversity for ensemble
construction.

3 Outlier Detection Ensembles Based on Approximate
Neighborhoods

The conclusion we draw from the discussion of related work is to emphasize
that, for certain outlier detection models, it does not seem to be of the utmost
importance to work on exact neighborhoods. Although the use of approximate
neighborhoods for outlier detection was usually an intermediate step, before ulti-
mately neighborhoods are refined to be exact or at least as good as possible, we
maintain that approximate neighborhoods can be sufficient or even beneficial
(if the approximations exhibit a bias that favors the isolation of outliers), to
estimate and compare local densities, in particular if we combine outlier models
learned on approximate data to an ensemble. The same reasoning relates to sev-
eral existing ensemble methods for outlier detection [48], where a better overall
judgment is yielded by diversified models. Models are diversified using approxi-
mations of different kinds: the results for outlier detection ensembles have been
improved by computing neighbors in subsets of features [30], in subsets of the
dataset [50], or even by adding noise components to the data points in order
to yield diverse density-estimates [49]. All these variants can in some sense also
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be seen as using approximate neighborhoods directly for density estimates (in
subspaces, on subsets, or on noisy data), and for some of these approximations
it has been argued why the particular approximation technique could even prove
beneficial for increasing the gap between outlier and inlier scores [50].

(a) Depth 1 (b) Depth 2 (c) Depth 3 (d) Depth 4 (e) Depth 5 (f) Depth 6

Fig. 1. Hilbert curve approximations at different recursion depth.

Among neighborhood approximation methods, space-filling curves have a
particular property w.r.t. outliers that seems to act beneficial. A space-filling
curve is recursively cutting the space as visualized in Fig. 1. Neighbors being
close in the full space but being separated by such a cut will not be well pre-
served. In Fig. 2, we showcase why this is of minimal effect on density estimates
within a cluster, while the density around outliers is more likely to be underes-
timated more strongly: losing some neighbor in a low-density area (as around
outliers) will incur the identification of approximate neighbors that exhibit larger
distances (and thus much smaller local density estimates for the outlier) as com-
pared to losing some neighbor in some high-density area (such as a cluster),
where the approximate neighbors will still be rather close. Space-filling curves
do exhibit a bias that is actually helpful for outlier detection.

Fig. 2. Approximation error caused by a space filling curve (illustration): black lines
indicate neighborhoods not preserved by the space filling curve. Shaded areas are dis-
covered clusters, red lines are approximate 2NN distances, green lines are the real
2NN distances. By the loss of true neighbors, the density estimated based on approx-
imate neighbors will have a stronger tendency to be underestimated for outliers than
for cluster points, where the distances do not grow that much by missing some true
neighbors.

Neither LSH nor NN-Descent have a similar bias favoring relative underesti-
mation of density around outliers. By using reverse neighborhoods together with
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forward neighborhoods, NN-Descent is naturally adaptive to different local den-
sities. Kabán [25] pointed out that random projection methods according to the
Johnson/Lindenstrauss lemma preserve distances approximately and thus also
preserve the distance concentration. Accordingly, LSH, being based on random-
projections, tends to preserve distances without bias on higher or lower densities.

In an outlier ensemble setting, we propose to use some basic outlier detector
that takes local neighborhoods as input (context set) to compute some local
model and that compares this model with the model of the neighbors as refer-
ence set. Context set and reference set are not necessarily identical, but typically
they are. See the discussion by Schubert et al. [42] on the general design of local
outlier detection methods. As we have seen in the overview on related work, typ-
ically exact neighborhoods are used. However, in ensemble approaches [48] often
special techniques are applied to diversify the models, e.g. by using neighbor-
hood computations in subspaces [30], in subsets of the data [50], or after adding
a noise component on the data [49].

Here we propose to not artificially diversify exactly computed neighborhoods
but rather to stick to approximate neighborhoods in the first place, which comes
obviously with a considerable computational benefit in terms of efficiency. We
demonstrate that this approach can also come with a considerable benefit in
terms of effectiveness, although this depends on the approximation method cho-
sen. We conjecture that also different outlier detection methods used as ensemble
components might react differently to the use of appoximations. In this study,
however, we focus on the sketched approximation techniques (space-filling curves,
LSH, and NN-Descent) in building outlier ensembles, using LOF [10] as basic
outlier detection technique. Outlier scores computed on various approximations
are then combined with standard procedures [48], using score normalization [28]
and ranking of average scores.

4 Experiments

For experiments, we use LOF as well as the neighborhood approximation meth-
ods in the implementation available in the ELKI framework [41].

As data set, we use a 27 dimensional color histogram representation of the
Amsterdam Library of Object Images (ALOI) [17], as used before in the outlier
detection literature (cf. the collection of benchmark data by Campos et al. [11]
and previous usage documented therein). We also take orientation on the results
reported by Campos et al. [11] for parameter selection (neighborhood size for
LOF), where values larger than 20 do not seem to be beneficial on this data set.
We thus test k = 1, . . . , 20.

As space filling curves we use the Z-order [34] and a window size equal to
the number of requested neighbors as used by Schubert et al. [43]. We chose the
simplest curve because it produces more diversity, and the Hilbert curve [20] is
substantially more expensive to compute, although recently some progress has
been made on sorting data without transforming it to Hilbert indices [21]. For
LSH we use 3 projections based on p-stable distributions [13], 3 hash tables and
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a projection width of 0.1. For NN-Descent, we restrict the number of iterations
to 2 in order to force some diversity in the results. All of these parameters
are deliberately chosen to provide a fast, and not overly precise result. Too
precise results will obviously be detrimental to building an ensemble afterwards,
as ensembles rely on diversity in the ensemble members.

We measure the recall of the delivered neighborhoods (not counting the query
point itself) as well as the performance of the outlier detection methods (LOF
with exact neighborhoods and ensemble of LOF on approximate neighborhoods)
in terms of the area under the ROC curve (ROC AUC).

In Fig. 3, we depict the recall of the three approximation methods as dis-
tribution over 25 runs, varying the size k of the requested neighborhood. For
NN-Descent we see a strong tendency to achieve better recall for larger neigh-
borhoods (due to the larger neighbors-of-a-neighbor candidate set). Z-order only
shows a slight tendency in the same direction, LSH has the opposite tendency,
however not very strongly (because of the increasing distance to the k nearest
neighbor, these are less likely to be in the same hash bucket). More remarkable is
the difference in the variance of achieved recall: Z-order always has a considerable
variance, the variance in LSH seems also to depend on the neighborhood size,
while NN-Descent has very stable recall over the different runs. If we allowed
NN-Descent to perform more iterations, its recall would further improve, but
the variance would become even smaller. Note that for the purpose of ensemble
method, variance is related to diversity, and therefore desirable.

If we were to compare the approximation methods as such, we would easily
notice that LSH achieves very high recall compared to the others, and therefore
may be considered to be the best choice. However, as we want to use approximate
neighborhoods as input for ensemble members, a low recall might already be
sufficient to get good results [43] and the variance is of greater importance.

In Fig. 4 we depict the performance of the resulting ensembles, based on each
of the approximation methods and each k. We plot the score distribution of
the individual ensemble members using a boxplot, and the performance of the
ensemble resulting from the combination. In order to visualize the relationship
to recall of the true nearest neighbors, we use the mean recall of the ensemble
on the x axis. For comparison, at recall 1, we also plot the results obtained with
exact nearest neighbors (multiple points due to multiple choices of k).

For all of the methods, we can observe that the ensemble performs at least
as good as 75% of the ensemble members, indicated by the upper quartile of
the boxplot. As expected, we see that the combination of LOF based on LSH
(high recall) and NN-Descent (low recall), both not exhibiting a beneficial bias
for outlier detection, does not improve over the single LOF result based on
exact neighborhoods,2 while the combination of LOF based on space-filling curve
approximations (intermediate recall, large variance, beneficial bias) improves also
over the exact LOF and shows the best results overall, similar to the observation
by Schubert et al. [43].

2 But there may be a performance improvement by nevertheless using these methods.
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Fig. 3. Recall of the true k nearest neighbors for approximate neighborhood search
(distribution over 25 runs), depending on the neighborhood size k. (The query point
is not counted as hit in the result.)
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Fig. 4. ROC AUC of ensemble members (LOF on approximations), ensemble, and exact
LOF for different k = 1 . . . 20 (not labeled). Boxplots indicate the ensemble members,
the stars indicate the performance of the complete ensemble, diamonds indicate the
performance of exact nearest neighbors for comparison.
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5 Conclusion

We studied outlier detection ensembles based on approximate neighborhoods,
using LOF as outlier detector and space-filling curves (Z-order), LSH, and NN-
Descent as approximate methods of nearest neighbor search. Our results demon-
strate that higher recall in the neighborhood search is not necessarily better
for building ensembles, as for building ensembles, the variance over the ensem-
ble members is an important ingredient. And indeed, in theory, a method with
0% recall in the true k-nearest-neighbors can nevertheless achieve 100% accuracy
in finding the true outliers. The neighborhood approximation with intermediate
recall, Z-order, delivers the best results for the outlier ensemble, beating exact
methods. NN-Descent (with only 2 iterations to have more diversity) reaches
from very poor recall to a slightly better recall, compared to Z-order. The recall
here is clearly depending on the size of the requested neighborhood (as expected
from the nature of the approximation method). But the variance is surprisingly
small and does not give sufficient variety to improve in an ensemble. LSH, on
the other hand, shows a very strong performance in terms of recall. The per-
formance of the outlier ensemble is in the upper half of the distribution of the
individual outlier detectors based on individual approximations, but does not
reach the performance of the exact method. For the purpose of using this for
outlier detection ensembles, a key challenge is to construct approximation that
are both good enough, and diverse enough.

We offer as an additional explanation that space-filling curves exhibit a bias
that is particularly helpful to distinguish low-density areas (i.e., outliers) from
high-density areas (i.e., clusters). We therefore suggest to study more thoroughly
the bias of different neighborhood approximation methods with respect to dif-
ferent application tasks.
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bert, E., Assent, I., Houle, M.E.: On the evaluation of unsupervised outlier detec-
tion: Measures, datasets, and an empirical study. Data Min. Knowl. Disc. 30,
891–927 (2016)

12. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM CSUR
41(3), 1–58 (2009). Article 15

13. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings ACM SoCG, pp. 253–262
(2004)

14. de Vries, T., Chawla, S., Houle, M.E.: Density-preserving projections for large-scale
local anomaly detection. KAIS 32(1), 25–52 (2012)

15. Dong, W., Charikar, M., Li, K.: Efficient k-nearest neighbor graph construction
for generic similarity measures. In: Proceedings WWW, pp. 577–586 (2011)

16. Erickson, J.: On the relative complexities of some geometric problems. In: Proceed-
ings of the 7th Canadian Conference on Computational Geometry, Quebec City,
Quebec, Canada, August 1995, pp. 85–90 (1995)

17. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library
of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

18. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings VLDB, pp. 518–529 (1999)

19. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Pro-
ceedings SIGMOD, pp. 47–57 (1984)

20. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math.
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Abstract. Analyzing high-dimensional data poses many challenges due
to the “curse of dimensionality”. Not all high-dimensional data exhibit
these characteristics because many data sets have correlations, which
led to the notion of intrinsic dimensionality. Intrinsic dimensionality
describes the local behavior of data on a low-dimensional manifold within
the higher dimensional space.

We discuss this effect, and describe a surprisingly simple approach
modification that allows us to reduce local intrinsic dimensionality of
individual points. While this unlikely will be able to “cure” all problems
associated with high dimensionality, we show the theoretical impact on
idealized distributions and how to practically incorporate it into new,
more robust, algorithms. To demonstrate the effect of this adjustment,
we introduce the novel Intrinsic Stochastic Outlier Score (ISOS), and
we propose modifications of the popular t-Stochastic Neighbor Embed-
ding (t-SNE) visualization technique for intrinsic dimensionality, intrin-
sic t-Stochastic Neighbor Embedding (it-SNE).

1 Introduction

Analyzing high-dimensional data is a major challenge. Many of our intuitions
from low-dimensional space such as distance and density no longer apply in
high-dimensional data the same way they do in 2- or 3-dimensional space. For
example, the center of a high-dimensional ball contains only very little mass,
whereas the majority of the mass of a high-dimensional ball is in its shell. Grid-
based approaches do not work well to partition high-dimensional data, because
the number of grid cells grows exponentially with the dimensionality, so almost
all cells will be empty. We are particularly interested in anomaly detection
approaches for high-dimensional data, where many distance-based algorithms
are known to suffer from the “curse of dimensionality” [43].

To understand the performance of algorithms, it is advisable to visualize the
results, but visualization of high-dimensional data has similar problems because
of the sheer number and correlations of attributes to visualize [1]. A promising
recent visualization method is t-SNE [35], which embeds data in a way that pre-
serves neighborhoods, but not distances and densities, as seen in Fig. 1, where
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(a) Gaussian distribution (b) t-SNE projection

Fig. 1. t-SNE projections do not preserve distances or density, but try to preserve
neighbors (red x markers indicate points more than 2 standard deviations from the
center) (Color figure online)

the density information of the Gaussian distribution is largely lost, but neigh-
borhoods are to a large extend preserved.

In this article, we improve the concept of “stochastic neighbors” which forms
the base for SNE [16], t-SNE [35], and the outlier detection method SOS [24]. We
study the distance concentration effect and construct a way to avoid the loss of
discrimination (although not a universal “cure” for the curse of dimensionality),
which we integrate into stochastic neighbors, to construct the improved ISOS
outlier detection and it-SNE projection technique for visualizing anomalies in
high intrinsic dimensionality.

2 Related Work

2.1 The Curse of Dimensionality

The “curse of dimensionality” was initially coined in combinatorial optimiza-
tion [4], but now refers to a whole set of phenomena associated with high dimen-
sionality [17,20]. We focus here on the loss of “discrimination” of distances as
described by [6]. Intuitively, this curse means that the distances to the closest
neighbor and the farthest neighbor become relatively similar, up to the point
where they become “indiscernible”. This can be formalized as:

lim
dim→∞

E
[
maxy �=x d(x,y)−miny �=x d(x,y)

miny �=x d(x,y)

]
→ 0. (1)

This can be proven for idealized distributions, but the effect can be observed
in real data, and affects the ability of many distance-based methods, e.g., in
outlier detection [43].

Figure 2a visualizes the distribution of distances from the origin of a mul-
tivariate standard normal distribution, i.e. X = (

∑
d Y 2

i )1/2 with Yi ∼ N (0; 1).
The resulting distance distribution is a Chi distribution with d degrees of free-
dom. To visualize the concentration of relative distances, we normalize the x-axis
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Fig. 2. Deviation from the expected value of a multivariate standard normal
distribution.

by the mean distance. We can see the p.d.f. concentrate around the mean, and
the c.d.f. change abruptly at the mean, as expected by Eq. 1. However, if we look
at absolute deviations from the mean in Fig. 2b (by centering the distributions
on the mean rather than scaling them), we can no longer see any distance con-
centration. In terms of deviation from the mean, the distributions appear very
similar (for d > 2)—so there should be some leeway here against the curse of
dimensionality. (But unfortunately, this transformation yields negative values,
so it cannot be used as a distance normalization in most applications).

[43] have shown that the distance concentration effect itself is not the main
problem, and outliers can still be easy to detect if this effect occurs. [5] have
shown that we can discern well-separated clusters in high dimensionality, because
we can still distinguish near from far neighbors. [20] show that by ignoring
the absolute distance values, but instead counting the overlap of neighborhoods
(“shared nearest neighbors”), we can still cluster high-dimensional data, reflect-
ing the observation that the ranking of near points remains meaningful, even
when the relative distances do not provide contrast.

There are many other aspects of the curse of dimensionality [17,43], such
as hubness [37], which we will not focus on here (and hubness has also been
observed in lower dimensional data [33]). Some issues with high dimensionality
are very practical in nature: preprocessing, scaling, and weighting of features is
often very important for data analysis, but becomes difficult to do with a large
number of features of very different nature, such as when combining continuous,
discrete, ordinal and categoricial features. Such problems are also beyond the
scope of this article.

2.2 Intrinsic Dimensionality

Data on a line in a 10-dimensional space will essentially behave as if it were
in a 1-dimensional space. This led to the notion of intrinsic dimensionality, and
this intuition has been formally captured for example by the expansion dimen-
sion [26].

Text data is often represented in a very high-dimensional data space, where
every different word in the corpus corresponds to a dimension. Based on a naive
interpretation of the curse of dimensionality, one would assume such a representa-
tion to be problematic; yet text search works very well. In the vector space model,
text data usually is sparse, i.e., most attributes are zero. Adding additional
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attributes that are constant, or copies of existing attributes, usually do not
increase the difficulty of a data set much.

Therefore, it is good to distinguish between the representation
dimensionality—the number of attributes used for encoding the data—and the
effective dimensionality for data analysis. [17] establishes the theoretical connec-
tion between dimensionality, discriminability, density, and distance distributions;
as well as the connection to extreme value theory [18]. Intrinsic dimensionality is
often estimated using tail estimators, in particular using the Hill [15] estimator,
or a weighted average thereof [21]. More recent approaches involve the expansion
dimension [26] and the Generalized Expansion Dimension (GED) [19]. [2] survey
and compare several estimation techniques for intrinsic dimensionality. Imple-
mentations of several estimators for intrinsic dimensionality can be found in the
ELKI data mining toolkit [39]. The Hill maximum-likelihood estimator uses the
sorted distances of x to its k-nearest neighbors y1 . . . yk for estimation [2]:

ÎDHill(x) := −
(

1
k−1

∑k−1

i=1
log d(x,yi)

d(x,yk)

)−1

(2)

2.3 Outlier Detection

Distance-based outlier detection is focused around the idea that outliers are in
less dense areas of the data space [28], and that distances can be used to quan-
tify density. Since then, many outlier detection methods have been proposed.
We focus our comparison on methods that use the full-dimensional k-nearest
neighbors, although many other methods exist [43]. [38] use the distance to the
k-nearest neighbor, which can be seen as a “curried” version of the original DB-
outlier approach by [28]. [3] use the average distance to all k-nearest neighbors
instead. LOF [7] introduced the idea of comparing the density of a point to the
densities of its neighbors. LoOP [29] attempts to estimate a local outlier prob-
ability, while INFLO [25] also takes reverse nearest neighbor relationships into
account, while KDEOS [40] uses kernel density estimation instead of the simpler
estimate of aforementioned methods. ODIN [14] simply counts how often a point
occurs in the nearest-neighbors of others, while SOS [24] (c.f. Sect. 3.3) uses the
probability of a point not occurring in stochastic neighborhoods as outlier score.
Many more variations of these ideas exist [8,43], and a fair evaluation of such
methods is extremely difficult, due to the sensitivity of the methods to data
sets, preprocessing, and parameterization [8]. There exist many methods that
focus on identifying outliers in feature subspaces [10,27,30,36] or with respect
to correlations in the data [32].

2.4 Stochastic Neighbor Embedding

Stochastic neighbor embedding (SNE) [16] and t-distributed stochastic neigh-
bor embedding (t-SNE) [35] are visualization techniques designed for visualizing
high-dimensional data in a low-dimensional space (typically 2 or 3 dimensions).
These methods originate from computer vision and deep learning research where
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they are used to visualize large image collections. In contrast to techniques such
as principal component analysis (PCA) and multidimensional scaling (MDS),
which try to maximize the spread of dissimilar objects, SNE focuses on placing
similar objects close to each other, i.e., it preserves locality rather than large
distances. But while these methods were developed (and used with great suc-
cess) on data sets with a high representational dimensionality, [35] noted that
the “relatively local nature of t-SNE makes it sensitive to the curse of the intrin-
sic dimensionality of the data” and that “t-SNE might be less successful if it is
applied on datasets with a very high intrinsic dimensionality” [35].

The key idea of these methods is to model the high-dimensional input data
with an affinity probability distribution, and use gradient descent to optimize
the low-dimensional projection to exhibit similar affinities. By using an affinity
which has more weight on nearby points rather than Euclidean distance, one
obtains a non-linear projection that preserves local neighborhoods, while away
points are mostly independent of each other. In SNE, Gaussian kernels are used
in the projected space, whereas t-SNE uses a Student-t distribution. This distri-
bution is well suited for the optimization procedure because it is computationally
inexpensive, heavier-tailed, and has a well-formed gradient. The heavier tail of
t-SNE is beneficial for visualization, because it increases the tendency of the
projection to separate unrelated points in the projected space. But as seen in
Fig. 1, t-SNE does not preserve distances or densities well, so we should rather
not use the projected coordinates for clustering or outlier detection.

In the input domain, (t-)SNE uses a Gaussian kernel for the input distrib-
ution. Given a point i, the conditional probability density pj|i of any neighbor
point j is computed as

pj|i =
exp(−‖xi−xj‖2/2σ2

i )∑
k �=i exp(−‖xi−xk‖2/2σ2

i )
(3)

where ‖xi − xj‖ is the Euclidean distance, and the kernel bandwidth σi is opti-
mized for every point to have the desired perplexity h (an input parameter
roughly corresponding to the number of neighbors to preserve). The symmetric
affinity probability pij is then obtained as the average of the conditional prob-
abilities pij = 1

2 (pi|j + pj|i) and is subsequently normalized such that the total
sum is

∑
i�=j pij = 1.

SNE uses a Gaussian distribution (similar to Eq. 3, but with constant σ) in
the projected space, and t-SNE improved this by using the Student-t distribution
instead:

qij =
(1+‖yi−yj‖2)−1

∑
k �=l(1+‖yk−yl‖2)−1 (4)

The denominator normalizes the sum to a total of
∑

i�=j qij = 1. The mismatch
between the two distributions P and Q (given by pij and qij) can now be mea-
sured using the Kullback-Leibler divergence [16]:

KL(P || Q) :=
∑

i

∑
j
pij log pij

qij
(5)

By also using a small constant minimum pij and qij , we can prevent unre-
lated points from being placed too close. To minimize the mismatch of the two
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distributions, we can use the vector gradient δC
δyi

(for Student-t/t-SNE, as derived
by [35]):

δC
δyi

:= 4
∑

j
(pij − qij) qij Z (yi − yj) (6)

where Z =
∑

k �=l(1 + ‖yk − yl‖2)−1 (c.f. [34]).
Starting with an initial random solution Y0 = {yi}, the solution is then

iteratively optimized using gradient descent with learning rate η and momentum
α as used by [35]:

Yt+1 ← Yt − η δC
δY + α (Yt − Yt−1) (7)

The resulting projection y is usually good for visualization, because it pre-
serves neighborhood rather well, but also does not place objects too close to
each other. The t-distributed variant t-SNE is often subjectively nicer, because
the heavier tail of the student-t distribution leads to a more even tendency to
separate points, and thus to more evenly fill the available space. The resulting
projections in general tend to be circular.

3 Intrinsic Stochastic Neighbors

3.1 Distance Power Transform for the Curse of Intrinsic
Dimensionality

The Stochastic Neighbor Embedding approaches are susceptible to the curse,
because they use the distance to the neighbors to compute neighbor weights,
which will become too similar to be useful at discriminating neighbors. When
we lose distance discrimination, it follows from Eq. 3 that for a data set of size
N : limd→∞ pj|i → 1/(N −1), limd→∞ pij → 1/(N −1)2, and that therefore SNE
does no longer work well.

Recent advances in understanding intrinsic dimensionality [17] connect intrin-
sic dimensionality to modeling the near-neighbor tail of the distance distribution
with extreme value theory [18]. An interesting property of intrinsic dimension-
ality is that it changes with certain transformations [18, Table 1], such as the
power transform. Let X be a random variable as in [18], and g(x) :=c ·xm with c
and m constants. Let FX be the cumulative distribution of X, Y = g(X) and FY

the resulting cumulative distribution. Then the intrinsic dimensionality changes
by IDFX

(x) = m · IDFY
(c · xm) [18, Table 1]. By choosing m = IDFX

(x)/t for
any t > 0, we therefore obtain:

IDFY
(c · xm) = IDFX

(x)/m = t (8)

where we can choose c > 0 as desired, e.g., for numerical reasons. This variable
X serves a theoretical model for the distance distribution on the “short tail”
(the nearest neighbors), and IDFX

is the intrinsic dimensionality. This obser-
vation means that we can transform our distance distribution of any desired
dimensionality t.

In Fig. 3, we revisit the theoretical model of a multivariate normal distribu-
tion that we used in Sect. 2.1, but this time we transform the x-axis with a power
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Fig. 3. Deviation from a multivariate standard normal distribution, after power
transform.

transform using m =
√

d and c such that the mean is 1. The power transform
yields a transformation that retains the 0 (which the deviation from the mean
in Fig. 2b did not), but which allows the numerical discrimination of distances.
One may have assumed that m = d would be the best choice in this scenario of
a d-dimensional hyperball. This holds true in the limit at the center of the ball,
but the decreasing density of the Gaussian yields a smaller expansion rate and
therefore a decreasing intrinsic dimensionality as we move outward [19]. Beware
that this is a very much idealized model, and that in practical applications, we
will simply estimate m from the data.

To improve stochastic neighbor approaches, we propose the following remedy
to the distance concentration effect: Based on the k-nearest neighbors of the
point of interest x, first estimate the local intrinsic dimensionality ID(x). Then
use d′(x, yi) := c · d(x, yi)m (c.f. Eq. 8) with m = ID(x)/2 to transform them
into squared distances, and c = 1/maxy d(x, y)m such that the farthest neighbor
always has distance 1. The distances d(x, y) to the neighbors are transformed
using

d′2(x, y) = d(x, y)m
/maxz d(x, z)m =

( d(x,y)
maxz d(x,z)

)m (9)

We then use this locally modified distance instead of the squared Euclidean dis-
tance to compute pi|j using Eq. 3 (to simplify, we also substitute βi := −1/2σ2

i ):

p′
j|i =

exp(βid
′2
i (xi,xj))

∑
k �=i exp(βid′2

i (xi−xk))
(10)

We can then continue to optimize βi by binary search to obtain the desired
perplexity h as done for regular SNE and t-SNE.

log2 Perplexity = −
∑

j �=i
pj|i log2 pj|i (11)

On data that was not normalized, regular t-SNE may fail to find a suitable βi

with binary search.1 This happens when the binary search begins with βi = −1
(or σi = 1), but exp(βidi(xi, xj)) = 0 for all j if the initial distances are too large.

1 The author of t-SNE writes: “Presumably, your data contains some very large num-
bers, causing the binary search for the correct perplexity to fail. [. . . ] Just divide
your data or distances by a big number, and try again.” https://lvdmaaten.github.
io/tsne/#faq.

https://lvdmaaten.github.io/tsne/#faq
https://lvdmaaten.github.io/tsne/#faq
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With our choice of c this will not happen anymore (as the maximum d′ is 1),
but the ELKI [39] implementation that we use initializes search with the heuris-
tic estimate β̂i = − 1

2h/meanj d(xi, xj)2 (motivated by σ̂2 ∼ meanj d(xi, xj)2)
which usually converges with fewer iterations. Since we only rely on the nearest
neighbors, our new approach is compatible with the fast Barnes-Hut approxi-
mation [34].

3.2 Consensus Affinity Combination

SNE and t-SNE produce a symmetric affinity by averaging the two asymmetric
affinities: pij = 1

2 (pi|j + pj|i). While this has the desirable property of retaining
the total sum, it also tends to pull outliers too close to their neighbors. From
a probabilistic point of view, we can interpret this as point xi and xj being
connected if either of them chooses to link. Instead, we may desire them to link
only if there is “consensus”, by using

p′
ij :=

√
p′

i|j · p′
j|i. (12)

The resulting affinity matrix will be more sparse, and therefore it is desirable
to use a larger perplexity and neighborhood size than for t-SNE. But since the
estimation of intrinsic dimensionality suggests to use at least 100 neighbors,
whereas t-SNE is often used with a perplexity of about 40, this is not an addi-
tional restriction.

Next, the resulting affinities are normalized to have a total sum of 1 (as
in regular t-SNE), to balance attractive and repulsive forces during the t-SNE
optimization process. We then simply replace pij in the gradient (Eq. 6) with the
new p′

ij (Eq. 12).

3.3 Intrinsic Stochastic Outlier Selection

The new outlier detection method Intrinsic Stochastic Outlier Selection (ISOS)
is—as the name indicates—a modification of the earlier but rather unknown
SOS method published in a technical report [23], a PhD thesis [22], and in a
maritime application [24]. The key idea of this approach is that every data point
“nominates” its neighbors, and can be seen as a smooth version of ODIN [14].

The original proposal of SOS involved generating random graphs based on an
affinity distribution in order to identify frequently unlinked objects as outliers.
But the expensive graph sampling process can be avoided, and the probability
of a node being disconnected can be computed in closed-form using the simple
equation [23]:

SOS(xi) :=
∏

j �=i
1 − pi|j (13)

The original algorithm, similar to SNE and t-SNE, has quadratic runtime com-
plexity, making it expensive to apply to large data. But because of the exponen-
tial function, affinities will quickly drop to a negligible value. Van der Maaten [34]
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Algorithm 1. Pseudocode for ISOS
Input: DB: Database
Input: k: Number of neighbors to use
Data: logscore: Outlier scores, initially 1

1 Build a neighbor search index on database DB (if not present)
2 foreach point xi in database DB do
3 kNN(xi) ← Find k-nearest neighbors (with distances)
4 ID(xi) ← Estimate intrinsic dimensionality of kNN(xi)
5 d′(xi) ← Adjust squared distances (Eq. 9)
6 Choose βi such that perplexity ≈ k/3
7 pj|i ← Compute normalized affinities (Eq. 10)
8 foreach neighbor xj in kNN(x) do
9 logscore(xj) ← logscore(xj) + log(1 − pj|i)

10 return 1
/ (

1 + e−x·log h · (1 − ϕ)/ϕ
)

for each score in logscore

uses the k=�3h� nearest neighbors to approximate the pi|j . We incorporate this
idea into SOS for two reasons: (i) to improve scalability, and (ii) to make it more
comparable to k-nearest neighbor based outlier detection algorithms. Instead of
the perplexity parameter h, this variant—which we denote as KNNSOS—has the
neighborhood size parameter k common to k-nearest neighbor approaches, and
uses a derived perplexity of h = k/3. Our ISOS method in turn is an extension of
this KNNSOS approach, which uses the k-nearest neighbors first to estimate the
local intrinsic dimensionality of each point, then uses Eq. 13 with our adjusted
affinity p′

i|j . For pi|j 	 1, Eq. 13 does not give a high numerical precision. We
therefore suggest to compute the scores in logspace,

log SOS(xi) :=
∑

j �=i
log(1 − pi|j) (14)

and use the log1p(-p i|j) function if available for increased numerical preci-
sion. While SOS yields an outlier probability (which makes the score more inter-
pretable by users [31]), it is not as well-behaved as indicated by its authors [23],
because the expected value even for a clear inlier is not 0, since we normal-
ized the pi|j to sum up to 1. Intuitively, every point is supposed to distribute
its weight to approximately h (the perplexity) neighbors. Assuming a clique of
h + 1 objects, each at the same distance such that pi|j = 1/h, every point will
have the probability

E[SOS] :=
∏h

1
(1 − 1/h) =

(
h−1

h

)h≈h→∞ 1/e (15)

Alternatively, we can assume the null model that every point is equidistant, and
thus every neighbor is chosen with pi|j = 1/N , which yields the same limit. Note
that log 1/e = −1, if we perform the same computations in logscale. Therefore,
we further propose to normalize to the resulting outlier probabilities, by com-
paring them to the expected value. The likelihood ratio SOS(xi)/E[SOS] in
logspace yields simply the addition of 1 to the log scores. After this transforma-
tion, the average score will be about 0.5, but centeral values will be too frequent.
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This is caused by the aggregation over effectively ≈ h values, and we can reduce
this by multiplication with log h (in log space). Last but not least, we need to
add a prior to reflect that anomalies are rare and not half of the data, but rather
the majority of points should have a very low score. We use a desired outlier
rate of ϕ = 1%, which yields a prior odds ratio of (1 − ϕ)/ϕ [32,40].

To convert this back to a probability, we can use the logistic function:

l = −(log SOS′(xi) + 1) · log h (16)
ISOS(xi) = 1/ (1 + exp(l) · (1 − ϕ)/ϕ) (17)

Figure 4 shows (i) the original score before the adjustments on the MNIST
test data set, (ii) after adjusting for the expected value (and logistic transforma-
tion), (iii) after also taking the perplexity into account, and (iv) with the prior
assumption of outliers being 1% rare. The last histogram is the least “informa-
tive”, but naturally we must expect the majority of outlier scores to be close to
zero, so in fact only the exponential-like curve in the final histogram indicates a
score that can satisfy the intuition of an “outlier probability”. We show the top
50 outliers in Fig. 8b.
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Fig. 4. Histogram of scores on MNIST data. Dotted lines indicate the expected average
value.

Algorithm 1 gives the pseudocode for ISOS. Rather than directly computing
the score for every point, we initialize all scores with 1 (= − log 1/e), then
iterate over each point xi and adjust the scores of each neighbor xj by adding
log(1 − pj|i). This reduces the memory requirements from O(n2) to O(n), and
makes the algorithm trivial to distribute except for the nearest neighbor search.
For distributed and parallel processing, approximative nearest neighbor search
is preferable, and has shown to be surprisingly effective for outlier detection,
because errors may be larger for outliers than for inliers [42]. Note that in line 8
we can stop when pj|i is zero, as further away points will no longer change the
scores of neighbors. For KNNSOS, do not estimate intrinsic dimensionality in
line 4, and use the unmodified distances in line 5 of Algorithm1.

This is a second-order local outlier detection method (c.f. [41]), where the
kNN are used to estimate affinity, and the score depends on the reverse kNN.
But because of the efficient message-based algorithm above, we do not need to
compute the reverse nearest neighbors (which would require complex indexes for
acceleration [9,11]).
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4 Experiments

We implemented our approach in Java as part of the ELKI [39] data mining
framework, extending the existing Barnes-Hut approximation [34] t-SNE vari-
ant, and using the aggregated Hill estimator [21] for intrinsic dimensionality as
default.

4.1 ISOS Outlier Detection

As common when performing a thorough evaluation of outlier detection, the
results here remain unconclusive when performed on a large scale of methods
and parameters [8,13]. For any method, we can find parameters and data where it
performs best, or worst. KNNSOS and ISOS are, not surprisingly, no exception
to this rule. Results claiming superior performance on a task as unspecific as
anomaly detection are unfortunately often based on too narrow experiments,
and unfair parameterization. We will contribute this method to the ELKI data
mining toolkit, and submit the entire results for integration into the benchmark
repository of [8].
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Fig. 5. Performance of ISOS and related algorithms on selected data sets.

Figure 5a shows anecdotal evidence of the capabilities of ISOS on the popu-
lar ALOI data set (color histograms from images of small objects [12], prepared
as in [31]) with respect to adjusted average precision. We show the results for
the normalized variant with duplicates removed [8], but the results on the other
variants and with other evaluation measures are similar. On this data set, ISOS
outperforms all other methods by a considerable margin (except for KNNSOS,
which it only outperforms a little bit). Furthermore, the proposed method is
fairly stable with respect to the choice of k, as long as the values are not cho-
sen too small (for a reliable estimation of intrinsic dimensionality k ≥ 100 is
suggested). This makes it rather easy to choose the parameters. On other data
sets such as Pima (Fig. 5b), the simple kNN distance methods work better—
although none of the methods really worked well at all. This data set is also
likely too small for methods based on intrinsic dimensionality. On ANNThy-
roid data, KDEOS, LoOP and ODIN compete for the lead, but both KNNSOS
and ISOS work reasonably well, too. But again, the results are so low, that the
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data set must be considered questionable for distance based outlier detection. In
Fig. 6, we visualize the data sets with PCA, MDS, t-SNE and it-SNE. In none of
these projections, the labeled outlier correspond well to the human intuition of
outlierness, and we cannot expect any unsupervised algorithm to perform well.
For ANNThyroid, we can see artifacts caused by binary attributes in this data
set in each projection. In conclusion of the outlier experiments—and in line with
prior research [8,13,31]—there is no clear winner, and ensemble approaches that
combine kNN outlier, LOF, but also ISOS, remain the most promising research
direction.

(a) ALOI, PCA (b) ALOI 20% sample, MDS (c) ALOI, t-SNE (d) ALOI, it-SNE

(e) Pima, PCA (f) Pima, MDS (g) Pima, t-SNE (h) Pima, it-SNE

(i) ANNThyroid, PCA (j) ANNThyroid, MDS (k) ANNThyroid, t-SNE (l) ANNThyroid, it-SNE

Fig. 6. Projections of outlier detection data sets. Red x indicate the labeled outliers.
(Color figure online)

4.2 it-SNE Visualization

In Fig. 7 we apply t-SNE on the popular MNIST data set, using the smaller
“test” data set only. Colors indicate different digits. All runs used the same
random seed for comparability. The difference between regular t-SNE (Fig. 7a)
and t-SNE with the distances adjusted according to intrinsic dimensionality
(Eq. 9, Fig. 7b) is not very big (classes are slightly more compact in the new
projection). This can easily be explained with this data set having nominally
784 dimensions (28 × 28 pixel), but the intrinsic dimensionality is on average
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(a) t-SNE (b) it-SNE with pij = pi|j + pj|i (c) it-SNE with pij =
√
pi|j · pj|i

Fig. 7. Comparison of MNIST test data (using Barnes-Hut approximations).

just 6.1. Therefore, from an intrinsic dimensionality point of view, it is not a
very high-dimensional data set.

Using the consensus affinity (Eq. 12), yields a better result in Fig. 7c. Outliers
are more pronounced in this visualization, as they are pushed away from all other
points rather than attaching themselves to the border of a nearby class (we can
also see the same effect in the outlier detection data sets, Fig. 6). Because of
the overall greater extend, the classes appear more compact. The difference is
most pronounced with the yellow class (containing the digit 1), which had many
outlier foreign-class attached to it, that are now separate. Why these objects
apparently prefer attaching to digit 1 is not clear, but may related to the fact
that this class has on average the fewest pixels, the least variation within the
class, and the lowest intrinsic dimensionality.

In Fig. 8 we visualize the top 50 outliers detected by ISOS, in the it-SNE
projection (Fig. 8a) as well as the images (Fig. 8b), as well as the images for KNN,
LOF, and KNNSOS. Most of these outliers were separated from the data classes
well by the projection, but we need to keep in mind that the outlier algorithm did
not use the projection, and that the projection does not guarantee to separate
everything as desired. The rather low scores of ≈ 30% reflect the fact that these
outliers are still recognizable digits. Note that these outliers were found based on
the raw pixel information. Better results can be expected by using deep learning
and class information.

(a) ISOS, it-SNE (b) ISOS, k = 150 (c) kNN, k = 1 (d) LOF, k = 20 (e) KNNSOS, k=150(a) ISOS, it-SNE (b) ISOS, k = 150 (c) kNN, k = 1 (d) LOF, k = 20 (e) KNNSOS, k=150

Fig. 8. Top 50 outliers in MNIST test data
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5 Conclusions

This paper contributes important insights into the distance-based aspects of the
curse of dimensionality, contributes a much improved outlier detection method,
and modifies the popular t-SNE method for intrinsic dimensionality and use in
anomaly detection.

– We have shown that the distance concentration effect of the “curse of dimen-
sionality” sometimes can be avoided with a simple power transform.

– The proposed adjustment for intrinsic dimensionality provides more discrim-
inative affinities when using stochastic neighbor approaches on high-dimen-
sional data.

– The “consensus” affinity separates outliers from nearby clusters better, and
thus provides substantially better visualization when used for outlier detec-
tion, as regular t-SNE would attach outliers to nearby clusters.

– The SOS outlier detection method was accelerated using the k-nearest neigh-
bors (KNNSOS), a correction for intrinsic dimensionality was added (ISOS),
and the resulting outlier scores are normalized such that they can be inter-
preted as a probability how likely an object belongs to a rare “outlier” class.

The use of the power transform is a promising direction to avoid the distance
concentration effect in the later stages of data mining, but it is an open research
question how a similar improvement could be achieved to improve for exam-
ple nearest neighbor search. Thus, it is not a universal “cure” to the curse of
dimensionality, yet.
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20. Houle, M.E., Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Can shared-
neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher, B.
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27. Keller, F., Müller, E., Böhm, K.: HiCS: high contrast subspaces for density-based
outlier ranking. In: IEEE International Conference on Data Engineering (2012)

28. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: Very Large Data Bases, VLDB (1998)

http://dx.doi.org/10.1007/978-3-642-13818-8_34
http://dx.doi.org/10.1007/978-1-4614-6230-9_8
http://dx.doi.org/10.1007/11731139_68
http://dx.doi.org/10.1007/11731139_68


Intrinsic t-Stochastic Neighbor Embedding 203
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Abstract. Similarity search over chemical compound databases is a fun-
damental task in the discovery and design of novel drug-like molecules.
Such databases often encode molecules as non-negative integer vectors,
called molecular descriptors, which represent rich information on various
molecular properties. While there exist efficient indexing structures for
searching databases of binary vectors, solutions for more general integer
vectors are in their infancy. In this paper we present a time- and space-
efficient index for the problem that we call the succinct intervals-splitting
tree algorithm for molecular descriptors (SITAd). Our approach extends
efficient methods for binary-vector databases, and uses ideas from suc-
cinct data structures. Our experiments, on a large database of over 40
million compounds, show SITAd significantly outperforms alternative
approaches in practice.

1 Introduction

Molecules that are chemically similar tend to have a similar molecular func-
tion. The first step in predicting the function of a new molecule is, therefore, to
conduct a similarity search for the molecule in huge databases of molecules with
known properties and functions. Current molecular databases store vast numbers
of chemical compounds. For example, the PubChem database in the National
Center for Biotechnology Information (NCBI) files more than 40 million mole-
cules. Because the size of the whole chemical space [6] is said to be approximately
1060, molecular databases are growing and are expected to grow substantially
in the future. There is therefore a strong need to develop scalable methods for
rapidly searching for molecules that are similar to a previously unseen target
molecule.

A molecular fingerprint, defined as a binary vector, is a standard represen-
tation of molecules in chemoinformatics [18]. In practice the fingerprint repre-
sentation of molecules is in widespread use [2,3] because it conveniently encodes
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the presence or absence of molecular substructures and functions. Jaccard sim-
ilarity, also called Tanimoto similarity, is the de facto standard measure [11] to
evaluate similarities between compounds represented as fingerprints in chemoin-
formatics and pharmacology. To date, a considerable number of similarity search
methods for molecular fingerprints using Jaccard similarity have been pro-
posed [9,12,16,17]. Among them, the succinct intervals-splitting tree (SITA) [16]
is the fastest method that is also capable of dealing with large databases. Despite
the current popularity of the molecular fingerprint representation in cheminfor-
matics, because it is only a binary feature vector, it has a severely limited ability
to distinguish between molecules, and so similarity search is often ineffective [10].

A molecular descriptor, defined as a non-negative integer vector, is a power-
ful representation of molecules and enables storing richer information on various
properties of molecules than a fingerprint does. Representative descriptors are
LINGO [19] and KCF-S [7]. Recent studies have shown descriptor representations
of molecules to be significantly better than fingerprint representations for pre-
dicting and interpreting molecular functions [8] and interactions [15]. Although
similarity search using descriptor representations of molecules is expected to
become common in the near future, no efficient method for a similarity search
with descriptors has been proposed so far. Kristensen et al. [10] presented a fast
similarity search method for molecular descriptors using an inverted index. The
inverted index however consumes a large amount of memory when applied to
large molecular databases. Of course one can compress the inverted index to
reduce memory usage, but then the overhead of decompression at query time
results in slower performance. An important open challenge is thus to develop
similarity search methods for molecular descriptors that are simultaneously fast
and have a small memory footprint.

We present a novel method called SITAd by modifying the idea behind SITA.
SITAd efficiently performs similarity search of molecular descriptors using gen-
eralized Jaccard similarity. By splitting a database into clusters of descriptors
using upperbound information of generalized Jaccard similarity and then build-
ing binary trees that recursively split descriptors on each cluster, SITAd can
effectively prune out useless portions of the search space. While providing search
times as fast as inverted index-based approaches, SITAd requires substantially
less memory by exploiting tools from succinct data structures, in particular
rank dictionaries [5] and wavelet trees [4]. SITAd efficiently solves range maxi-
mum queries (RMQ) many times in similarity searches by using fast RMQ data
structures [1] that are necessary for fast and space-efficient similarity searches.
By synthesizing these techniques, SITAd’s time complexity is output-sensitive.
That is, the greater the desired similarity with the query molecule is, the faster
SITAd returns answers.

To evaluate SITAd, we performed retrieval experiments over a huge database
of more than 40 million chemical compounds from the PubChem database. Our
results demonstrate SITAd to be significantly faster and more space efficient
than state-of-the-art methods.
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2 Similarity Search Problem for Molecular Descriptors

We now formulate a similarity search problem for molecular descriptors. A mole-
cular descriptor is a fixed-dimension vector, each dimension of which is a non-
negative integer. It is conceptually equivalent to the set that consists of pairs
(d : f) of index d and weight f such that the d-th dimension of the descriptor
is a non-zero value f . Let D be a dimension with respect to the vector rep-
resentation of descriptors. For clarity, notations xi and q denote D dimension
vector representation of molecular descriptors, while Wi and Q correspond to
their set representation. |Wi| denotes the cardinality of Wi, i.e., the number of
elements in Wi. The Jaccard similarity for two vectors x and x′ is defined as
J(x, x′) = x·x′

||x||22+||x′||22−x·x′ where ||x||2 is the L2 norm. For notational conve-
nience, we let J(W,W ′) represent J(x, x′) of x and x′ that correspond respec-
tively to sets W and W ′. Given a query compound Q, the similarity search task
is to retrieve from the database of N compounds all the identifiers i of descrip-
tors Wi whose Jaccard similarity between Wi and Q is no less than ε, i.e., the
set IN = {i ∈ {1, 2, ..., N};J(Wi, Q) ≥ ε}.

3 Method

Our method splits a database into blocks of descriptors with the same squared
norm and searches descriptors similar to a query in a limited number of blocks
satisfying a similarity constraint. Our similarity constraint depends on Jaccard
similarity threshold ε. The larger ε is, the smaller the number of selected blocks
is. A standard method is to compute the Jaccard similarity between the query
and each descriptor in the selected blocks, and then check whether or not the
similarity is larger than ε. However, such pairwise computation of Jaccard simi-
larity is prohibitively time consuming. Our method builds an intervals-splitting
tree for each block of descriptors and searches descriptors similar to a query by
pruning useless portions of the search space in the tree.

3.1 Database Partitioning

We relax the solution set IN for fast search using the following theorem.

Theorem 1. If J(x, q) ≥ ε, then ε||q||22 ≤ ||x||22 ≤ ||q||22/ε.

Proof. J(x, q) ≥ ε is equivalent to |x · q| ≥ ε
1+ε (||x||22 + ||q||22). By the Cauchy-

Schwarz inequality ||x||2||q||2 ≥ |x · q|, we obtain ||x||2||q||2 ≥ ε
1+ε (||x||22 + ||q||22).

When ||x||2 ≥ ||q||2, we get ||x||22 ≥ ε||q||22. Otherwise, we get ||q||22/ε ≥ ||x||22.
Putting these results together, the theorem is obtained.

The theorem indicates that I1 = {i ∈ {1, 2, ..., N}; ε||q||22 ≤ ||xi||22 ≤ ||q||22/ε}
must contain all elements in IN , i.e., IN ⊆ I1. This means a descriptor identifier
(ID) that is not in I1 is never a member of IN . Such useless descriptors can
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be efficiently excluded by partitioning the database into blocks, each of which
contains descriptor IDs with the same squared norm. More specifically, let block
Bc = {i ∈ {1, 2, ..., N}; ||xi||22 = c} be the block containing all the descriptors
in the database with squared norm c. Searching descriptors for a query needs to
examine no element in Bc if either c < ε||q||22 or c > ||q||22/ε holds.

3.2 Intervals-Splitting Tree for Efficient Similarity Search

Once blocks Bc satisfying ε||q||22 ≤ c ≤ ||q||22/ε are selected, SITAd is able to
bypass one-on-one computations of Jaccard similarity between each descriptor
in Bc and a query q.

A binary tree T c called an intervals-splitting tree is built on each Bc before-
hand. When a query q is given, T c is traversed with a pruning scheme to effi-
ciently select all the descriptor IDs with squared norm c whose Jaccard similarity
to query q is no less than ε. Each node in T c represents a set of descriptor IDs
by using an interval of Bc. Let Bc[i] be the i-th descriptor ID in Bc and Ic

v be
the interval of node v. Node v with interval Ic

v = [s, e] contains descriptor IDs
Bc[s], Bc[s + 1], · · · , Bc[e]. The interval of a leaf is of the form [s, s], indicating
that the leaf has only one ID. The interval of the root is [1, |Bc|].

Let left(v) and right(v) be the left and right children of node v with inter-
val Ic

v = [s, e], respectively. When these children are generated, Ic
v = [s, e]

is partitioned into disjoint segments Ic
left(v) = [s, �(s + e)/2�] and Ic

right(v) =
[�(s + e)/2� + 1, e]. The procedure of splitting the interval is recursively applied
from the root to the leaves (see the middle and right of Fig. 1 illustrating intervals
and sets of descriptors at the root and its children).

Each node v is identified by a bit string (e.g., v = 010) indicating the path
from the root to v; “0” and “1” denote the selection of left and right children,
respectively. At each leaf v, the index of Bc is calculated by int(v) + 1, where
int(·) converts a bit string to its corresponding integer (see the middle of Fig. 1).

Fig. 1. Descriptors in block B10 (left), intervals-splitting tree T c (middle) and T c’s
first two levels (right). The root interval [1, 8] is split into [1, 4] and [5, 8] for the left
and right children. Each node v has a summary descriptor yv for the descriptors in its
interval.
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3.3 Pruning the Search Space Using Summary Descriptors

Given query q, SITAd recursively traverses T c from the root in a depth-first
manner. If SITAd reaches a leaf and its descriptor is similar to q, the ID of
that descriptor is included as one solution. To avoid traversing the whole T c, we
present a scheme to prune subtrees of nodes if all the descriptors for the nodes
are deemed not to be sufficiently similar to query q.

The pruning is performed on node v by using D dimension descriptor yv,
which summarizes the information on descriptors in Iv, and is used for com-
puting the upperbound of the Jaccard similarity between query q and XBc[i]

for any i ∈ Iv. The d-th dimension yv[d] of yv is defined as the maximum
value among xBc[i][d] for any i ∈ Iv, i.e., yv[d] = maxi∈Iv xBc[i][d]. Thus yv =
(maxi∈Iv xBc[i][1], maxi∈Iv xBc[i][2], ...,maxi∈Iv xBc[i][D]). When T c is built, yv

is computed. (see the right of Fig. 1, which represents yv in the first two-level
nodes of T 10).

Assume that SITAd checks descriptors in Bc and traverses T c in the depth-
first manner. ||xBc[i]||2 = c holds in any descriptor in Bc. The following equiva-
lent constraint is derived from Jaccard similarity:

J(xBc[i], q) =
xBc[i] · q

||xBc[i]||22 + ||q||22 − xBc[i] · q
≥ ε

⇐⇒ xBc[i] · q ≥ ε

1 + ε
(||xBc[i]||22 + ||q||22) =

ε

1 + ε
(c + ||q||22)

Since yc
v · q ≥ xBc[i] · q holds for any i ∈ Ic

v , SITAd examines the constraint at
each node v in T c and checks whether or not the following condition,

∑

(d:f)∈Q

yc
v[d]f ≥ ε

1 + ε
(c + ||q||2), (1)

holds at each node v. If the inequality does not hold at node v, SITAd safely
prunes the subtrees rooted at v, because there are no descriptors similar to q in
leaves under v. As we shall see, this greatly improves search efficiency in practice.
Algorithm 1 shows the pseudo-code of SITAd.

3.4 Search Time and Memory

SITAd efficiently traverses T c by pruning its useless subtrees. Let τ be the num-
bers of traversed nodes. The search time for query Q is O(τ |Q|). In particular,
SITAd is efficient for larger ε, because more nodes in T c are pruned.

A crucial drawback of SITAd is that T c requires O(D log M |Bc| log (|Bc|))
space for each c, the dimension D of descriptors and the maximum value M
among all weight values in descriptors. Since D is large in practice, SITAd con-
sumes a large amount of memory. The next two subsections describe approaches
to reduce the memory usage while retaining query-time efficiency.
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Algorithm 1. Algorithm for finding similar descriptors to query q.

1: function Search(q)
2: for c satisfying ε||q||22 ≤ c ≤ ||q||22/ε do
3: k ← ε

1+ε
(c + ||q||22), Ic

root ← [1, |Bc|], v ← φ
4: Recursion(v,Ic

root,q,c)
5: end for
6: end function
7: function Recursion(v,Ic

v ,q,c)
8: if

∑
(d:f)∈Q yc

v[d]f < k then � Q : set representation of q
9: return

10: end if
11: if |v| = �log |Bc|� then � Leaf Node
12: Output index Bc[int(v) + 1]
13: end if
14: Recursive(v +′ 0′,[s, �(s + e)/2�],q,c) � To left child
15: Recursive(v +′ 1′,[�(s + e)/2� + 1, e],q,c) � To right child
16: end function

3.5 Space Reduction Using Inverted Index

To reduce the large amount of space needed to store summary descriptors, we
use an inverted index that enables computing an upperbound on descriptor simi-
larity. The inverted index itself does not always reduce the memory requirement.
However, SITAd compactly maintains the information in a rank dictionary, sig-
nificantly decreasing memory usage.

We use two kinds of inverted indexes for separately storing index and weight
pairs in descriptors. One is an associative array that maps each index d to the
set of all descriptor IDs that contain pairs (d : f) of index d and any weight
f(
= 0) at each node v. Let Zc

vd = {i ∈ Ic
v ; (d : f) ∈ WBc[i] for any f(
= 0)} for

index d, (i.e., all IDs of a descriptor containing d with any weight f in any pair
(d : f) within Ic

v . The inverted index for storing indexes at node v in T c is a
one-dimensional array that concatenates all Zc

vd in ascending order of d and is
defined as Ac

v = Zc
v1 ∪ Zc

v2 ∪ · · · ∪ Zc
vD. Figure 2 shows Z10

rootd and the first two
levels of the inverted indexes A10

root, A10
left(root) and A10

right(root) in T 10 in Fig. 1.
The other kind of inverted index is also an associative array that maps each

index d to the set of all weights that are paired with d. Let F c
vd = {f ; (d, f) ∈

WBc[i], i ∈ Ic
v} for index d (i.e., all weights that are paired with d within Ic

v). The
inverted index for storing weights at node v in T c is a one-dimensional array that
concatenates all F c

vd in ascending order of d and is defined as Ec
v = F c

v1 ∪ F c
v2 ∪

· · ·∪F c
vD. We build Ec

v at only the root, i.e., Ec
root = F c

root1∪F c
root2∪· · ·∪F c

rootD.
Figure 2 shows an example of E10

root in T 10 in Fig. 1.
Let P c

vd indicate the ending position of Zc
vd and F c

vd on Ac
v and Ec

v for each
d ∈ [1,D], i.e., P c

v0 = 0 and P c
vd = P c

v(d−1) + |Zc
vd| for d = 1, 2, ...,D. If all

descriptors at node v do not have any pair (d : f) of index d and any weight
f(
= 0), then P c

vd = P c
v(d+1) holds.
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When searching for descriptors similar to query Q = (d1 : f1, d2 : f2, ..., dm :
fm) in T c, we traverse T c from the root. At each node, we set svj = P c

v(d(j−1))
+1

and tvj = P c
vdj

for j = 1, 2, ...,m. If svj ≤ tvj holds, there is at least one descrip-
tor that contains dj because of Ac

v’s property. Otherwise, no descriptor at v con-
tains dj . We check the following constraint, which is equivalent to condition (1)
as

∑
(d:f)∈Q yc

v[d]f ≥ ε
(1+ε) (c + ||q||2) at each node v,

m∑

j=1

I[svj ≤ tvj ] · max Ec
root[svj , tvj ] · fj ≥ ε

1 + ε
(c + ||q||22), (2)

where I[cond] is the indicator function that returns one if cond is true and
zero otherwise and max Ec

root[svj , tvj ] returns the maximum value in subarray
Ec

root[svj , tvj ]. For example in Fig. 2, for Q = (1 : 3, 3 : 1, 4 : 2) and A10
root,

I[1 ≤ 2] ·max{3, 1}·3+I[7 ≤ 9] ·max{1, 1, 3}·1+I[10 ≤ 12] ·max{3, 2, 3}·2 = 18.
A crucial observation is that computing constraint (2) needs svj , tvj and

max Dc
root[svj , tvj ] at each node v. If we compute svj and tvj at each node v,

we can omit Ac
v, resulting in a huge memory reduction. We compute svj and tvj

using rank dictionaries. The problem of computing maxDc
root[svj , tvj ] is called a

range maximum query (RMQ). Rank dictionaries and RMQ data structures are
reviewed in the next section.

1 4 3 4 6 1 6 7 2 4 5 3 5 6 78

1 4 3 4 1 2 4 3 6 6 7 5 5 6 78

3 1 3 2 2 1 1 3 3 2 3 1 1 2 13

1 1 4
2 3 4 6 8
3 1 6 7
4 2 4 5
5 3 5 6 7

1 3 1
2 3 2 2 3
3 1 1 3
4 3 2 3
5 1 1 2 1

Fig. 2. Example of Zc
vd, F c

vd, Ac
v and Dc

v for T c.

3.6 Rank Dictionaries and RMQ Data Structures

Rank Dictionary. A rank dictionary [14] is a data structure built over a bit
array B of length n. It supports the rank query rankc(B, i), which returns the
number of occurrences of c ∈ {0, 1} in B[1, i]. Although naive approaches require
the O(n) time to compute a rank, several data structures with only n+o(n) bits
storage have been presented to achieve O(1) query time [13]. We employ hybrid
bit vectors [5] (which are compressed rank dictionaries) to calculate I[svj ≤ tvj ]
in Eq. (2) with O(1) time and only n + o(n) bits (and sometimes much less).

RMQ Data Structures. The RMQ problem for an array D of length n is
defined as follows: for indices i and j between 1 and n, query RMQE [i, j] returns
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the index of the largest element in subarray E[i, j]. An RMQ data structure is
built by preprocessing E and is used for efficiently solving the RMQ problem.

A naive data structure is simply a table storing RMQE(i, j) for all possible
pairs (i, j) such that 1 ≤ i < j ≤ n. This takes O(n2) preprocessing time and
space, and it solves the RMQ problem in O(1) query time. An O(n) preprocessing
time and O(1) query time data structure has been proposed [1] that uses n log n

2 +
n log M + 2n bits of space. RMQ data structure U c for each c ∈ [1,D] is built
for Ec

root in O(N c) preprocessing time where N c is the total number of pairs
(d : f) in Bc, i.e., N c =

∑
i∈Bc |Wi|. Then, max Ec

root[svj , tvj ] in Eq. (2) can be
computed using U c in O(1) time.

3.7 Similarity Search Using Rank Dictionaries and RMQs

At the heart of SITAd is the wavelet tree, a succinct data structure usually
applied to string data [4]. SITAd stores only rank dictionaries and an RMQ data
structure without maintaining Ac

v and Ec
v in memory. Thus, SITAd can compute

constraint (2) in a space-efficient manner.

1 4 3 4 6 8 1 6 7 2 4 5 3 5 6 7
0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1

1 4 3 4 1 2 4 3
0 1 1 1 0 0 1 1

6 8 6 7 5 5 6 7
0 1 0 1 0 0 0 1

Fig. 3. First two levels of wavelet tree in Fig. 2.

A wavelet tree is a collection of rank dictionaries to update interval at each
node. Let bc

v be a bit array of length |Ac
v| at node v. Let Ic

v = [a, b] be an interval
of node v, and let left(v) (resp. right(v)) be the left child (resp. the right child)
of node v. We build rank dictionaries for the bit arrays bc

v.
Ac

left(v) and Ac
right(v) are constructed by moving each element of Ac

v to either
left(v) or right(v) while keeping the order of elements in Ac

v. This is performed
by taking into account the fact that each element of Ac

v is a descriptor ID in Ic
v

satisfying two conditions: (i) Ic
left(v)∪Ic

right(v) = Ic
v and (ii) Ic

left(v)∩Ic
right(v) = ∅.

Bit bc
v[k] indicates Ac

v[k] moves to whether left(v) or right(v). bc
v[k] = 0 indicates

Ac
v[k] moves to Ac

left(v)[k] and bc
v[k] = 1 indicates Ac

right(v)[k] inherits Ac
v[k]. Bit

bc
v[k] is computed by Ac

v[k] as follows:

bc
v[k] =

{
1 if Ac

v[k] > �(a + b)/2�
0 if Ac

v[k] ≤ �(a + b)/2�.
Fig. 3 shows bit b10root, b10left(root) and b10right(root) computed from A10

root, A10
left(root)

and A10
right(root), respectively. For example, b10root[7] = 0 indicates A10

root[7] =
A10

left(root)[5] = 1. A10
root[8] = A10

right(root)[3] = 6 is indicated by b10root[8] = 1.
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To perform a similarity search for query of m non-zero weights Q = (d1 :
f1, d2 : f2, · · · , dm : fm), SITAd computes svj and tvj at each node v and checks
constraint (2) by computing I[svj ≤ ttj ] and maxEroot(svj , tvj) on RMQ data
structure U c. SITAd sets svj = P c

v [dj − 1] + 1 and tvj = P c
v [dj ] only at the root

v. Using svj and tvj , SITAd computes sleft(v)j , tleft(v)j , sright(v)j and sright(v)j

by using rank operations in O(1) time as follows:

sleft(v)j = rank0(bc
v, svj − 1), tleft(v)j = rank0(bc

v, tvj)
sright(v)j = rank1(bc

v, svj − 1) + 1, tright(v)j = rank1(bc
v, tvj).

Note that P c
v is required at the root for maintaining svj and tvj . Thus, SITAd

keeps P c
v only at the root.

The memory for storing bc
v for all nodes in T c is N c log |Bc| + o(N c log |Bc|)

bits. Thus, SITAd needs
∑D

c=1 N c(log |Bc| + Nc log Nc

2 + N c log M + 2N c +
o(N c log |Bc|)) bits of space for storing bc

v at all nodes v and an RMQ data struc-
ture U c for all c ∈ [1,D]. The memory requirement of SITAd is much less than
that for storing summary descriptors yc

v using D log M
∑D

c=1 |Bc| log (|Bc|) bits.
In our experiments D = 642, 297. Although storing P c

root needs D
∑D

c=1 log N c

bits, this is not an obstacle in practice, even for large D.

4 Experiments

4.1 Setup

We implemented SITAd and compared its performance to the following alter-
native similarity search methods: one-vs-all search (OVA); an uncompressed
inverted index (INV); an inverted index compressed with variable-byte codes
(INV-VBYTE); an inverted index compressed with PForDelta codes (INV-PD).
All experiments were carried out on a single core of a quad-core Intel Xeon
CPU E5-2680 (2.8GHz). OVA is a strawman baseline that computes generalized
Jaccard similarity between the query and every descriptor in a database. INV
was first proposed as a tool for cheminformatics similarity search of molecular
descriptors by Kristensen et al. [10] and is the current state-of-the-art approach.
INV-VBYTE and INV-PD are the same as INV except that the inverted lists
are compressed using variable-byte codes and PForDelta, respectively, reduc-
ing space requirements. We implemented these three inverted indexes in C++.
For computing rank operations in SITAd we used an efficient implementation of
hybrid bitvector [5] downloadable from https://www.cs.helsinki.fi/group/pads/
hybrid bitvector.html.

Our database consisted of the 42,971,672 chemical compounds in the Pub-
Chem database [2]. We represented each compound by a descriptor with the
dimension of 642,297 constructed by the KCF-S algorithm [7]. We randomly
sampled 1,000 compounds as queries.

https://www.cs.helsinki.fi/group/pads/hybrid_bitvector.html
https://www.cs.helsinki.fi/group/pads/hybrid_bitvector.html
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4.2 Results

Figure 4 shows the preprocessing time taken to construct the SITAd index.
The construction time clearly increases linearly as the number of descriptors
increases, and takes only eight minutes for the whole database of around 42 mil-
lion compounds. We should emphasize that index construction is performed only
once for a given database and that phase does not need to be repeated for each
query. Indeed, this fast construction time is an attractive and practical aspect
of SITAd.

Table 1 shows the results of each algorithm for ε ∈ {0.9, 0.95, 0.98}. The
reported search times are averages taken over 1,000 queries (standard deviations
are also provided, and as well as small deviations), where #Bc is the number
of selected blocks per query, #TN is the number of traversed nodes in SITAd,

Table 1. Performance summary showing average search time, memory in megabytes
(MB), number of selected blocks per query (#Bc), average number of traversed nodes
(#TN), and average number of rank computations (#Ranks), when processing the
database of 42,971,672 descriptors.

Time (sec) Memory (MB)

ε = 0.98 ε = 0.95 ε = 0.9

INV 1.38 ± 0.46 33, 012

INV-VBYTE 5.59 ± 2.66 1, 815

INV-PD 5.24 ± 2.45 1, 694

OVA 9.58 ± 2.08 8, 171

SITAd 0.23 ± 0.23 0.61 ± 0.57 1.54 ± 1.47 2, 470

#Bc 2 6 12

#TN 43, 206 118, 368 279, 335

#Ranks 1, 063, 113 2, 914, 208 6, 786, 619

|IN | 31 132 721

Fig. 4. Index construction time. Fig. 5. Average search time.
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Fig. 6. Index size.
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Fig. 7. Space usage of SITAd components.

#Ranks is the number of rank operations performed, and |IN | is the size of the
answer set.

Unsurprisingly OVA had the slowest search time among the tested methods,
requiring 9.58 s per query on average and using 8 GB of main memory. In line
with previously reported results [10], INV provided faster querying than OVA
but used more memory. The average search time of INV was faster than that of
SITAd when the latter system had ε = 0.9, but became significantly slower than
SITAd with large ε of 0.95 and 0.98. INV required 33 GB of main memory, the
most of any system. The compressed inverted indexes INV-VBYTE and INV-PT
used much smaller amounts of memory — 1.8 GB and 1.7 GB, respectively. This
space saving comes at a price, however; the average search time of INV-VBYTE
and INV-PT is 4-5 times slower than that of INV.

Overall, SITAd performed well; its similarity search was fastest for ε = 0.95
and 0.98 and its memory usage was low. In fact, SITAd with ε = 0.98 was
20 times faster than INV-VBYTE and INV-PD with almost the same memory
consumption. It took only 0.23 and 0.61 s for ε = 0.98 and 0.95, respectively, and
it used small memory of only 2 GB, which fits into the memory of an ordinary
laptop computer. Its performance of SITAd was validated by the values of #Bc,
#TN and #Ranks. The larger the threshold ε was, the smaller those values
were, which demonstrates efficiency in the methods for pruning the search space
in SITAd.

Figure 5 shows that for each method, the average search time per query
increases linearly as the number of descriptors in the database increases. Figure 6
shows a similar linear trend for index size. Figure 7 illustrates that for SITAd,
rank dictionaries of bit strings bc

v and RMQ data structure U c are the most space
consuming components of the index.

5 Conclusion

We have presented a time- and space-efficient index for for solving similarity
search problems that we call the succinct intervals-splitting tree algorithm for
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molecular descriptors (SITAd). It is a novel, fast, and memory-efficient index for
generalized-Jaccard similarity search over databases of molecular compounds.
The index performs very well in practice providing speeds at least as fast as pre-
vious state-of-the-art methods, while using an order of magnitude less memory.
In future work we aim to develop and deploy a software system using SITAd,
which will be of immediate benefit to practitioners.
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5. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Hybrid compression of bitvectors for the
FM-index. In: Proceedings of Data Compression Conference, pp. 302–311 (2014)

6. Keiser, M., Roth, B., Armbruster, B., Ernsberger, P., Irwin, J., Shoichet, B.: Relat-
ing protein pharmacology by ligand chemistry. Nat. Biotechnol. 25(2), 197–206
(2007)

7. Kotera, M., Tabei, Y., Yamanishi, Y., Moriya, Y., Tokimatsu, T., Kanehisa, M.,
Goto, S.: KCF-S: KEGG chemical function and substructure for improved inter-
pretability and prediction in chemical bioinformatics. BMC Syst. Biol. 7, S2 (2013)

8. Kotera, M., Tabei, Y., Yamanishi, Y., Tokimatsu, T., Goto, S.: Supervised de
novo reconstruction of metabolic pathways from metabolome-scale compound sets.
Bioinformatics 29, i135–i144 (2013)

9. Kristensen, T.G., Nielsen, J., Pedersen, C.N.S.: A tree based method for the rapid
screening of chemical fingerprints. In: Proceedings of the 9th International Work-
shop of Algorithms in Bioinformatics, pp. 194–205 (2009)

10. Kristensen, T.G., Nielsen, J., Pedersen, C.N.S.: Using inverted indices for acceler-
ating LINGO calculations. J. Chem. Inf. Model. 51, 597–600 (2011)

11. Leach, A., Gillet, V.: An Introduction to Chemoinformatics, Revised edn. Kluwer
Academic Publishers, The Netherlands (2007)

12. Nasr, R., Vernica, R., Li, C., Baldi, P.: Speeding up chemical searches using the
inverted index: the convergence of chemoinformatics and text search methods. J.
Chem. Inf. Model. 52, 891–900 (2012)

13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments,
pp. 60–70 (2007)

14. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 232–242 (2002)

15. Sawada, R., Kotera, M., Yamanishi, Y.: Benchmarking a wide range of chemical
descriptors for drug-target interaction prediction using a chemogenomic approach.
J. Chem. Inf. Model. 33, 719–731 (2014)



Scalable Similarity Search for Molecular Descriptors 219

16. Tabei, Y.: Succinct multibit tree: compact representation of multibit trees by using
succinct data structures in chemical fingerprint searches. In: Proceedings of the
12th Workshop on Algorithms in Bioinformatics, pp. 201–213 (2012)

17. Tabei, Y., Kishimoto, A., Kotera, M., Yamanishi, Y.: Succinct interval-splitting
tree for scalable similarity search of compound-protein pairs with property con-
straints. In: Proceedings of the 19th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 176–184 (2013)

18. Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH
Verlag GmbH, Weinheim (2002)

19. Vida, D., Thormann, M., Pons, M.: LINGO: an efficient holographic text-based
method to calculate biophysical properties and intermolecular similarities. J.
Chem. Inf. Model. 45, 386–393 (2005)



Self-indexed Motion Planning

Angello Hoyos1, Ubaldo Ruiz1,3, Eric Tellez2,3, and Edgar Chavez1(B)

1 Department of Computer Science, CICESE, Ensenada, Mexico
{ajhoyos,uruiz,elchavez}@cicese.mx

2 INFOTEC, Mexico, Mexico
eric.tellez@infotec.com.mx
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Abstract. Motion planning is a central problem for robotics. The PRM
algorithm is, together with the asymptotically optimal variant PRM*,
the standard method to maintain a (collision-free) roadmap in the con-
figuration space. The PRM algorithm is randomized, and requires a large
number of high-dimensional point samples generated online, hence a sub-
problem to discovering and maintaining a collision-free path is insert-
ing new sample points connecting them with the k-nearest neighbors
in the previous set. A standard way to speedup the PRM is by using
an external index for making the search. On the other hand, a recent
trend in object indexing for proximity search consists in maintaining a
so-called Approximate Proximity Graph (APG) connecting each object
with its approximate k-nearest neighbors. This hints the idea of using
the PRM as a self-index for motion planning. Although similar in prin-
ciple, the graphs have two incompatible characteristics: (1) The APG
needs long-length links for speeding up the searches, while the PRM
avoids long links because they increase the probability of collision in the
configuration space. (2) The APG requires to connect a large number
of neighbors at each node to achieve high precision results which turns
out in an expensive construction while the PRM’s goal is to produce a
roadmap as fast as possible. In this paper, we solve the above problems
with a counter-intuitive, simple and effective procedure. We reinsert the
sample points in the configuration space, and compute a collision-free
graph after that. This simple step eliminates long links, improves the
search time, and reduce the total space needed for the algorithm. We
present simulations, showing an improvement in performance for high-
dimensional configuration spaces, compared to standard techniques used
by the robotics community.

1 Introduction

Motion planning is a fundamental research topic in robotics and it has received
considerable attention over the last decade [1–3]. The problem of navigating
through a complex environment appears in almost all robotics applications. This
problem also appears and is relevant in other domains such as computational
biology, search and rescue, autonomous exploration, etc.

c© Springer International Publishing AG 2017
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Sampling-based methods are widely used for motion and path planning.
Instead of using an explicit representation of the obstacles in the configura-
tion space, which may result in an excessive computational cost, sampling-based
methods rely on a collision-checking module providing information about the
feasibility of the computed trajectories. Two popular sampling-based techniques
are Probabilistic Road Maps (PRMs) [4] and Rapidly-exploring Random Trees
(RRTs) [5] which have been shown to work well in practice and possess theo-
retical guarantees such as probabilistic completeness. One of the major draw-
backs of those algorithms is that they made no claims about the optimality of
the solution. Recently, Karaman et. al. [6] proved that both algorithms are not
asymptotically optimal. To address that limitation, they proposed a new class
of asymptotically optimal planners named PRM* and RRT*, and proved that
both are probabilistically complete and asymptotically optimal.

The PRM and RRT algorithms, and its asymptotically optimal variants
PRM* and RRT*, respectively, maintain a collision-free roadmap in the con-
figuration space. Both algorithms require a large number of samples for high-
dimensional problems (many degrees of freedom), and for problems with large
configuration spaces including many obstacles. To add a new configuration in the
roadmap, it is important to compute the k-nearest neighbors of that configura-
tion in the roadmap. For low-dimensional spaces and a small number of vertices
in the roadmap, the k-nearest neighbor search is commonly performed using a
naive brute force approach, where the distances to all vertices are computed to
find the neighbors.

For a large number of vertices, typically a tree based subdivision of the con-
figuration space is used to compute the k-nearest neighbors. In this category,
the kd-tree is the most widely used, which works by creating a recursive subdi-
vision of the space into two half spaces [7]. The kd-tree can be constructed in
O(n log(n)) operations and the query time complexity is O(dn1− 1

d ), where n is
the number of vertices and d is the dimension of the space.

In the literature, it is well-know that the algorithms for k-nearest neigh-
bors search degrade their performance to a sequential search as the intrinsic
dimensionality of the data increases [8]. In addition, most of the algorithms
for k-nearest neighbor search are designed to perform fast queries but they do
not consider the time it takes to process the database and create the search
data structure. This is a problem for motion-planning algorithms, which need to
process the data as fast as possible.

The key idea of our contribution is avoiding the construction of auxiliary
data structures for k-nearest neighbors searching, as it is traditionally done. We
propose to use the roadmap itself. This will lower the overall time to obtain
the roadmap. We borrow the idea of Approximate Proximity Graphs [9,10] that
have been proposed for searching in general metric spaces [8].

For motion-planning problems it is important to maximize the number of
added vertices during a fixed time period. Usually, a large number of vertices
in the roadmap implies a better quality of the trajectories in the configuration
space. Also, since these algorithms are probabilistically complete, a large number
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of vertices implies a higher probability of finding a solution [11,12]. If the perfor-
mance of the k-nearest neighbors search is improved then, more vertices can be
added to the roadmap in a fixed time period, increasing the overall performance
of the PRM-based algorithms.

2 Related Work

A key component in sampling-based motion planners is nearest neighbor search.
Usually, the planners use nearest neighbor search data structures to find and
connect configurations in order to compute a motion plan. Several approaches
have been proposed in the literature. One of the most popular is spatial parti-
tioning of the data. Example of this type of algorithms are kd-trees [7], quadtrees
[7] and vp-trees [13]. These data structures can efficiently handle exact nearest
neighbor searching in lower dimensions.

Yershova et. al. [14] proposed an extension of the kd-tree to handle R, S
and SO(3), and the cartesian product of any number of these spaces. Similar
to kd-trees for R

m, their approach splits SO(3) using rectilinear axis-aligned
planes created by a quaternion representation of rotations. In [15], the authors
report that the previous approach performs well in many cases but rectilinear
splits produce inefficient partitions of SO(3) near the corners of the partitions.
They propose a method that eschews rectilinear splits in favor of splits along
the rotational axes, resulting in a more uniform partition of SO(3).

An approach to improve the efficiency of kd-trees is presented in [16]. The
authors describe a box-based subdivision of the space that allows to focus the
searches only in specific regions of the subdivision. They show that the compu-
tational complexity is lowered from a theoretical point of view.

Non-Euclidean spaces, including SO(3), can be searched by general near-
est neighbor search data structures such a GNAT [17], cover-trees [18], and M-
trees [19]. These data structures generally perform better than a sequential search.
However, these methods are usually outperformed by kd-trees in practice [20].

Plaku et. al. [21] present a quantitively analysis of the performance of exact
and approximate nearest-neighbors algorithms on increasingly high-dimensional
problems in the context of sampling-based motion planning. Their analysis shows
that after a critical dimension, exact nearest neighbors algorithms examine
almost all samples thus they become impractical for sampling-based algorithms
when a large number of samples is required. This behavior motivates the use of
approximate algorithms [20] which trade off accuracy for efficiency.

In [22], Kleinbort et. al. adapt the Randomly Transformed Grids (RTG)
algorithm [23], for finding all-pairs r-nearest-neighbors in Euclidean spaces, to
sampling-based motion planning algorithms.

3 Background

In this section, we review the standard algorithm for constructing the PRM. The
following definitions and functions are going to be used in the description of the
algorithms.



Self-indexed Motion Planning 223

Let X be the configuration space where d ∈ N is the dimension of the con-
figuration space. We denote as Xobs to the obstacle region, and Xfree as the
obstacle-free space. The initial configuration xinit is an element of Xfree, and
the goal region Xgoal is a subset of Xfree. A collision-free path σ : [0, 1] → Xfree

is a continuous mapping to the free space. It is feasible if σ(0) = xinit and
σ(1) ∈ Xgoal. The goal of motion-planning algorithms is to compute a feasible
collision-free path.

Given a graph G = (V,E) where V ⊂ X , a vertex v ∈ G, and k ∈ N, the
function Nearest Neighbors (G, v, k) returns the k-nearest vertices in G to v.

Given two points x1, x2 ∈ X , a boolean function Collision Check(x1, x2)
returns true if the line segment between x1 and x2 lies in Xfree and false
otherwise.

The PRM constructs a roadmap represented as a graph G = (V,E) whose
vertices are samples from Xfree and the edges are collision-free trajectories
between vertices. The PRM initializes the vertex set with n samples from Xfree

and attempts to connect the k-nearest points. The PRM is described in Algo-
rithm1. From [6], we have that for the asymptotically optimal variant PRM*,
k = e(1 + 1/d) log(|V |) where d is the dimension of the configuration space,
thus k = 2e log(|V |) is a good choice for all applications. Here, |V | denotes the
number of vertex in G.

Algorithm 1. k-nearest PRM
Input: n samples from Xfree.
Output: A roadmap G = (V,E) in Xfree.

V ← {sample freei}i=1,...,n

E ← ∅
for each v ∈ V do

U ← Nearest Neighbors(G, v, k)
for each u ∈ U do

if Collision Check(v, u) then
E ← E ∪ {(v, u), (u, v)}

end if
end for

end for
return G

A popular variant of the PRM is the lazy-collision PRM [24,25] or its asymp-
totically optimal version lazy-collision PRM*. In those variants, the collision
check is omitted during the construction stage. Thus, the lazy-collision PRM or
lazy-collision PRM* are built just connecting each node to its k-nearest neigh-
bors. During the query stage, every-time a path between two vertices is searched
and found in the graph, it is validated to detect if at least one of its edges is in
collision with an obstacle. If one of the edges in the path is in collision then that
edge is erased from the graph and a new path is searched again. We will use this
approach of the PRM* latter in our paper.
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4 Approximate Proximity Graph

In this section, we describe the Approximate Proximity Graph (APG), a search
data structure introduced by Malkov et. al. in [9,10]. This data structure has
attracted a lot of interest in the similarity search community because of its
simplicity. It is constructed with succesive insertions, rendering excellent search-
ing times in high-dimensional spaces. The main idea behind the APG is to
build a search graph where each node is connected to its approximate k-nearest
neighbors.

A take out from studying the APG and other generalizations of the same
idea is that multiple local searches give a good global approximation to the
true nearest neighbors of the query. Local searches use two types of links, long
and short. Long links are responsible for speedy searches, while local links are
responsible for accuracy. The former are naturally obtained with earlier inserts
(when the number of sample points is small) and the later are also natural
when the density of the graph is larger (when inserting the most recent points).
This becomes more clear in the construction depicted in Algorithm 2. Note that
this algorithm requires a definition of the function Nearest Neighbors which
computes the nearest neighbors in the graph. From [9], the nearest neighbors can
be searched following a greedy approach using the graph itself, as it is described
in Algorithm 4.

Algorithm 2. APG
Input: A set U of n elements.
Output: A graph G = (V,E) containing the k-nearest neighbors of each element in

U .
V ← ∅
E ← ∅
for each u ∈ U do

Xnear ← Nearest Neighbors(G,u, k)
V ← V ∪ {u}
for each v ∈ Xnear do

E ← E ∪ {(u, v), (v, u)}
end for

end for
return G

Greedy search does not guarantee the true k-nearest neighbor. The result
depends on the initial vertex where the search started. To amplify the probability
of finding the true nearest neighbor m local searches, initiated from random
vertices of the graph, can be used. This method is described in Algorithm4. This
algorithm requires the function Random Vertex(G) which randomly samples a
vertex from G.

Since the initial vertex is chosen at random, there is a probability p of finding
the true nearest neighbor for a particular element q. This probability is non-
zero because it is always possible to choose the exact nearest neighbor as the
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Algorithm 3. Greedy Search
Input: A graph G = (V,E), an initial vertex vinit and a query q.
Output: A vertex vmin ∈ V whose distance to q is a local minimum.

vmin ← vinit

dmin ←Distance(vmin, q)
vnext ← NIL
Xfriends ← {u ∈ V |(u, vmin) ∈ E}
for each ufriend ∈ Xfriends do

dfriend ←Distance(ufriend, q)
if dfriend < dmin then

dmin ← dfriend

vnext ← ufriend

end if
end for
if vnext is not NIL then

return Greedy Search(G, vnext, q)
else

return vmin

end if

initial vertex. Let us simplify the model by assuming independent identically
distributed random variables; thus if for a fixed query element q the probability
of finding the true nearest neighbor in a single search attempt is p, then the
probability of finding the true nearest neighbor after m attempts is 1− (1−p)m.
Therefore, the precision of the search increases exponentially with the number of
search attempts. If m is comparable to |V |, the algorithm becomes an exhaustive
search, assuming the entry points are never reused. If G has the small-world
properties [28] then it is possible to choose a vertex in a random number of steps
proportional to log(n), maintaining an overall logarithmic search complexity.

Algorithm 4. Multi Search
Input: A graph G = (V,E), a query q, and a number m of restarts.
Output: A candidate set U of nearest neighbors of q in G.

U ← ∅
for i = 1, . . . ,m do

vinit ← Random Vertex(G)
vmin ← Greedy Search(G, vinit, q)
if vmin /∈ U then

U ← U ∪ {vmin}
end if

end for
return U

An important parameter of the APG is the number of pseudo nearest neigh-
bors connected to each newly added vertex. A large number of pseudo neighbors
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increases the accuracy, while at the same time decreases the search speed. Note
that this parameter is also closely related to the time it takes to build the data
structure. Malkov et. al. suggest that k = 3d where d is the dimension of the
search space is a good choice for database applications where the cost to build
the APG is amortized by the number of queries that are going to be solved after
the construction.

In [10], Malkov et. al. propose a more sophisticated algorithm to perform
the search in the APG. In this algorithm, a different condition is used. The
algorithm iterates on not previously visited elements close to the query, i.e.,
those for which the edge list has not been verified. The algorithm stops when
at the next iteration the k-nearest results to the query do not change. The list
of previously visited elements during the search is shared preventing repeated
distance evaluations. The search algorithm is described in Algorithm5.

Algorithm 5. Tabu Search
Input: A graph G = (V,E), a query q, and a number m of restarts.
Output: A candidate set U of nearest neighbors of q in G.
1: Let U be an empty min-queue of fixed size k.
2: Let C be an empty min-queue.
3: Let r be the updated distance of the furthest element to q in U . An empty U defines

r = ∞.
4: S ← ∅
5: for i = 1, . . . ,m do
6: c ←Random Vertex(V − S)
7: S ← S ∪ {c}
8: Append (Distance(c, q), c) into U and C
9: loop

10: Let (rb, best) be the nearest pair in C
11: Remove best from C
12: if rb > r then
13: break loop
14: end if
15: Xfriends ← {u ∈ V |(u, best) ∈ E}
16: for each ufriend ∈ Xfriends do
17: if ufriend /∈ S then
18: S ← S ∪ {ufriend}
19: Append (Distance(q, ufriend), ufriend) to U and C
20: end if
21: end for
22: end loop
23: end for

5 Our Work

A natural connection can be made between the APG and the PRM. Both the
APG and the PRM aim at connecting the k-nearest neighbors of the sample



Self-indexed Motion Planning 227

points. In the literature the PRM is built using an auxiliary data structure, which
needs to be constructed beforehand. In this work, we will not use an auxiliary
data structure, we will instead use the same PRM for searching, adapting the
APG algorithm for our purposes. Special care is needed for the PRM algorithm,
because two neighbors are connected if and only if a free-collision path exists
between them. Note that in the APG algorithm there is no notion of obstacles
in the space.

Please notice that in the configuration space, long-length edges have a higher
probability of collision with obstacles, thus most of them are not considered in
the graph created by the PRM algorithm. On the other hand, long-length edges
are important to maintain the navigation small world properties of the graph in
the APG, which are related to the logarithmic scaling of the search. To maintain
the small world properties, we propose to use the lazy-collision [24,25] version of
the PRM*. In this case, the Collision Check procedure is not applied during the
execution of Algorithm 1, thus for a given set of vertices the constructed graph
using the lazy-collision PRM* is the same than the one computed using the
APG, if the same number of neighbors are connected to each node. The edges
in the graph, constructed using the lazy-collision PRM*, are only removed once
a path between two vertices in the graph is founded and validated.

Another aspect to take into account is the number of nearest neighbors that
are connected to each vertex. In the case of the PRM*, the value of k = 2e log(n)
has been suggested to achieve good results in all applications [6]. For the APG, in
order to have a good precision in the search, k = 3d where d is the dimension of
the search space is recommended by [10]. As k increases the quality of the search
improves but the time to construct the graph also increases. In our case, we are
interested in maximizing the number of vertices added to the graph in a fixed
amount of time, but also keep a good precision for finding the k-nearest neighbors
of each added vertex, since we are using an approximate search algorithm. Thus,
we need to find a suitable value of k to achieve our goals.

To tackle the problems described above we propose a two-step procedure.
Firstly, we build a standard APG, which naturally contains long links, and then
reinsert all the nodes. This counter-intuitive step removes long links, just because
when reinserting an old node in the final graph, the density is higher and the
precision of the local search increased. After the reinsertion, it is very likely that
the long-length edges will be removed. The lazy-collision PRM* obtained with
this procedure will be closer to the true k-nearest neighbors graph. This strategy
also allows to use a value of k smaller than the one suggested by Malkov et. al.
in [10] improving the time of construction and maintaining a good precision. In
this paper two approaches for reinserting the nodes are tested. The details about
the selection of the parameters and the experiments that were performed will be
discussed in the next section.
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6 Experiments

In this section, we present the results of using the proposed heuristics for the
k-nearest neighbors search in the construction of the lazy-collision PRM*. Our
results are compared with the ones obtained using a sequential search or kd-tree.

To study the performance of our proposal, we define three metrics. The first
one is called the speedup, which is the ratio between the time ts to construct
a lazy-collision PRM* using a sequential search (ground truth) for finding the
k-nearest neighbors and the time ta to construct the same data structure using
an alternative algorithm for finding the k-nearest neighbors, we have that

speedup =
ts
ta

Note that a speedup bigger than one implies that using the alternative algorithm
is faster than performing a sequential search while a speedup smaller than one
implies that it is slower.

The second metric is called the precision and it gives a measure of the quality
of the solution obtained with the approximate search algorithms presented in this
paper. Let Ai be the set of nearest neighbors computed by one of the alternative
algorithms for a vertex i, and Bi be the set of nearest neighbors computed by the
sequential search (ground truth). We denote as knnc

i to the number of elements
in Ai ∩ Bi and as knns

i to the number of elements in Bi. We have that

precision =
1
n

∑

i=1,...,n

knnc
i

knns
i

As the value of the precision gets closer to one implies that a better approxima-
tion of the solution has been computed.

The third metric is called the proximity ratio, and it is a comparison between
the distances from the approximate nearest neighbors to a vertex i and the
distances from the true nearest neighbors to that vertex. The average distance
from a vertex i and its k-nearest neighbors in a set Ni is given by

avg dist(i,Ni) =
1
k

∑

j∈Ni

dist(i, j)

Let Ai be the set of nearest neighbors computed by one of the alternative algo-
rithms for a vertex i, and Bi be the set of nearest neighbors computed by the
sequential search. The proximity ratio is given by

proximity ratio =
1
n

∑

i=1,...,n

avg dist(i, Ai)
avg dist(i, Bi)

Note that as the proximity ratio approaches 1, the approximate nearest neighbors
converge the true nearest neighbors.

In the next experiments, we use uniform randomly generated samples from
a space X = (0, 100)d where d is the dimension of the space.
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We start our analysis with a characterization of the kd-tree performance
in high-dimensional spaces. Figure 1 shows the behavior of using the kd-tree
in the construction of a lazy-collision PRM* in different space dimensions as
the number of samples grows. In this figure, we can observe that as the space
dimension increases the speedup of the lazy-collision PRM* based on a kd-tree
decreases, becoming worse than the lazy-collision PRM* based on a sequential
search. Note that in most cases, after reaching a space dimension of 12, the kd-
tree starts to present an overhead compared to a sequential search due to the
additional logical operations involved in the search.

Fig. 1. The speedup of constructing a lazy-collision PRM* using a kd-tree for the
k-nearest neighbor search. Each curve corresponds to a different sample set size.

In the next experiment, we analyze the performance of Algorithms 4 (Greedy
multisearch) and 5 (Tabu search) for computing the k-nearest neighbors in the
construction of a lazy-collision PRM*. Following the recommendation of Malkov
et. al., we set k = 3d, where d is the space dimension. We also tested the value
k = 2e log(n) by Karaman et. al. in [6], for the construction of a PRM*. We
use a set of 10000 samples in 4, 8, 12, 16, 20, 25, 30, 40 and 50 dimensions. The
number m of restarts is set to 1 for Tabu search and to 10, 20 and 30 for Greedy
multisearch. Figures 2, 3 and 4 show the results of this experiment. From these
figures, we can observe that for both algorithms, as the dimension increases, the
best precision and the best proximity ratio are obtained for k = 3d. However,
that value of k also produces the lowest speedup, in many cases worst than a
sequential search, which makes it impractical for our purpose. The results also
confirm that Algorithm5 produces a better precision and a better proximity
ratio in comparison to Algorithm4. On the other hand, Algorithm5 has the
worst speedup.

Figures 5a, b, and c show the results of constructing an initial lazy-collision
PRM* and refine the graph by reinserting all nodes updating the information
about their nearest neighbors. We present the results of using two approaches for
reinserting the nodes. In the first one, Tabu search is used to update the neigh-
bors of each node. In the second approach, each node verifies if the neighbors
of its neighbors can be considered as a better approximation. In this experi-
ment, 100000 random samples were used for constructing lazy-collision PRMs*
in 4, 8, 12, 16, 20, 25, 30, 40 and 50. In the construction of the graph we have
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Fig. 2. Precision of the approximation using the Greedy multisearch and Tabu search.
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Fig. 3. Speedup of the approximation using the Greedy multisearch and Tabu search.
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Fig. 4. Proximity ratio of the approximation using the Greedy multisearch and Tabu
search.

selected k = 2e log(n). From Figs. 5a, b and c, it is possible to conclude that the
algorithm has a better performance than using a sequential search or a kd-tree
for finding the nearest neighbors. Another interesting property is that even if the
precision decreases as the dimension increases, the value of the proximity ratio in
our proposal remains closer to one compared to the results of Algorithms 4 and 5.
This means that the approximate nearest neighbors computed by our algorithm
are closer to the true nearest neighbors. We can expect that the trajectories
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Fig. 5. Precision, speedup, and proximity ratio of the two approaches for reinserting
the nodes using a neighborhood k = 2e log(n).

in the lazy-collision PRM* produced with our proposal will be more similar to
the ones obtained using an exact method for the nearest neighbors search like a
kd-tree and sequential search.

In Figs. 6 and 7, we can observe that our proposal achieves similar results
for the precision and proximity ratio at each dimension as the number of sample
increases. Figures 6b and 7b shows an improvement of the speedup as the number
of samples increases since it takes more time to compute the k-nearest neighbors
using a sequential search.
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Fig. 6. Precision, speedup, and proximity ratio of the approximation for different sam-
ple sizes using a neighborhood k = 2e log(n) and Tabu search reinserting the nodes
(APG 2x).
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7 Conclusions and Future Work

In this paper we addressed the problem of constructing and maintaining a
roadmap in high-dimensional configuration spaces, without using an external
index. We showed experimentally that our approach outperforms sequential
search and kd-trees, widely used in the robotics community. As future work,
we plan to incorporate the techniques presented here for the construction of
RRTs*.
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Abstract. We consider the orthogonal range search problem: given a
point set P in d-dimensional space and an orthogonal query region Q,
return some information on P ∩ Q. We focus on the counting query to
count the number of points of P contained in Q, and the reporting query
to enumerate all points of P in Q.

For 2-dimensional case, Bose et al. proposed a space-efficient data
structure supporting the counting query in O(lg n/ lg lg n) time and
the reporting query in O(k lg n/ lg lg n) time, where n = |P | and k =
|P∩Q|. For high-dimensional cases, the KDW-tree [Okajima, Maruyama,
ALENEX 2015] and the data structure of [Ishiyama, Sadakane, DCC
2017] have been proposed. These are however not efficient for very large d.

This paper proposes practical space-efficient data structures for the
problem. They run fast when the number of dimensions d′ used in queries
is smaller than the data dimension d. This kind of queries are typical in
database queries.

1 Introduction

1.1 Orthogonal Range Searching

Consider a set P of n points in the d-dimensional space R
d. Given a d-dimensional

orthogonal region Q =
[
l
(Q)
1 , u

(Q)
1

]
×

[
l
(Q)
2 , u

(Q)
2

]
×· · ·×

[
l
(Q)
d , u

(Q)
d

]
, the problem

of answering some information on the points of P contained in Q (P ∩ Q) is
called orthogonal range searching, which is one of the important problems in
computational geometry.

The information on P ∩Q to be reported depends on the query. In this paper,
we consider the counting query, which is to answer the number of points |P ∩ Q|,
and the reporting query, which is to enumerate all points of P ∩Q. Other queries
are the emptiness query to determine if P ∩ Q is empty or not, the aggregate
query to compute the summation or the variant of weights in the query region
if each point p ∈ P has weight w(p), etc.
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A typical application of the orthogonal range searching in high dimensions
is database search [16]. For example, in an employee database of a company, the
query to count the number of people whose service years are between x1 and
x2, whose ages are between y1 and y2, and whose annual incomes are between
z1 and z2 is expressed as an orthogonal range searching. There are also other
applications in GIS (Geographic Information Systems), CAD, and computer
graphics.

1.2 Existing Work

It is known that if the space complexity of the data structure can be superlin-
ear, counting and reporting queries are done in polylog(n) time. For example,
the range tree [3] can perform counting in O

(
lgd−1 n

)
time and reporting in

O
(
lgd−1 n + k

)
time, where k is the number of points output by the query, that

is, k = |P ∩ Q|, using O
(
n lgd−1 n

)
-word space. It is however desirable that the

data structure uses less space if the number of points n is huge.
There are several linear space data structures for the problem. The kd-tree [2]

supports counting in O
(
n(d−1)/d

)
time and reporting in O

(
n(d−1)/d + k

)
time.

For 2-dim., Chazelle [5] proposed a linear space data structure supporting count-
ing in O(lg n) time and reporting in O(lg n + k lgε n) time (0 < ε < 1).

Here linear space means O(n) words, which are actually O(n log n) bits and
may not be optimal. Succinct data structures are data structures which use the
minimum number of bits to store data (information-theoretic lower bound) and
support efficient queries. Wavelet trees [10] are succinct data structures for com-
pressing suffix arrays, which are used for full-text search. Later it became clear
that wavelet trees can be used for other problems [14]. For the orthogonal range
searching, it was proved that counting is done in O(lg n) time and reporting is
done in O

(
(1 + k) lg n

1+k

)
time [8]. Bose et al. [4] proposed, for 2-dim. cases, suc-

cinct data structure supporting counting and reporting queries in O(lg n/ lg lg n)
time and O((k lg n/ lg lg n) time, respectively.

For general dimensions, Okajima and Maruyama [15] proposed KDW-tree.
Query time complexities of KDW-tree are better than those of the kd-tree;
counting in O

(
n(d−2)/d lg n

)
time and reporting in O

(
(n(d−2)/d + k) lg n

)
time.

Ishiyama and Sadakane [11] improved the time complexity so that counting in
O

(
n(d−2)/d lg n/ lg lg n

)
time and reporting in O

(
(n(d−2)/d + k) lg n/ lg lg n

)
time

using the same space complexity. They also extended the data structure so that
the coordinate values can take integers from 0 to U − 1 for some fixed U , while
in existing succinct data structures the coordinate values are restricted to inte-
gers from 0 to n−1. Table 1 shows existing data structures for orthogonal range
searching in general dimensions.



236 K. Ishiyama and K. Sadakane

Table 1. Comparison of existing data structures. KDW-tree and [11] are for d ≥ 3.
Here k is the number of points to be reported. The counting time complexities coincide
with those of reporting with k = 1

Data structures Point space Space complexity Reporting time

kd-tree [2] R
d O(n) words O

(
n(d−1)/d + k

)

KDW-tree [15] [n]d dn lg n + o(n lg n) bits O
(
(n(d−2)/d + k) lgn

)

[11] [U ]d dn lgU + o(n lg n) bits O
(
(n(d−2)/d + k) lgn/ lg lg n

)

1.3 Our Contribution

It is well-known that because of the curse of dimensionality any range search
data structure including the kd-tree and the KDW-tree will search most of the
points if the dimension d is large. Thus in this paper we propose space-efficient
data structures for orthogonal range searching whose worst-case query time com-
plexity is large but which are expected to run fast in practice. Especially our
data structures are expected to search points fast if the number of dimensions
d′ used in queries is smaller than the data dimension d. That is, in the query
region Q =

[
l
(Q)
1 , u

(Q)
1

]
×

[
l
(Q)
2 , u

(Q)
2

]
× · · · ×

[
l
(Q)
d , u

(Q)
d

]
, ranges are bounded in

only d′ dimensions and in other dimensions the ranges are [−∞,∞]. This kind
of queries are common in high-dimensional databases.

Our data structures are succinct; that is, they use the minimum number of
bits to store the input point set P . If n points are in [U ]d, there are

(
Ud

n

)
distinct

sets. Therefore the minimum number of bits to represent a set is lg
(
Ud

n

)
=

dn lg U−n lg n+O(n) bits. The size of our data structure asymptotically matches
this lower bound.

Theorem 1. There exists a data structure for orthogonal range searching for n
points in [U ]d using dn lg U −n lg n+o(n lg n) bits. Let ci be the number of points
whose i-th coordinates are in the query region

[
l
(Q)
i , u

(Q)
i

]
, cmin = min1≤i≤d ci,

and d′ be the number of dimensions used in the query. Then the data structure
performs a reporting query in O(d′cmin lg n + d′ lg d′) time.

The proof of this theorem is described in Sect. 3.4.

2 Wavelet Trees

Wavelet tree is a succinct data structure which supports many queries on a
string, an integer sequence, and so on. It was originally proposed to represent
compressed suffix arrays [10]. However, it turned out gradually that a wavelet
tree can answer many queries in some contexts [14]. Two-dimensional orthogonal
range searching is one of the such queries [13].
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In this chapter, we describe how wavelet trees are constructed in Sect. 2.1.
Then, we explain the algorithm for orthogonal range searching by using wavelet
tree in Sect. 2.2.

2.1 Construction

Two-dimensional point set P which are directly described by a wavelet tree must
satisfy the following two conditions. First, the coordinates of the points must be
integers from 1 to n. Second, the x-coordinates of the points must be distinct.
Although they seem to be strong restrictions, it is known that a point set on R

d

can be reduced to a point set on [n]d [7] and it does not lose generality. Thus,
we consider two-dimensional point set P which satisfies these conditions. For a
point set P , we place the y-coordinates of the points of P in increasing order
of the x-coordinates and make an integer sequence C. For example, we make an
integer sequence 3, 5, 0, 2, 7, 4, 6, 1 for the point set of Fig. 1. Then, we construct
a wavelet tree for C in the following way.

First, we associate the root of the wavelet tree with the integer sequence C1.
Then, we represent each integer in binary and make a bit sequence by arranging
the most significant bit of each integer. We store this bit sequence in the root.
Then, we distribute the integers to the two children while keeping the order.
Specifically, the integers whose most significant bit is 0 are assigned to the left
child, and the integers whose most significant bit is 1 are assigned to the right
child. For example, in the Fig. 1, the integers between 0 and 3 are distributed
to the left child. Therefore, the left child is associated with the integer sequence
3, 0, 2, 1.

Fig. 1. Two-dimensional point set P (left) and the corresponding wavelet tree (right).

1 Although we don’t store C in the root, we consider that the root corresponds to C.
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Subsequently, for each child node, we make a bit sequence by arranging the
second significant bit of each integer, and store it. Recursively, we distribute the
integers to the two children according to the second significant bits. We repeat
this process until each leaf is associated with a sequence of a particular integer.
However, as we described before, we do not store the integer sequences. We only
store the bit sequences, and they represent which child each integer is distributed
to. Therefore, as you can see in the Fig. 1, we do not store the bit sequence in
the leaves.

Additionally, to answer the query fast, we have to support efficient operation
on each bit sequence. There are two representative queries on the bit sequence:
the rank query and the select query. In the rank query, we answer the number
of 0/1 before the i-th bit, and in the select query, we answer the position of the
i-th 0/1 bit. The following result [6,12] is known regarding these queries.

Lemma 1. For a bit sequence of length n, there is a succinct data structure. It
supports rank queries and select queries in constant time and uses n + o(n) bits
of space.

By using this result for each bit sequence, wavelet tree uses n lg n + o(n lg n)
bits of space and can answer queries efficiently. In the following section, we
describe the algorithm to answer the orthogonal range searching.

2.2 Range Search Algorithm

We explain the searching algorithm using the wavelet tree with the example of
Fig. 2.

In the searching algorithm, we descend the tree from the root while sustaining
the interval I corresponding to the x-coordinate range of the query rectangle.

Fig. 2. Illustration of searching algorithm.
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In the example of Fig. 2, we focus on the interval I = [1, 6] in the root2. Then,
we descend to the left child, and at this time, we have to calculate a new interval
corresponding to the left child. To get the new interval, we need to count the
number of 0 s before the left end and the right end of the interval. In other words,
if the interval at the root is [l, r], we count the number of 0 s in [0, l − 1] and in
[0, r]. It can be done efficiently by using rank queries. In the example of Fig. 2,
by counting the number of 0 s in [0, 0] (= 1) and in [0, 6] (= 3), we find the new
interval corresponding to the left child is [1, 2]. When we descend to the right
child, we have to count the number of 1 s.

We repeat this process and descend the tree. If we descend until reaching a
leaf, we can judge whether the point is included in the query rectangle or not.
However, we can stop descending the tree at an internal node in some cases.
For example, in the Fig. 2, after we descend to the left child from the root, we
don’t have to search the left child of that node. This is because the range of
y-coordinate corresponding to that node (= the left child of the left child of
the root) is [0, 1], and it does not intersect the y-coordinate range of the query
rectangle. Also, we can stop when we descend to the right from the root and
then to the left. This is because the range of y-coordinate corresponding to
the visiting node is [4, 5], and it is included in the range of y-coordinate of the
query rectangle. Therefore, the points contained in the I at the visiting node are
included in the query rectangle.

After we find the points which are contained in the query rectangle, we sum
up the number of such points in the counting query. However, in the reporting
query, we have to calculate the coordinates of points. About the y-coordinates,
we can get them by descending the tree by using rank queries as we described
before. On the other hand, to get the x-coordinates, we have to ascend the
tree by using select queries on the bit sequences. For example, in the Fig. 2, let
suppose we visit the node whose corresponding y-coordinate range is [4, 5] (i.e.
the left child of the right child of the root), and find the x-coordinate of the
point corresponding to the second position in the visiting node. First we need
to find the corresponding position of that point in the parent node. Since the
visiting node is the left child of the parent, the position is the second 0-bit in
the parent node and we can find it efficiently by using a select query. In this
example, we find the position is third. Then, we find the corresponding position
of the point in the root. In this case, the visiting node is the right child of the
parent (= the root), the position is the third 1-bit in the parent and we find it
is sixth. Therefore, we can conclude that the x-coordinate of the point is 53.

As described above, by using rank queries and select queries, we can move in
the wavelet tree efficiently. In the range searching, we descend the tree from the
root while sustaining the interval corresponding to the x-coordinate range of the
query rectangle, and when we find the node whose corresponding y-coordinate
range is contained in the query rectangle, we stop descending and count the
number of points or calculate the coordinates of the points.

2 Here, we use zero-based indexing.
3 As we mentioned before, we use zero-base indexing here.
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3 Proposed Scheme

In our scheme, we use d − 1 wavelet trees to represent a point set in [n]d and
perform searches. In Sect. 3.1, we explain how to construct the data structure
(index). In Sect. 3.2, we explain the algorithm for orthogonal range searching. In
Sect. 3.3, we show how to extend the data space from [n]d to [U ]d. In Sect. 3.4,
we analyze the space complexity of the data structure and the query time com-
plexity.

3.1 Index Construction

We first consider a point set P in [n]d space in which the 0-th coordinates4 of
points are distinct. The case there are two points with the same 0-th coordinate
is explained in Sect. 3.3.

First we make d−1 integer arrays A1, . . . , Ad−1 of length n each, correspond-
ing the first to the (d − 1)-st dimension, respectively. The array Ai stores the
i-th coordinates of the points in the increasing order of the 0-th coordinate val-
ues. For the arrays A1, . . . , Ad−1, we construct wavelet trees W1, . . . ,Wd−1. This
can be also regarded as constructing a wavelet tree Wi for a two-dimensional
point set Pi generated from the d-dimensional point set P by orthographically
projecting it to the plane spanned by the 0-th and i-th axes.

3.2 Range Search Algorithm

We explain the algorithm (Algorithm 1) for orthogonal range searching using
the above data structure. We are given a query region Q =

[
l
(Q)
0 , u

(Q)
0

]
× · · · ×[

l
(Q)
d−1, u

(Q)
d−1

]
. First, for i = 1, . . . , d − 1 such that

[
l
(Q)
i , u

(Q)
i

]
�= [0, n − 1], that

is, for each dimension i used in the search, we count the number of points of
the two-dimensional point set Pi in a region

[
l
(Q)
0 , u

(Q)
0

]
×

[
l
(Q)
i , u

(Q)
i

]
using the

wavelet tree Wi. Let m(= |D|) be the number of dimensions i (1 ≤ i ≤ d − 1)
such that

[
l
(Q)
i , u

(Q)
i

]
�= [0, n−1], and i1, . . . , im be the dimensions sorted in the

increasing order of the answers of the counting queries. Next, using the wavelet
tree Wi1 , enumerate the x-coordinates of points of Pi1 contained in the region[
l
(Q)
0 , u

(Q)
0

]
×

[
l
(Q)
i1

, u
(Q)
i1

]
, and store them in set A. Then, for each i = i2, . . . , im

in order, for each a ∈ A, check if the i-th coordinate of the point whose 0-
th coordinate is a is in the query region. The remaining set A contains 0-th
coordinates of points contained in the original query region. Therefore for the
reporting query, we compute all coordinates and output them. For the counting
query, the cardinality of A is the answer. Note that m = d′ if

[
l
(Q)
0 , u

(Q)
0

]
=

[0, n − 1] and m = d′ − 1 otherwise.

4 From now on we call the d dimensions as 0-th dimension to (d − 1)-st dimension.
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Algorithm 1. Report(Q)

Input: A query region Q =
[
l
(Q)
0 , u

(Q)
0

]
× · · · ×

[
l
(Q)
d−1, u

(Q)
d−1

]
.

Output: Coordinates of points of P contained in Q.
1: D := ∅

2: for i = 1 to d − 1 do

3: if
[
l
(Q)
i , u

(Q)
i

]
� [0, n − 1] then

4: D = D ∪ {i}
5: ci := Count

(
Pi,
[
l
(Q)
0 , u

(Q)
0

]
×
[
l
(Q)
i , u

(Q)
i

])

6: end if
7: end for
8: Sort i1, . . . , i|D| ∈ D in the increasing order of ci.

9: A := ReportX
(
Pi1 ,
[
l
(Q)
0 , u

(Q)
0

]
×
[
l
(Q)
i1

, u
(Q)
i1

])

10: for i = i2 to i|D| do
11: for all a ∈ A do
12: if The i-th coordinate of the point whose 0-th coordinate is a is not contained

in
[
l
(Q)
i , u

(Q)
i

]
then

13: A = A \ {a}
14: end if
15: end for
16: end for
17: for all a ∈ A do
18: Compute coordinates of the point whose 0-th coordinate is a and output them.
19: end for

This algorithm is based on the SvS algorithm [1]. The reasons why we first
count the number of points contained in each dimension are twofold. Firstly, to
output x-coordinates (0-th dimension) of points in a query region in Line 9, it
is faster if we enumerate smaller number of points. Secondly, in the double loop
in Lines 10 to 16, it is faster if we can reduce the cardinality of A as quickly as
possible. With high chance, we can make A small if we examine dimensions with
fewer points in the query region first.

3.3 Extension from [n]d Space to [U ]d Space

Here we explain how to extend the data structure so that coordinates of points
are in [U ]d based on [11].

First we create a point set P ′ in [n]d space. The set P ′ consists of n points,
which have one-to-one correspondence with those in P . Let p′ be the point in
P ′ corresponding to p ∈ P . Then the i-th coordinate p′

i of p′ is defined as

p′
i = #{q ∈ P | qi < pi} (1)

where pi is the i-th coordinate of p. The value is called the rank of p with
respect to the i-th coordinate. Two points may have the same rank w.r.t. an i-th
coordinate. It is however easy to have distinct values; if k points have rank r,
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we change them as r, r + 1, . . . , r + k − 1. Then we can apply the data structure
of Sect. 3.1 to store P ′.

We also store d integer arrays C0, . . . , Cd−1 of length n each. The entry Ci[r]
stores the i-th coordinate of p ∈ P whose rank is r w.r.t. the i-th coordinate.
Using this array, we can transform a query region Q in [U ]d space into a query
region Q′ in [n]d space in O(lg n) time if k is considered as a constant. For a
reporting query, we first find points of P ′, then convert them into coordinates
values in [U ]d space. This is done in constant time for each point. If we store
each Ci naively, it occupies n lg U bits and the data structure is not succinct.
We can however compress it into n lg(U/n) + O(n) bits without any sacrifice in
access time.

3.4 Complexity Analyses

We discuss space and time complexities of the proposed scheme.
As for the space complexity, for points in [n]d space, we use d−1 wavelet trees

and therefore the size is (d − 1) lg n + o(lg n) bits. For points in [U ]d space, we
additionally use d arrays Ci in a compressed form. In total, the space complexity
is dn lg U − n lg n + o(n lg n) bits.

Next we consider the query time complexity. Let m ≤ d′ be the number of
wavelet trees used in the query. Then the time to perform m counting queries in
the wavelet trees is O(m lg n). Then we sort m integers obtained by the counting
queries in O(m lg m) time. We enumerate the x-coordinate (the 0-th coordinate)
values of points which are contained in the query region with smallest number of
points in it in O((1 + cmin) lg(n/(1 + cmin))) time. Then we check if each point
is also contained in query regions for other dimensions in O((m − 1)cmin lg n)
time. Then, in total, the query time complexity is O(d′cmin lg n + d′ lg d′). This
proves Theorem 1.

4 Experimental Evaluation

We experimentally evaluated our scheme on data structure size and query time
with existing ones. We implemented our data structure by using the succinct
data structure library [9]. We compared our scheme with:

– näıve: We store points in an array. Queries are done by sequential searches.
– kd-tree [2]: We use our own implementation.
– DCC [11]: A succinct variant of the kd-tree.
– LB: The information-theoretic lower bound to store the point set

For our scheme, we used two variants. One uses uncompressed bit vectors to
construct wavelet trees, and the other uses rrr [17] to compress them. The latter
is slower but uses less space.
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4.1 Machines and Compilers

We used a Linux machine with 128GB of main memory and an Intel Xeon
CPU E5-2650 v2 @ 2.60GHz running CentOS 7. We used only single core. The
compiler we used was g++ version 4.8.5.

4.2 Space Usage

We show memory usage of the algorithms. We used uniformly random point sets
with n = 226, d = 3, 4, 6, 8, and U = 216, 224, 232.

Table 2 shows space usage if U is fixed to 232 and d is varied from 3 to 8. The
data structure of the näıve scheme is just an array of coordinates. The kd-tree
uses O(n) words in addition to the array of coordinates. The proposed schemes
use less space than others. In particular, the one using rrr for compressing bit
vectors of the wavelet tree uses space close to the information-theoretic lower
bound.

Table 3 shows space usage if d is fixed to 8 and d is varied from 216 to
232. Because the kd-tree and the näıve scheme store point coordinates in 32-bit
integers, the space usage does not change if U varies. On the other hand, the
memory usage of the proposed schemes increases according to U , but it is smaller
than that of kd-tree.

Table 2. Comparison of memory usage for various d. n = 226, U = 232.

Data structures Memory usage (MiB)

d = 3 d = 4 d = 6 d = 8

lower bound 427.542 635.542 1051.55 1467.55

näıve 768 1024 1536 2048

kd-tree 3328 3584 4096 4608

Proposed 635.485 944.712 1563.08 2181.42

Proposed (rrr) 462.258 684.811 1129.92 1575.03

Table 3. Comparison of memory usage for various U . n = 224, d = 8.

Data structures Memory usage (MiB)

U = 216 U = 224 U = 232

lower bound 210.885 338.885 466.885

näıve 512 512 512

kd-tree 1152 1152 1152

Proposed 333.113 503.722 686.744

Proposed (rrr) 239.163 363.125 546.803
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4.3 Query Time

We created uniformly random point sets with n = U = 226 and d = 3, 4, 6, 8.
All query regions are hypercubes. We call the ratio between the volume of a
query region and the volume of the entire space as the selectivity. We used query
regions with different selectivities from 10−7 to 0.5.

Fig. 3. Query time and selectivity. Left: d = d′ = 3, Right: d = d′ = 4.

Fig. 4. Query time and selectivity. Left: d = 4, d′ = 3, Right: d = d′ = 6.

Fig. 5. Query time and selectivity. Left: d = 6, d′ = 5, Right: d = 6, d′ = 3.
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Fig. 6. Query time and selectivity. Left: d = 8, d′ = 8, Right: d = 8, d′ = 7.

Fig. 7. Query time and selectivity. Left: d = 8, d′ = 5, Right: d = 8, d′ = 3.

Figures 3, 4, 5, 6 and 7 show the results. In all schemes except näıve, queries
are done quickly if the selectivity is small. If d′ is close to d, that is, the query
region is bounded in most of the dimensions, the kd-tree is the fastest. However,
if d′ is much smaller than d, the proposed schemes are faster than the kd-tree,
as we expected.

5 Conclusion

We have proposed practical space-efficient data structures for high-dimensional
orthogonal range searching. The space complexity asymptotically matches the
information-theoretic lower bound for representing the input point set, which is
also confirmed by computational experiments. On the other hand, query time is
not always faster than existing methods such as the kd-tree. Our schemes are
faster if the dimension of point sets is large, whereas the number of dimensions
used in search is small.
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Abstract. Grouping operators summarize data in DBMS arranging ele-
ments in groups using identity comparisons. However, for metric data,
grouping by identity is seldom useful, since adopting the concept of sim-
ilarity is often a better fit. There are operators that can group data
elements using similarity. However, the existing operators do not achieve
good results for certain data domains or distributions. The major contri-
butions of this work are a novel operator called the SGB-Vote that assign
groups using an election involving already assigned groups and an exten-
sion for current operators bounds each group to a maximum amount of
the nearest neighbors. The operators were implemented in a framework
and evaluated using real and synthetic datasets from diverse domains
considering both quality of and execution time. The results obtained
show that the proposed operators produce higher quality groups in all
tested datasets and highlight that the operators can efficiently run inside
a DBMS.

Keywords: Similarity Group By · Grouping · Similarity comparison ·
Metric data

1 Introduction

Complex data such as images, videos, and spatial coordinates are increasingly
frequent in several applications such as in social networks, geographic informa-
tion systems, medicine, and others. To efficiently store, index, and search this
kind of data, database systems can leverage on a concept of similarity between
objects, which is usually more suitable than simply comparing them by iden-
tity [19]. Identity comparisons are employed by the Group By operator when
dealing with traditional data. The Group By operator is often used to aggre-
gate and summarize information in Relational Database Management Systems
(RDBMS). It selects the subsets of tuples from a relation that have the same
value for specified relation attributes, creating groups by comparing the values
by identity. By enabling the creation of similarity-based grouping, it is possible to
define analytical queries that better capture the rich semantics provided by com-
plex data. One application of Group By is data clustering, what is usually done
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 247–261, 2017.
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through ad-hoc processes that are not meant to be executed in integrated and
query intensive environments, such as RDBMS. By doing this operation inside
RDBMS, all the operator inherent the relational operators would be available to
the user when defining the queries. Therefore, a similarity-based grouping oper-
ator in the relational environment is useful and desirable. Such operator must
join similar elements into a single group and place dissimilar ones into distinct
groups, which are then subject to aggregation operations. The whole process can
benefit from the RDBMS native indexing and the query optimizer.

Similarity Group By (SGB) operators were proposed to group data by simi-
larity inside RDBMS, focused either on one-dimensional data [16] or, as in the
case of SGB-Any and SGB-All, on multidimensional data [18]. Each of these
operators evaluates the distances between objects and determines a range of
interest to group them, given a set of constraints. However, they can be applied
only to a few applications, and it is necessary to develop new operators. For
example, a group could be chosen using a more flexible constraint, such as the
election between the objects that have already an assigned group and are within
a distance. Each vote should be weighted inversely by the distance, so closer
objects have more impact than farther ones. Likewise, instead of using a dis-
tance threshold, a group could be selected using the number of neighbors.

Furthermore, the existing operators are focused on multidimensional data,
and existing algorithms as well as data structures do not handle non-dimensional
metric data. To solve these problems, here we present:

– a new SGB operator called the SGB-Vote, which group the objects using an
election criterion with weighted votes;

– a new way of using the SGB operators, taking advantage of the number of
neighbors in place of a distance range;

– algorithms to execute the new operators, which are sufficiently generic to
support the existent operators and corresponding semantics.

We thoroughly evaluated the proposed operators, comparing them to existing
ones over different data domains, showing SGB-Vote superior performance and
flexibility.

The rest of the paper proceeds as follows: Sect. 2 provides background con-
cepts to understand this work. Section 3 describes significant works related to
this one. Section 4 presents the proposed operators and algorithms. Section 5
presents the experiments performed to evaluate the proposed operators. Finally,
Sect. 6 summarizes the paper and presents future works.

2 Background

Aggregation Functions summarize the values of an attribute in a relation. When
applied to the whole relation, the result is a single tuple containing a column for
each employed aggregation. The value of each column summarizes all the values
in the attribute. Aggregation functions are usually statistical functions, such as
sum, average, maximum, minimum or count [4].
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It is often required to apply aggregation functions over subsets of the relation
tuples. In these cases, the Grouping Operator creates the subsets, grouping the
tuples that share the same value in some attributes, so the aggregation functions
produce one tuple for each partition. In the Relational algebra, the notation
γ {Lg,La} (T) , represents the grouping operator, where T is the relation to be

grouped, Lg is the list of grouping attributes, and La is the list of aggregated
attributes. The operator generates one group for each distinct value (or value
combination) of the attributes in Lg – that is, it groups the tuples that have the
same values in the grouping attributes. Each attribute in list La is associated
with an aggregation function [4]. After the grouping operation, the aggregation
functions are evaluated over the tuples of each group, generating one tuple for
each partition, which has the resulting aggregation results.

In an RDBMS, the GROUP BY clause represents the grouping operator, where
the grouping attributes are listed. The SELECT clause lists the aggregation
attributes as arguments of the respective aggregation functions. SQL also pro-
vides a HAVING clause that can execute a filter (select operations) after the
grouping operator.

Traditional applications deal with simple data types, such as numbers and
small character strings. Those data are called scalar data, as each element cor-
responds to a single value that cannot be decomposed. Scalar data meet the
properties of Identity Relations (IR) and Order Relations (OR); thus they can
be compared using the comparison operators = and �= (due to the IR proper-
ties), and <,≤,≥ and > (due to the OR properties). Complex data types, such
as multidimensional and metric data called complex data, in general, do not meet
the OR property, so the <,≤,≥ and > comparisons cannot be used. Moreover,
although they can be compared using IR properties, this is usually meaning-
less [19]. In fact, comparing such data by similarity is the usual approach.

Distance functions are frequently employed to evaluate the (dis)similarity
between a pair of objects. To this intent, whenever the data is in a metric space,
such comparison is possible. A metric space is defined as a pair <S, d>, where
S is the data domain, and d is a distance function. It is assumed that the closer
a pair of objects is, the more similar the objects are. To define a metric space,
the function d : S × S → R

+ must meet the following properties [19]:

– d(s1, s2) = 0 ⇔ s1 = s2 (identity);
– 0 < d(s1, s2) < ∞,∀s1 �= s2 (non-negativity);
– d(s1, s2) = d(s2, s1) (symmetry);
– d(s1, s2) ≤ d(s1, s3) + d(s3, s2) (triangle inequality).

Examples of metric distance functions are Manhattan, Euclidean, and Jaccard
distance.

The most common types of similarity queries are the similarity range and
the k-nearest neighbors query, both corresponding to similarity selections. Both
of them select objects that are similar to a given query center sq. A range query
retrieves the objects found within a distance ξ from sq. A k-nearest neighbor
query retrieves the k objects nearest to sq [19]. There are also similarity joins,
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which are defined over two sets X and Y sampled from the same domain S and
retrieves every pair (x ∈ X, y ∈ Y ) that satisfies a similarity constraint [19].
The most common kinds of similarity joins are the Range Join, the k-Nearest
Neighbors Join, and the k-Closest Pairs join [1].

The quality of a grouping method is assessed by evaluating its result. Quality
evaluation methods are classified following two approaches, according to the
availability of a ground truth. When a ground truth is available, an extrinsic
method is used, such as the Mutual Information (MI); otherwise, an intrinsic
method is used [6]. MI is a similarity measure which quantifies the amount of
information between two labels existing in the same data. The Adjusted Mutual
Information (AMI) is the corrected-for-chance version for MI. The AMI score is
1 when the groups are perfectly matched, and it is around 0 when the groups
separated.

In this paper, we propose grouping algorithms that can be implemented over
existing data structures, such as union-find, multiset, and map. The union-find
data structure, also named disjoint-set or merge-find set, can maintain non-
overlapping subsets and support the operations, makeSet, union and find that
respectively creates a set containing only singleton elements, merge two subsets
into one and determine which subset contains an element [14]. A multiset is a
generalized notion of a set that allows duplicated values [14]. Some useful oper-
ations are applicable over multisets, including count, which returns the number
of occurrences of an element in the multiset. A map is also named associative
array, symbol table or dictionary, and have the purpose of associating a value
with a key. A map provides the insert and search operations [14].

3 Related Works

The literature presents several extensions to the GROUP BY operator defined in
the SQL standard. One that made its way into several DBMS is the CUBE opera-
tor [5], which can generate the same result of several grouping queries in a single,
more efficient operation. Some works provide grouping extensions focused on the
duplicate elimination for data integration. Schallehn et al. developed interfaces
for user-defined grouping and aggregation as an SQL extension and provided
concepts for duplicate detection and elimination using similarity [13]. Cluster-
Rank was proposed by Li et al. to generalize the GROUP BY as a fuzzy grouping
operator, integrating the operator with ranking and Boolean filters [9]. Clus-
ter By was proposed by Zhang and Huang as an extension to SQL to support
cluster algorithms in spatial databases, grouping spatial attributes and applying
aggregation functions over spatial and others attributes [20].

Silva et al. proposed the SGB operators, focused on one-dimensional data.
They provide three techniques to create groups: Unsupervised Similarity Group-
by (SGB-U), Supervised Similarity Group Around (SGB-A) and Supervised SGB
using Delimiters (SGB-D) [16]. Tang et al. extended the SGB operators to handle
multidimensional data, providing the operators SGB-Any and SGB-All [18]. For
SGB-Any, an object belongs to a group if it is closer or at the same distance to
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any other objects in this group. For the SGB-All operator, an object belongs to
a group if it is closer or at the same distance to every other object in this group.
Following SGB-All, an object may belong to more than one group, whenever
it satisfies overlapping constraints. The SGB-All operator requires an overlap
clause, which expresses different semantics for the operation and could assume
three distinct values. These values arbitrate the action to be taken over the
overlapped object. Using JOIN-ANY the object is randomly inserted in one of
the overlapping groups, with value ELIMINATE, discard the overlapping object
and FORM-NEW-GROUP creates groups for overlapping objects. The SGB operators
were implemented in PostgreSQL using an SQL extension.

There are also some works focused on other similarity operators. Pola et al.
provided the concept of similarity sets [12]. Marri et al. extended by similarity
the set intersection operator [10]. There are also works focused on Similarity
Joins [3,7,17].

Several works are aimed at including similarity in the DBMS execution envi-
ronment. The SImilarity Retrieval ENgine (SIREN) provides an extended SQL
and executes similarity using a layer between an application and the DBMS [2].
The similarity-aware database management system (SimDB) adds new keywords
and operations to execute similarity queries in PostgreSQL [15]. The Features,
Metrics, and Indexes for Similarity Retrieval (FMI-SiR) is a similarity module
to enable Oracle DBMS to execute similarity queries using user-defined functions
for feature extraction and indexing [8]. The Kiara platform is an extension for
PostgreSQL that works with user-defined functions and supports an extended
SQL through a parser that rewrites queries to the standard operators [11].

4 Proposed Methods

In this section, we present the new Similarity Group-By operators and the pro-
posed algorithms to execute them. In Sect. 4.1, we describe a new SGB operator
to group objects using a weighted election. In Sect. 4.2, we propose new opera-
tors to generalize the existing SGB operators so the grouping threshold can also
be based on quantities of nearest neighbors, besides distance limits. In Sect. 4.3,
we provide algorithms that can perform the proposed and existing operators.

4.1 The SGB-Vote Operator

In some cases, none of the existing operators, SGB-Any and SGB-All are ade-
quate to spot the groups properly. Consider the example in Fig. 1(a), which shows
nine elements as points in a bi-dimensional Euclidean space. Visually it can be
noticed that there are two groups of points. One group composed of points p1
to p5 and another consisting of points p6 to p9. The pairs of objects that satisfy
the distance threshold ξ are linked (only two covering rings are shown to not
clutter the figure). The SGB-Any operator identifies the groups correctly.

If a new point p10 arrives as shown in Fig. 1(b), the SGB-Any operator will
join the two groups, and the SGB-All operator will return at least three groups
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Fig. 1. Points in a bi-dimensional Euclidean space. (a) two well-separable groups;
(b) a new point p10 placed between the groups.

because there is no way to create two groups where each of which is a clique over
threshold ξ. Other threshold values can be used, but, SGB-All will only discover
the right groups when the threshold is sufficiently large so that the entire group
forms a clique. That is, the SGB-Any only properly discovers the groups when
the threshold is smaller than the inter-group distance.

However, an approach based on the election among the groups that has
objects satisfying the constraint can properly detect the groups in broader sce-
narios. Aiming at this objective, we developed a new SGB operator, called the
SGB-Vote that achieves a better quality in the results, whereas executing at a
speed equivalent to SGB-All and SGB-Any. SGB-Vote chooses the most appro-
priate group for an object counting the votes of the objects that satisfy each con-
straint, like a KNN-classifier. The votes are weighted, so votes of closer objects
contribute more than the vote from further objects. The weight assigned to each
vote is 1/d, where d is the distance between the pair of objects pi and pj . When
d(pi, pj) = 0, the weight assigned is ∞, then both objects are in the same group.
When no objects satisfy the threshold constraint, or when the objects that sat-
isfy it are both not assigned to a group, then a new group is created for them.
Using threshold ξ, only the SGB-Vote operator can properly assign the point
p10 in Fig. 1(b) to group of points p6 to p9. The SGB-Vote will choose the group
p6 to p9 instead of p1 to p5, because the points p6 and p8 are closer than p4, then
the weight assigned to group p6 to p9 is greater than the assigned to p1 to p5.

4.2 Nearest Neighbors-Based SGB: The KNN-SGB Operators

The literature about similarity queries usually considers two main similarity
predicates: the distance-based (or range-based) predicate and the quantity-based
(or k-nearest neighbors) predicates. The similarity predicate of both SGB-Any
and SGB-All operators are distance-based. When the data space presents a vari-
able density of object distribution, they cannot generate consistent grouping
over all the space. In this situation, an SGB operator based on quantities will
be better suited.

Therefore, we generalize the SGB operators (the SGB-Any, SGB-All,
and SGB-Vote) to use either a range-based or a quantity-based predicate.
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Therefore for each data object, the operators will consider the set of k-nearest
neighbors to partition the data, instead of considering the set of objects within
a given distance. The quantity-based variations are defined as follows.

– The SGB-Any operator groups the objects that are one of the k-nearest neigh-
bors of object pi, instead of the objects which are closer than a radius ξ from
pi.

– The SGB-All generates the cliques using k-nearest neighbors and uses the
same overlap clauses as its distance-based variation.

– The SGB-Vote operator groups the objects using weighted votes of the k-
nearest neighbors; when none of the k-nearest neighbors have a group assigned
yet, the object is placed into a new group.

To identify the six operators, we prefix the distance-based methods with
Range and the quantity-based ones with KNN, as in range and KNN queries.
For example, the SGB-Any operator exists in the Range-SGB-Any and KNN-
SGB-Any variations. When we do not specify a Range or KNN prefix, we are
referring to the generic methods, independently of is threshold predicate. When
we do not specify an All, Any or Vote suffix, we are talking about the predicate
criterion, regardless of the grouping technique.

4.3 Algorithms

The existing algorithms for Range-SGB are not applicable to KNN-SGB, so in
this section, we present algorithms that can perform both KNN-SGB and Range-
SGB. The algorithms follow a nested loop approach, analogous to a join. The
inner loop uses a function Query(δ, d, ξ), which represents either a KNN query or
a Range query, and can be executed either following a sequential scan or taking
advantage of an indexing method (e.g. R-tree or Slim-Tree). This approach can
employ optimization techniques existing for similarity selection queries as an
additional benefit. The function getGroup can use a map structure to associate
an object with a group.

Algorithm 1 shows the pseudo-code for SGB-Any, which performs either the
KNN or Range query for each object in the data. Every object that satisfies the
constraint is merged in the same group of the query center. The function result
is a union-find structure where the connected elements are in a single group.

Algorithm 2 presents the pseudo-code for SGB-All. It performs a similarity
query for each object d in the input data. For each object in the result of the sim-
ilarity query with a group already assigned, the group identifier is inserted in an
overlap multiset. Thereafter, the algorithm compares the number of occurrences
of each partition in the overlap multiset with the number of elements contained
in the groups, where equal values imply that all the similarity constraints are
satisfied for every object in the group, so the group identifier is inserted in the
candidates set. Thereafter, if the candidates set is empty, a new group is created
for the object. Whether the candidates set has only one satisfying group, the
element is placed in it. When the candidates set has more than one satisfying
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Input: D: Set of objects, ξ: Similarity threshold, δ: Distance function
Result: Set of Groups G

1 G ← makeSet(D.size());
2 foreach d ∈ D do
3 result ← Query(δ, d, ξ);
4 foreach r ∈ result do G.union(G.find(d), r.id) ;
5 end
6 return G

Algorithm 1. SGB-Any

group, an action is taken according to the value of the CLS clause. The possible
actions are JOIN-ANY that insert the object in one of the overlapping groups,
ELIMINATE that discard the object, and FORM-NEW-GROUP that creates a new
group.

Input: D: set of data objects, ξ: similarity threshold, δ: distance function,
CLS: overlap clause

Result: Set of Groups G

1 G ← NULL;
2 foreach d ∈ D do
3 candidates ← NULL; overlap ← NULL; result ← Query(δ, d, ξ);
4 foreach r ∈ result do
5 g ← getGroup(r,G);
6 if g is not empty then overlap.insert(g) ;
7 end
8 foreach distinct(o) ∈ overlap do
9 if overlap.count(o) = G[o].size() then candidates.insert(o) ;

10 end
11 if candidates is empty then
12 Create a new group and insert d
13 else if candidates.size() = 1 then
14 Insert d in the group contained in the candidates set;
15 else
16 switch CLS do
17 case JOIN-ANY Insert d in any group of candidates set;
18 case FORM-NEW-GROUP Create a new group and insert d;
19 case ELIMINATE Discard the data point;
20 endsw
21 end
22 end
23 return G

Algorithm 2. SGB-All
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Algorithm 3 shows the pseudo-code for SGB-Vote. It performs a similarity
query for each object d in the input data. For each object r in the result of the
query that already has an assigned group, an entry in the map W is updated by
the inverse of the distance between d and r (or is assigned ∞ if distance = 0),
so that a closer object contributes more than a farther object. When the map of
weights is NULL, it means that none of the objects that satisfy the similarity
predicates has a group already assigned, so a new group is created to place
object d. Otherwise, d is assigned to a group that has the highest weight value.

Input: D: set of data objects, ξ: similarity threshold, δ: distance function
Result: Set of Groups G

1 G ← NULL;
2 foreach d ∈ D do
3 weights ← NULL; result ← Query(δ, d, ξ);
4 foreach r ∈ result do
5 g ← getGroup(r,G);
6 if g is not empty then
7 if r.distance = 0 then weights[g] ← ∞ ;
8 else weights[g] ← weights[g] + (1/r.distance) ;
9 end

10 end
11 if weights is empty then Create a new group and insert d ;
12 else Insert d into group with highest weight value ;
13 end
14 return G

Algorithm 3. SGB-Vote

5 Evaluation

We implemented all the grouping operators in a framework written in the C++
language using the Arboretum library1. The operators were implemented using
an indexed nested-loop approach as presented in the previous section, using the
Slim-Tree to index the data, as it is well-suitable for all the operators. The
experiments are performed on an Intel R© Core TM i5-5200U running at 2.2 GHz
with 8GB of RAM under Fedora 23.

First, we used datasets whose grouping ground truth is available to evaluate
the quality of the groups obtained using the AMI score. Some operators are
processing-order dependent, that is, they can produce different results when the
data is processed in distinct orders. Thereby, for fair comparisons, we executed
the operators ten times shuffling the input data and calculated the average value
and the standard deviation for the AMI score. After that, we compared the
impact of the parameters in the execution time, executing the operators ten
times and calculating the average time.
1 https://bitbucket.org/gbdi/arboretum.

https://bitbucket.org/gbdi/arboretum
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5.1 The Datasets

We used real and synthetic datasets to validate the proposed methods and to
compare them with the existing methods. Table 1 presents a comparison between
all datasets containing the cardinality, number of dimensions, number of existing
groups, distance function used and a short description of the dataset.

Table 1. Description of datasets.

Name Size Dim Groups Function Description

Aggregation 788 2 7 Euclidean Groups of different shapes
and sizes.

Compound 399 2 6 Euclidean Groups of different shapes
and sizes.

D31 3100 2 31 Euclidean Gaussian groups randomly
placed.

R15 600 2 15 Euclidean Gaussian groups positioned
in rings.

Corel 10000 128 100 Manhattan Images represented using
the MPEG-7 Color
Structure Descriptor.

GHIM 10000 128 500 Manhattan Images represented using
the MPEG-7 Color
Structure Descriptor.

Sport 737 – 5 Jaccard Documents from BBC Sport
website represented using a
binary bag-of-words model.

News 2225 – 5 Jaccard Documents from BBC News
website represented using a
binary bag-of-words model

The first experiment compared the results obtained from four synthetic
datasets containing bi-dimensional Euclidean points distributed in an Euclid-
ean space2: The Aggregation dataset contains seven different groups of points,
with different shapes and sizes. Dataset Compound contains six different groups
of points, with different shapes and sizes. The D31 dataset contains 31 Gaussian
groups randomly placed. The R15 dataset is composed of 15 Gaussian groups,
14 of them distributed in 2 circles around a central group. Figure 2 shows a
graphical representation of the datasets.

To evaluate the grouping operators applied to image datasets, we used the
Corel and the GHIM datasets3. The Corel dataset has 100 groups of 100 images
2 http://cs.joensuu.fi/sipu/datasets/.
3 http://www.ci.gxnu.edu.cn/cbir/dataset.aspx.

http://cs.joensuu.fi/sipu/datasets/
http://www.ci.gxnu.edu.cn/cbir/dataset.aspx
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Fig. 2. Shape datasets.

each. The GHIM has 10,000 images distributed in 20 groups with diverse image
contents, where each group contains 500 images. Figure 3 shows some images
from the datasets. We represent these datasets using the MPEG-7 Color Struc-
ture Descriptor, which results in a feature vector with 128 features compared by
the Manhattan distance.

Fig. 3. Example of the images included in datasets Corel and GHIM.

To evaluate the operators over textual data, we used the News and Sport4

datasets, which contains, respectively, 2225 documents extracted from the BBC
news website and 737 from the BBC Sport website. Each document is represented
using a binary bag-of-words model with the words it contains. The documents
were compared using the Jaccard distance measure. The News documents are
distributed in 5 groups (business, entertainment, politics, sport, and tech), and
the vocabulary for all documents consists of 9635 distinct words. The documents
in the Sport dataset are distributed in 5 groups (athletics, cricket, football,
rugby, and tennis), and the vocabulary consists of 4613 distinct words.

5.2 Results

We use the AMI quality evaluation technique to compare the obtained results
with the known ground truth, so a score closer to 1 means better groups. Figure 4
shows the results for the synthetic datasets using Range-SGB, where the hori-
zontal axis is the ξ threshold while the vertical axis is the average of the AMI
scores. In Range-SGB-All and Range-SGB-Vote, the vertical lines represent the
standard deviation for AMI scores. For all tested shape datasets, the highest
4 http://mlg.ucd.ie/datasets/bbc.html.

http://mlg.ucd.ie/datasets/bbc.html
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score was obtained by Range-SGB-Vote. For varying range radius, it can be
seen that SGB-Any is better for very small radii, because using a range greater
than inter-group distance joins the groups, creating fewer groups than needed.
SGB-All is better for large radii because using a small radius is not sufficient to
form cliques. SGB-Vote is better for intermediary values of radii, the most useful
range of radii because using small radii values form more groups than needed
and using large radii will create fewer groups than needed. Moreover, the impact
of more objects from distant groups in weight can be greater than few objects
of closer groups.

Fig. 4. AMI score results for shape datasets using Range-SGB.

Figure 5 presents the results for the textual and images datasets using the
Range-SGB. For textual datasets, the graphs show ξ varying between 0.6 and
0.975, because this interval achieved better results for all operators. Range-SGB-
Vote achieved the bests results with ξ around 0.9. For the image datasets with
ξ varying from 0.25 to 5.0, the best results were also obtained by Range-SGB-
Vote with ξ around 4.0. For those datasets, we can see that SGB-Any is almost
useless, and SGB-Vote is the best for small and medium radii, whereas SGB-All
is better for large radii.

Figure 6 shows the results for textual and images datasets using KNN-SGB,
with k varying between 1 and 120 in textual datasets and between 1 and 50
in images datasets, the horizontal axis is the k value, and the vertical axis is
the average of the AMI scores. For both textual and images datasets, the bests
results were achieved using the KNN-SGB-Vote despite the greater varying in
results. In general, for textual and images datasets tested, the results obtained
by KNN-SGB-Vote are better than the results obtained by Range-SGB.

Figure 7 presents a comparison of the execution time for all three Range-SGB
operators for varying radii over the textual and image datasets. The horizontal
axis represents the threshold ξ, and the vertical axis is the average of 10 exe-
cutions for total processing time in seconds, with the standard deviation repre-
sented by vertical lines. Figure 8 presents a comparison between the k and the
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Fig. 5. AMI score results (News and Sport) and image datasets (Corel and GHIM) using
Range-SGB, considering varying ξ value.

Fig. 6. AMI score results for textual (News and Sport) and image datasets (Corel and
GHIM) using KNN-SGB, considering varying k value.

Fig. 7. Query time for textual (News and Sport) and image datasets (Corel and GHIM)
using Range-SGB, considering varying ξ value.

processing time for KNN-SGB operators for these datasets, where the horizontal
axis represents the threshold k. Figures 7 and 8 shows that there is no significant
differences for the execution time of any operator.
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Fig. 8. Query time for textual (News and Sport) and image datasets (Corel and GHIM)
using KNN-SGB, considering varying k value.

6 Conclusions

In this work, we proposed the SGB-Vote, a novel way to group metric data
by similarity. We also generalized the existing SGB operators to deal also with
predicates based on a given amount of neighbors. We provided simple algorithms
to execute every operator and employed them to evaluate the proposed operators
using both real and synthetic datasets from different domains, varying from low
to high dimensional datasets. All the operators were implemented in a framework
using the Arboretum library.

The evaluation highlighted that Range-SGB-Vote is the best option for the
most useful values of radii and that KNN-SGB-Vote is the best choice for group-
ing based on the number of elements in groups. The experiments also showed that
the execution time of any range and any KNN grouping operators are equivalent.

Further ongoing works include an SQL extension to include operators in an
RDBMS. Also, we are developing optimizations for the proposed algorithms,
which can be generic or specific to a data domain, and the creation of similarity
based aggregation functions for complex data domains.

Acknowledgments. This research is partially funded by FAPESP, CNPq, CAPES,
and the RESCUER Project, as well as by the European Commission (Grant: 614154)
and by the CNPq/MCTI (Grant: 490084/2013-3).
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Abstract. We propose succinct quadtrees, space-efficient data struc-
tures for nearest point and segment queries in 2D space. We can com-
press both the tree structure and point coordinates and support fast
queries. One important application is so called map matching, given GPS
location data with errors, to correct errors by finding the nearest road.
Experimental results show that our new data structure uses 1/25 working
memory of a standard library for nearest point queries.

1 Introduction

In this paper we consider a fundamental problem in computational geome-
try: data structures for nearest neighbor queries. Though there exist a lot of
researches on the topic [3,5,12], our research is different in the sense that we
focus on queries on compressed data using compressed data structures. In a stan-
dard approach, we are given a set of n points stored in an array, and construct a
data structure on the array for efficient queries. Then the space requirement is
typically nw + O(n log n) bits where w is the number of bits necessary to repre-
sent coordinates of a point. The term O(n log n) is the size of the data structure
because a pointer to the array uses O(log n) bits. The value of w is at least 64 for
two dimensional points and the hidden constant in the big-O is large in general.
The value of n is also huge for real data, for example, road networks in Japan or
USA have more than 50 million edges1. Therefore a standard approach requires
huge memory.

1.1 Related Work

There exist some compressed data structures for point sets. de Bernardo et al. [9]
proposed compact representations of raster data, which represent one attribute
for each point in 2D space, using an extension of the k2-tree [7]. Gagie et al. [13]
proposed compressed quadtrees for storing coordinates of 2D point sets, which is
also a variant of the k2-tree. Venkat and Mount [21] proposed succinct quadtrees

This work was supported by JST CREST Grant Number JPMJCR1402, Japan.
1 http://www.dis.uniroma1.it/challenge9/download.shtml.
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for proximity queries on 2D point sets. These data structures are for storing not
line segments but points. The difference is that we have to keep orders of points
to store line segments, which makes compressing coordinates more difficult.

The interleaved k2-tree [6] is a data structure for indexing 3D points, which
can be used for storing line segments by adding an integer ID to each point in
line segments. However the data structure cannot use the fact that points with
similar ID’s are located close and the index size will be large.

There exist data structures for searching for line segments such as R+-tree
and PMR quadtree [15]. These are disk resident and use 20 bytes for a line
segment, which is huge.

1.2 Our Contribution

In our approach, the input data are compressed, and the data structure is also
compressed. We propose succinct quadtrees which support efficient nearest point
or segment queries on compressed data using a small data structure. Though our
data structure has many applications, we focus on the problem called map match-
ing ; given a query point in a two dimensional space and a set of line segments, we
find k-nearest line segments to the point in the set. This is a typical query in GIS
(geographic information systems). Line segments represent a road network, and a
point represents the location of a car or a person obtained by GPS. Because GPS
data contain errors, we do map matching to align the location to a road. We con-
sider a system that collects locations of many cars or people to detect events such
as accidents or to discover knowledge from the data. Therefore it is important to
support such queries efficiently using small resources.

We give experimental results on real road network data in Japan. We compare
our succinct quadtrees with one of the most famous libraries for nearest neighbor
queries called ANN [3]. Our succinct quadtree uses 1/100 working memory of
that of ANN, at the cost of increase in nearest point query time by a factor of
5 to 10.

2 Preliminaries

2.1 Data Structures for Nearest Queries

Quadtrees have been proposed by Finkel and Bentley [12]. A two-dimensional
space is subdivided into four rectangles by cutting the space by two orthog-
onal lines. Each subspace is further divided recursively. Therefore the regions
are represented by a tree, each internal node of which has four children, called
Quadtree. Though it is easy to search the space recursively from the root of the
quadtree, high-dimensional variants of the quadtree are not efficient. In such a
case, k-d tree [5] is used. A space is divided into two sub regions recursively.
In high-dimensional space, exact nearest neighbor search is difficult. Therefore
approximate nearest search algorithms have been also proposed [3].

As for compression of data and indexes, there exist several results. Arroyuelo
et al. [2] proposed data structures for two-dimensional orthogonal range search.
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Indeed their data structure can be made implicit; no extra space is required
beyond that for the data points. Brisaboa et al. [8] proposed space-efficient data
structures for two-dimensional rectangles. Coordinates of rectangles are sorted
in each dimension and stored as increasing integer sequences. Therefore space for
coordinates are compressed, however we have to store permutations representing
correspondence of coordinates. There are also compressed data structures for
integer grids [11,17] and for nearest neighbor searches in high dimensions [20].

2.2 Succinct Data Structures

Succinct data structures are data structures which use asymptotically optimal
space for encoding data and support efficient queries. In this paper, we use one
for sparse bit-vectors [14,18] and one for ordered trees [1,4].

A bit-vector of length n with m ones and n − m zeros is encoded in m(2 +
�log n

m�) + o(m) bits so that the position of i-th one from the left is computed
in constant time. We use it for compressing pointers to data structures.

We also use the DFUDS representation of an ordered tree [4]. An n-node
ordered tree is encoded in 2n + o(n) bits so that parent, i-th child, subtree size,
etc. can be computed in constant time. A node with degree d is represented
by d open parentheses, followed by a close parenthesis. However for application
to quadtrees, there are only two types of nodes: an internal node with four
children and a leaf. Therefore instead of ‘(((()’ and ‘)’, we can encode ‘1’ and
‘0’. Operations on the tree are also supported in constant time [16].

3 Succinct Quadtrees

Consider to store a point set P on a plane in a quadtree T . Assume that all the
points in P are in a universe R = [0,W )×[0,H). The root node of T corresponds
to R. If the number n of points in R is greater than a constant C, R is divided
into four sub-regions R0 = [W/2,W ) × [H/2,H), R1 = [0,W/2) × [H/2,H),
R2 = [0,W/2) × [0,H/2), and R3 = [W/2,W ) × [0,H/2). The set P is also
divided into P0, . . . , P3 so that points in Pi are contained in Ri for i = 0, . . . , 3.
The root node of T has four children, which are quadtrees storing Pi’s. The edge
from a node for R to its child for Ri are labeled i. We divide a region into four
if it contains more than C points and the depth of the corresponding node in T
is at most a constant D. Otherwise the node becomes a leaf. A leaf contains at
most D points, and may contain no points.

We can identify nodes of the quadtree in several ways. First, each node has a
unique preorder in the quadtree, which can be computed in constant time using
the DFUDS representation. We can also give preorders for only leaves. Next, each
node can be identified with the label on the edges from the root to that node.
This is equivalent to use the coordinate of a point in the region represented by the
node and the depth of the node. We assume that the coordinates of the points are
distinct. Therefore we can identify a point by its coordinates. If we store auxiliary
data to a point, the data are indexed by the coordinates of the point.
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We encode the tree T using the DFUDS representation. Because we always
divide a region at the middle, it is not necessary to store the coordinates of cut
lines. The DFUDS and the values W,H are enough to represents coordinates
of each sub-region. Each leaf of T stores a (possibly empty) set of points. The
points are stored in different places from that for T . Therefore we need to store
pointers to the places. We store the points in preorder of leaves, and the pointers
to them are compressed by the data structure for sparse bit-vectors [18].

Query algorithm for the nearest point query is the same as that of the original
quadtree. Given a query region (a circle with radius ε, a rectangle, etc.), we first
find children of the root node of the quadtree which overlaps the query region,
then recursively search them. If we arrive at a leaf, we check all the points in it.

3.1 Storing Points

To compress coordinates of points, points in P are classified into two: base points
and diff points. We classify the points so that for any diff point q, there exists a
base point b �= q in the same leaf of the quadtree as q and the distance between
q and b is at most a constant L. We say that b is the base point of q.

We define a point query to find all points p ∈ P such that dist(q, p) ≤ ε.
We also define a k-nearest point query to find k-nearest points with distance at
most ε.

To prove our main result, we give some lemmas. We assume that the distance
function is a metric, that is, it is symmetric and satisfies the triangle inequality.

Lemma 1. Let q be a query point of a query. Assume that there exists a point
p such that dist(p, q) ≤ ε. Then there is a point b such that b is the base point of
q and dist(q, b) ≤ ε + L.

Proof. It is obvious from the definition of base points and the triangle
inequality. ��

Therefore we can perform a point query by first finding the set B of all base
points b with dist(q, b) ≤ ε + L, then checking all diff points p whose base point
is in B. The following theorem gives a worst-case time bound.

Theorem 1. Let N(P, q, ε) be the number of points in a set P within distance
ε from a point q, and TA(P, q, ε) be the time to enumerate those points by an
algorithm A. Let Q be a set of base points for points in P . Then there exists an
algorithm B for k-nearest point query satisfying TB(P, q, ε) = TA(Q, q, ε + L) +
O(N(P, q, ε + 2L)) + O(k log k).

Proof. We can create the algorithm B as follows. For each base point p, we
store a list of diff points for p so that we can enumerate the diff points in time
proportional to the number of those points. Then we create a data structure
for a point query from the set Q of base points using the algorithm A. The
algorithm B first enumerates all base points within distance ε + L from a query
point q. Then the algorithm B enumerates all diff points of the base points by
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scanning the lists, and checks for each diff point if it is within distance ε from
q. The algorithm B can find any diff point p within distance from q because if
such p exists, there is the base point b of p and distance between p and b is at
most L. Therefore b can be found by the point query from Q. Next we estimate
the number of diff points which are associated with the base points. Because the
distance between q and a base point is at most ε + L, and the distance between
a base point and its diff point is at most L, the distance between q and any diff
point is at most ε + 2L. Therefore the number of diff points to check is at most
N(P, q, ε+2L). For a k-nearest query, we use a Fibonacci heap. We insert all the
points in the Fibonacci heap in O(N(P, q, ε + 2L)) time. Then we can extract k
smallest values in O(k log k) time. ��

Theorem 1 says that there is an algorithm using indexes for a sampled point
set Q and simple lists for other points without indexes. Therefore we can reduce
the index size. The theorem also says that we can use any encoding for the diff
points if it supports sequential decoding. Therefore we can compress coordinates
of diff points. Note that the theorem holds for any data structure for nearest
point queries, not only for the quadtree, and for any distance function which is
metric.

We show how to store points compactly. The coordinates of a point p is
represented by the label of the leaf containing p and relative coordinates inside
the region of the leaf. For base points, we sort them in increasing order of their
x-coordinates, then they are encoded as differences from the previous value using
the delta-code [10]. Note that because y-coordinates are not sorted, we have to
encode negative values.

For diff points whose base point is the same, we sort them by x-coordinates,
and store differences of x-coordinates from the previous value using the delta-
code. We also store the number of diff points for each base point. Then we can
define a unique number to each point (either a base or a diff point). Namely,
let b1, b2, . . . , bk be base points and d1, d2, . . . , dk be the number of diff points
associated with the base points, respectively. Then the number for i-th base
point is 1 + d1 + 1 + d2 + · · · + 1 + di−1 + 1 = i +

∑i−1
j=1 dj . The unique number

for a base point can be computed in constant time using a sparse bit-vector
which represents prefix sums of the numbers of diff points for base points [18].
The x-coordinate of a diff point is the summation of all differences from the
corresponding base point.

3.2 Storing Polygonal Chains

We consider to store a set of polygonal chains. A typical application
is to store road maps. A polygonal chain is a set of line segments
(v0, v1), (v1, v2), . . . , (vm−1, vm) where vi are points.

The query we consider is nearest segment query. That is, given a query point
p, we find line segments in the set of polygonal chains so that the distance
between p and a line segment is at most δ. We define the distance dist(p, �)
between a point p and a line segment � = (u, v) as follows. Let w be the foot
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of a perpendicular from p to �. If w is inside �, we define dist(p, �) ≡ dist(p,w),
otherwise dist(p, �) ≡ min{dist(p, u), dist(p, v)}.

We reduce a segment query into point queries. First we show basic facts.

Lemma 2. Let q be a query point of a segment query. Assume that there
exists a line segment � = (u, v) such that dist(q, �) ≤ ε. Then it holds that
min{dist(q, u), dist(q, v)} ≤ ε + dist(u, v)/2 and max{dist(q, u), dist(q, v)} ≤
ε + dist(u, v).

Proof. The claim holds if the nearest point in a segment (u, v) from q is an
endpoint because min{dist(q, u), dist(q, v)} = dist(q, �) ≤ ε and max{dist(q, u),
dist(q, v)} ≤ min{dist(q, u), dist(q, v)} + dist(u, v) = dist(q, �) + dist(u, v) ≤
ε + dist(u, v). If the nearest point is inside the segment, let w be the foot
of a perpendicular from q to �. Then min{dist(q, u), dist(q, v)} ≤ dist(q, w) +
min{dist(w, u), dist(w, v)} ≤ ε + dist(u, v)/2. We can also show max{dist(q, u),
dist(q, v)} ≤ dist(q, w) + max{dist(w, u), dist(w, v)} ≤ ε + dist(u, v). ��

Let P be all the points in a given set of polygonal chains. We first construct
the quadtree T from P . Then for each point p ∈ P , a leaf of the quadtree to
which p belongs is defined. If there exists a line segment (vi−1, vi) in a polygonal
chain such that vi−1 and vi belongs to different leaves and vi is not the tail of
the polygonal chain, we cut the polygonal chain at vi.

We greedily classify the points. Namely, we define v0 to be a base point and
let q = v0. Then, for i = 1, 2, . . . , vm, if the distance between vi and q is at
most L, we define vi to be a diff point. Otherwise we define vi to be another
base point and let q = vi.

We reduce a segment query into point queries on base point.

Lemma 3. Let q be a query point of a segment query. Assume that there exists
a line segment � = (u, v) such that dist(q, �) ≤ ε. Then there exists a base point
b such that dist(q, b) ≤ ε + dist(u, v) + L.

Proof. From Lemma 2, both dist(q, u) and dist(q, v) are at most ε + dist(u, v).
If u or v is a base point, the claim holds. Otherwise, there is a base point b such
that dist(u, b) ≤ L or dist(v, b) ≤ L. Then it holds dist(q, b) ≤ max{dist(q, u),
dist(q, v)} + max{dist(u, b), dist(v, b)} ≤ ε + dist(u, v) + L. ��

Therefore if we know the maximum length of line segments, we can find a
desired line segment by first finding candidate end points of line segments and
checking the distances.

Theorem 2. Let N(P, q, ε) be the number of points in a set P within distance
ε from a point q, and TA(P, q, ε) be the time to enumerate those points by an
algorithm A. Let P be a set of points in polygonal chains and Q be a set of
base points for points in P . Let M be the maximum length of a line segment.
Then there exists an algorithm for k-nearest segment query running in time
TA(Q, q, ε + M + L) + O(N(P, q, ε + M + 2L)) + O(k log k).
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Proof. Let (u, v) be a line segment which is of distance at most ε from the query
point q. From Lemma 3, the distance between q and the base point for u or v is
at most ε + dist(u, v) + L ≤ ε + M + L. Therefore we can find all base points
for candidates of desired line segments in time TA(Q, q, ε + M + L). Then we
scan lists of diff points for those base points. Because all diff points are within
distance L from their base points, the distance between those diff points and q
is at most ε+M +2L. Therefore the number of diff points which are candidates
of end points of desired line segments is at most N(P, q, ε+M +2L) and we can
enumerate them in time proportional to the number of the points. By using a
Fibonacci heap, we can find k-nearest segments in O(k log k) time. ��

The encoding or coordinates of the points are almost the same as the case of
storing points. However because diff points for a base point have an order, we
cannot sort them. We encode them in the same order as in the polygonal chain.

If there exist few number of long segments, we cut them into short segments
by adding dummy nodes on them. Then we can lower the value M , the maximum
length of line segments. Though the number of points increases, queries will be
faster because search radius decreases.

We can improve the compression ratio by giving a reasonable assumption of
polygonal chains that the curvature is small. Instead of differences of coordinates,
we encode differences of differences (twice differential). Then the absolute values
decrease and the compression ratio improves.

4 Digital Road Map

Digital Road Map (DRM for short) is a standard format of road map in Japan2.
The universe is partitioned into primary meshes, each of which is a rectangle of
1 degree in longitude and 2/3 degree in latitude. Each primary mesh is further
partitioned into 8 × 8 secondary meshes. Then each secondary mesh is roughly
a square of 10 Km times 10 km. The labels of primary and secondary meshes are
defined by the coordinates. The location of a point is represented by the label of
the secondary mesh to which the point belongs, and the normalized coordinates
inside the secondary mesh. The normalized coordinates are represented by a pair
of numbers from 0 to 10000 (not necessarily integers). If a line segment overlaps
two secondary meshes, it is divided into two segments, each of which is contained
in a secondary mesh.

Because in DRM the map is completely divided into secondary meshes, it
is convenient to align regions in our quadtree with secondary meshes. Consider
to represent the region on the earth with longitude 100 to 164 degrees and
latitude 20 to 62.666666 degrees that contains the whole Japan by our quadtree.
Then a node in the quadtree with depth 6 corresponds to a primary mesh, and
that with depth 9 corresponds to a secondary mesh.

Each road (polygonal chain) has a unique ID. Therefore the space for storing
IDs should be taken into account. Our data structure can also store IDs com-
pactly. An ID of a polygonal chain consists of the label of the secondary mesh
2 http://www.drm.jp/english/drm/e index.htm.

http://www.drm.jp/english/drm/e_index.htm
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containing the polygonal chain and a unique integer inside the secondary mesh.
The former is determined by the coordinates, therefore we need not to store it.
The latter can be changed inside the secondary mesh. Because we permute data
for better compression, we change the IDs so that they coincide with the order
in a data structure. Therefore we can implicitly encode the IDs.

5 Experimental Results

We compare our succinct quadtree with a standard library for nearest point
searches, ANN: A Library for Approximate Nearest Neighbor Searching3. The
library supports both exact and nearest point queries, but we used only exact
ones. It uses the k-d tree [5]. Unfortunately there exist no publicly available
source codes for line segment databases.

Because ANN does not support nearest segment queries, we show experi-
mental results for only nearest point queries. However the performance of our
segment queries is similar to that of point queries because the difference is only
the search radius and distance calculation. Though ANN supports both bounded
and unbounded radius searches, we use only bounded radius searches. For exper-
iments, we used a Linux machine with 64GB memory and Intel Xeon CPU E5-
2650 (2.60GHz). The algorithms use single core. We used g++ compiler 4.4.7.
To measure the memory usage, we use the getrusage function. The function
returns the value Maxrss, the amount of memory used in the algorithm. There-
fore we can obtain the precise memory usage. To measure the query time, we
use the clock function, which returns the processor time.

For a data set, we create a point set from real road map data in Japan. The
number of points is about 54 million (53,933,415). Figure 1 shows the k-d tree for
the point set, drawn by ann2fig command of the ANN library. Though we cannot
show the quadtree because we do not have a tool, its shape is similar to the k-d
tree. A point is represented by two real numbers truncated to 6 decimal places.
In succinct quadtrees, the numbers are converted to integers by multiplying 106.
If we store the coordinates as two 32-bit integers or float numbers, 411 MB are
necessary.

The quadtree has 8,948,040 nodes and 838,879 leaves. Therefore each leaf
contains 64 points on average. The DFUDS for the tree uses 2.5 MB, and com-
pressed coordinates of the points occupy 174 MB. Therefore the size of the
quadtree is 177 MB, which is smaller than a naive encoding of coordinates. We
use the original encoding of nodes in DFUDS for simplicity; an internal node
uses five bits and a leaf uses one bit. The coordinate of a two-dimensional point is
compressed to 27 bits, including pointers for random access. Because the number
of nodes of the quadtree is not so small compared with that of input points (the
ratio is about 1/6), it is important to efficiently encode coordinates of regions. In
succinct quadtrees, they are implicitly represented. This is a reason that succinct
quadtrees use less space.

3 http://www.cs.umd.edu/∼mount/ANN/.

http://www.cs.umd.edu/~{}mount/ANN/
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Fig. 1. The k-d tree for road map in Japan created by ann2fig command of the ANN
library.

5.1 The Effect of Leaf Cache

We show experimental results on the effect of leaf cache. Let k be a fixed integer.
When the query algorithm decodes a leaf of the succinct quadtree, the decoded
information is stored in a cache. We keep recent k leaves decoded during the
algorithm. We use a simple algorithm to update the cache; leaf cache is stored
in a linked list, which is updated by the move-to-front rule. When the query
algorithm tries to decode a leaf, it first scans the list to search for the leaf. If it
is found, we do not decode the leaf again, and it is moved to the head of the list.
If it is not found, the leaf is decoded and stored at the head of the list, and the
tail entry is removed if there are more than k entries.

Table 1 shows the experimental results. We performed 1 million queries. We
tried cache size (the number of leaves which can be stored in the cache) from
0 to 1000. We measured query time, Maxrss, and the numbers of cache hit and
miss. From the experiments, we choose leaf cache size 50 because it achieves
good trade-off between memory usage and query time.

5.2 Comparison with ANN

We compare our succinct quadtree with the ANN library. We find 10 nearest
points to a query point. The distribution of query points follows that of real
GPS location data of cars.

In succinct quadtrees, we set the leaf cache size as 50. In ANN, we set the
search radius as 0.001, which is about 100 meters on the earth. For a set of
1 million queries, the ANN took 4.61 seconds using 6,532,780 KB memory. As
shown in Table 1, our succinct quadtree with leaf cache size 50 took 21.70 seconds
using 52,348 KB memory, and one with no cache took 49.80 seconds using 51,300
KB memory. The working memory of the succinct quadtree is less than 1/100
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Table 1. The effect of leaf cache. Maxrss is the amount of memory used.

Cache size Time (s) Maxrss (KB) Cache hit Cache miss

0 49.80 51300 0 15583041

10 48.15 51812 1945984 13637057

20 36.13 51904 7805431 7777610

30 26.56 51948 11365034 4218007

40 22.52 52164 13620269 1962772

50 21.70 52348 14191071 1391970

60 21.65 52404 14202692 1380349

70 21.44 52592 14206189 1376852

80 21.98 52600 14208726 1374315

90 21.55 52888 14210652 1372389

100 21.72 52972 14212504 1370537

1000 26.70 62808 14281407 1301634

of that of the ANN! Note that the working memory of the succinct quadtree is
smaller than the index size, 177 MB. This is because we use the mmap (memory
map) function of the operating system. The part of the data structure that is
accessed by the query algorithm is loaded into the memory. For a fair comparison,
we assume that all the data structure is loaded into the memory. Even in this
case, the succinct quadtree uses 1/25 memory of the ANN. Queries are five to
ten times slower, depending on the size of leaf cache.

6 Concluding Remarks

We have proposed succinct quadtrees, data structures for two-dimensional near-
est point and segment queries. Succinct quadtrees use much less space than an
existing library for nearest point queries. Succinct quadtrees can be also used
for indexing three or high dimensional space. An application will be to compress
coordinates of three dimensional triangle meshes [19].
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Abstract. The traditional role of nearest-neighbor classification in
music classification research is that of a straw man opponent for the
learning approach of the hour. Recent work in high-dimensional indexing
has shown that approximate nearest-neighbor algorithms are extremely
scalable, yielding results of reasonable quality from billions of high-
dimensional features. With such efficient large-scale classifiers, the tradi-
tional music classification methodology of aggregating and compressing
the audio features is incorrect; instead the approximate nearest-neighbor
classifier should be given an extensive data collection to work with. We
present a case study, using a well-known MIR classification benchmark
with well-known music features, which shows that a simple nearest-
neighbor classifier performs very competitively when given ample data.
In this position paper, we therefore argue that nearest-neighbor classifi-
cation has been treated unfairly in the literature and may be much more
competitive than previously thought.

Keywords: Music classification · Approximate nearest-neighbor classi-
fiers · Research methodology

1 Introduction

The traditional role of nearest neighbor classification in music information
retrieval research is that of a straw man opponent: after the music features
have been fine-tuned to optimize the results of the learning approach of the day,
which typically means aggregating and compressing the audio features, the k-
NN classifier is applied to those features directly, inevitably losing. We argue,
however, that since the strength of k-NN classification lies precisely in the abil-
ity to handle a large quantity of data efficiently, this methodology is grossly
misleading.
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1.1 Trends in High-Dimensional Indexing

In the music domain, Schnitzer [22] developed a content-based retrieval system
that operates on a collection of 2.3 million songs and can answer audio queries
in a fraction of a second by using a filter-and-refine strategy. As state-of-the-art
content description models build upon high-dimensional Gaussian distributions
with costly similarity calculations, an approximate projection into a vector space
is used to perform high-speed nearest neighbor candidate search, before ranking
candidates using the expensive model. Using the efficiency of k-NN, the combined
approach speeds up queries by a factor of 10–40 compared to a linear scan.

In the image retrieval domain, recent work in high-dimensional indexing has
shown that approximate nearest-neighbor algorithms are extremely scalable, as
several approaches have considered feature collections with up to several billions
of features. Jégou et al. [9] proposed an indexing scheme based on the notion of
product quantization and evaluated its performance by indexing 2 billion vectors.
Lejsek et al. [12] described the NV-tree, a tree index based on projections and
partitions, with experiments using 2.5 billion SIFT feature vectors. Babenko and
Lempitsky used the inverted multi-index to index 1 billion SIFT features [2] and
deep learning features [3] on a single server. Finally, the distributed computing
frameworks Hadoop and Spark have been used with collections of up to 43 billion
feature vectors [8,14]. Evaluation of the quality of these approaches shows that
approximate nearest neighbor retrieval yields results of reasonable quality. In
particular, many studies have shown that while results from individual queries
may lack quality, applications with redundancy in the feature generation usually
return results of excellent quality (e.g., see [12,14]). These results indicate that
in order to fairly evaluate k-NN classification as an independent methodology, we
must supply the classifiers with massive collections of highly redundant features,
and then aggregate the results to classify individual items [5].

1.2 Critique of Methodology

In this position paper, we present a case study of k-NN classification using a
well-known MIR genre classification benchmark with well-known music features
from the literature. Unlike previous studies, however, we generate an extensive
collection of music features to play to the strength of k-NN classifiers. We first use
an exhaustive (exact) k-NN classifier, which scans the entire feature collection
sequentially, to tune the parameters of the feature generation. Then we use a
very simple approximate k-NN classifier to show that equivalent results can be
obtained in a fraction of the time required for the exhaustive search.

The results of this case study show that the approximate k-NN classifier
strongly outperforms any k-NN classification results reported in the literature.
Furthermore, the approximate k-NN classifier actually outperforms learning-
based results from the literature obtained using this particular music collection
and these particular music features. We therefore argue that nearest-neighbor-
based classification is much more competitive that previously thought. Further-
more, we argue that when evaluating the quality of k-NN classification, the eval-
uators must work with the strengths of k-NN classification, namely scalability
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and efficiency, for a fair comparison. Anything else is much like inviting a fish to
a tree-climbing competition with a monkey!

2 Music Classification: A (Very Brief) Literature Review

Automatic genre classification of music has received considerable attention in
the MIR community in the last two decades, albeit partly (and recently) in the
form of criticism [11,18,26,27]. Due to space limitations, we only survey a few
key works of content-based methods that are particularly relevant to our case
study. For a more detailed discussion on the general subject we refer the reader
to [27], and for a review of context/web-based methods to [10].

It is notable that genre classification results reported in the literature are
realized on very different datasets with different numbers of classes/genres, as
there is (for valid reasons) no commonly agreed upon standard dataset for this
task (cf. [1,6,17]). For instance, the ISMIR2004 dataset partitions its 1,458 full
song examples into 6 genre classes, while the the USPOP collection used in
the MIREX 2005 Genre Classification set comprises 8,746 tracks by 400 artists
classified into 10 genres (of which 293 artists belong to “Rock”) and 251 styles.
The seminal work of Tzanetakis and Cook [28] uses a dataset with 10 musical
genres, and proposes to classify 1,000 song excerpts of 30 seconds based on
timbral features, rhythmic content, and pitch content. While their collection
(referred to as GTZAN) exhibits inconsistencies, repetitions, and mislabeling,
as confirmed by Tzanetakis and investigated in detail by Sturm [25], it has since
been used by several researchers, and is indeed the collection used in this study.

Tzanetakis and Cook [28] used a 30-dimensional feature vector extracted
from each of the song excerpts in their collection. An accuracy of 61% is reported
using a Gaussian Mixture Model classifier and 60% using k-NN. Li et al. [13]
used the same features as Tzanetakis and Cook, with the addition of Daubechies
Wavelet Coefficient Histograms (DWHC). Wavelets decompose the audio sig-
nal based on octaves with each octave having different characteristics. Support
Vector Machine (SVM) classification yielded 78.5% classification accuracy on
GTZAN while only 62.1% was achieved using k-NN. One feature vector per song
was used for the experiments. Instead of using just one vector for each song,
Bergstra et al. [4] extract features in frames of 1,024 samples and aggregate
frames into segments before using AdaBoost for classification, yielding 82.5%
accuracy on GTZAN. They state that the best results are achieved by aggregat-
ing between 50 and 100 frames for a segment. In the MIREX 2005 Audio Genre
Classification competition, however, this setting could not be pursued as calcu-
lation for all songs would have taken longer than the allowed 24 h. Panagakis
et al. [19] achieved 78.2% accuracy using “multiscale spectro-temporal modula-
tion features,” where each audio file is converted to a third-order feature tensor
generated by a model of auditory cortical processing. Non-negative matrix fac-
torization is used for dimensionality reduction and SVM for classification. The
highest accuracy results for GTZAN are achieved by Panagakis et al. [20] with
91% accuracy. The authors extract auditory temporal modulation representation
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of each song and examine several classifiers. Their best results are achieved using
sparse representation-based classification (SRC), while their results using k-NN
are below 70% for GTZAN. Seyerlehner et al. [24] propose to compute several
spectrum- and rhythm-based features from cent-scaled audio spectrograms on
the level of (overlapping) blocks. Training an SVM gave an accuracy of 78%, but
with a Random Forest classifier the accuracy was 87% [23].

Recent approaches for genre recognition, music similarity, and related
retrieval tasks, aim at modeling finer grained musical concepts, also as an inter-
mediate step for genre classification [21], or try to optimize audio features using
user preference patterns by means of deep learning [15]. While these approaches
are specifically devised with scalability of indexing in mind, they cannot be com-
pared to existing work due to the proprietary industrial data used. In an effort to
make large-scale learning approaches comparable, van den Oord et al. [16] apply
deep learning models, trained using the Million Song Dataset, to classification
of GTZAN (transfer learning), achieving 88.2% accuracy.

3 Case Study: Genre Classification

In this section, we report on our classification experiments using two k-NN clas-
sifiers, one exact and one approximate. We start by describing the experimental
setup. Then we detail experiments using a full (exact) sequential scan to analyze
various aspects of the music feature configuration. We then use the best feature
configuration to study the impact of the approximate k-NN classifier.

3.1 Experimental Setup

For our experiments, we used the MARSYAS framework for feature extrac-
tion [28] that accompanies the GTZAN collection. As the purpose of this case
study is not to create the best classifier, or generate the best classification results,
but rather to point out methodological issues in previous studies, we chose to
use a collection that is (a) extensively studied in the literature, and (b) comes
with easily available and flexible feature extraction software.

The GTZAN collection consists of 1,000 song excerpts, where each excerpt
is 30 seconds long. Each song is sampled at 22,050 KHz in mono. The songs are
evenly distributed into 10 genres: Blues, Classical, Country, Disco, HipHop, Jazz,
Metal, Pop, Reggae and Rock. We used randomized and stratified 10-fold cross-
validation, by (a) shuffling songs within each genre, and then concatenating the
genre files, and (b) by ignoring, when computing distances, all feature vectors
from songs that are located within the same 10% of the collection as the query.
We ignore the first feature vectors of each song, due to overlap between songs.
All experiments were performed on an Apple MacBook Pro with 2.66 GHz Duo
Core Intel processors, 4 GB RAM and a 300 GB 5.4Krpm Serial ATA hard disk.



On Competitiveness of Nearest-Neighbor-Based Music Classification 279

3.2 Exact Classification: Impact of Feature Parameters

The first k-NN classifier performs a sequential scan of all database descriptors
and calculates the Manhattan distance between each query vector and each
database vector. Once the scan has computed the nearest neighbors for all query
feature vectors, the total score for the query song is aggregated, by counting how
many neighbors “vote” for each genre and returning the ranked list of genres.

Table 1. Effect of feature selection on accuracy

Features Dim. Accuracy(%)

TF 34 75.4

TF + SFM 82 80.4

TF + SFM + SCF 130 80.0

TF + SFM + LSP 118 80.0

TF + SFM + LPCC 106 79.8

TF + SFM + CHROMA 106 79.4

Table 2. Effect of varying k

Neighbors Accuracy Time

(k) (%) (min)

1 80.4 207.4

2 80.7 208.3

3 80.8 209.3

4 80.6 210.1

5 80.5 212.3

For feature extraction, we used window and hop sizes of 512 and a memory
size of 40, as they performed best in experiments. For feature selection, we started
from timbral features (TF), namely MFCCs, and added additional features; the
results are summarized in Table 1. The table shows that adding spectral flatness
measure (SFM) increases the accuracy for this test set from 75.4% to 80.4%.
Adding further information to the feature vector, however, does not improve
results, and in fact actually hurts accuracy slightly. In the remainder of this
study, we hence use the TF+SFM features, with a dimensionality of 82.

Finally, we experiment with the k parameter: how many neighbors from the
collection are considered for each query feature. We ran the sequential scan with
k ranging from 1 to 10. Table 2 shows the results (no further change is observed
beyond k = 5). As the table shows, varying k does not affect the classification
accuracy much, nor does it have significant impact on the classification time.

3.3 Approximate Classification: Impact of eCP Parameters

Having reached a respectable 80.8% accuracy in 3.5 h using a sequential scan,
we now turn our attention to reducing the classification time by employing the
eCP high-dimensional indexing method [7]. Very briefly, the algorithm works as
follows. For index construction, C points are randomly sampled from the feature
collection as cluster representatives. Each feature vector is then assigned to the
closest representative, and the resulting clusters are stored on disk. In order to
facilitate efficient assignment, as well as efficient search, a cluster index is created
by recursively sampling and clustering the representatives. At search time, the
b clusters that are closest to each query feature are found via the cluster index,
and then scanned to find the closest k neighbors. The approximation comes from
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Table 3. Effect of varying number of clusters C

Clusters Features Clustering Classification Accuracy

(C) (average per cluster) (sec) (sec) (%)

50 25,867 7 784 80.0

100 12,933 7 470 80.6

500 2,587 7 114 80.2

1,000 1,293 7 55 78.4

5,000 259 9 15 79.7

the fact that only b clusters are scanned (retrieving a fraction b/C of the feature
collection, on average), and some neighbors may be missed, because they are
close to a boundary or due to the approximate nature of the index tree traversal.

Table 3 shows the impact of the number of clusters C on clustering time,
classification time and classification accuracy. In this experiment b = k = 1.
We observe that even with very small clusters (larger C), where only about 260
features are read on average, the classification accuracy is nearly the same as
with the sequential scan. The classification time, however, is in the order of a
few minutes or less, compared to over 200 min for the sequential scan.

Fig. 1. Effect of b on accuracy Fig. 2. Effect of b on classification time

Figure 1 shows the impact of b on accuracy (note the narrow y-axis), for
C = 100 and k = {1, 3}. In other configurations, not reported here due to
space constraints, similar effects were observed. When b is increased, the eCP
algorithm retrieves and analyses more feature vectors. When the first clusters
are added, results are improved. As more clusters are added, however, near
vectors belonging to other genres are also found, but no change is observed
beyond b = 5. These fluctuations are due to the fact that eCP is an approximate
technique and since songs quite often receive a similar number of votes from two
genres, limiting the number of audio features retrieved can have this effect. But
with several configurations we actually achieve higher accuracy than with the
sequential scan.
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Figure 2, on the other hand, shows the time required to retrieve the clusters.
As the figure shows, there is some initial time needed to rank the cluster rep-
resentatives, but after that the cost of reading clusters grows linearly. The cost,
however, is not affected significantly by the k parameter.

3.4 Discussion

The key result is that using approximate k-NN classification we can very effi-
ciently obtain accuracies in the range 80–81%. Table 4 summarizes classification
results from the literature for the used GTZAN collection, as well as k-NN clas-
sification results where reported. As the table shows, the results from our case
study rank fourth and far outperform any reported k-NN classification results
from the literature. While previous results have denounced k-NN classification,
this is presumably because those studies focused on using a single feature, or
very few features, for each song. The fact that we can obtain these results within
minutes, on very limited hardware, leads us to believe that k-NN classification
is a viable option at a large scale.

Table 4. Comparison to some genre classification results for the GTZAN collection

Reference Accuracy k-NN Comments

Panagakis et al., 2009 [20] 91.0% �68% Sparse repr. + dim. reduction

v.d. Oord et al., 2014 [16] 88.2% – Transfer learning from MSD tags

Seyerlehner et al., 2011 [23] 87.0% – Random forest, opt. feat.

This work 80−81% k-NN + MFCC + SFM

Li et al., 2003 [13] 78.5% 62.1% SVM

Panagakis et al., 2008 [19] 78.2% – Multilinear approach

Tzanetakis & Cook, 2002 [28] 61.0% 60.0% Gaussian classifier + MFCC

4 Conclusions

Very efficient and scalable approximate algorithms for high-dimensional k-NN
retrieval have recently been developed in the computer vision and databases
communities. Using one such approximate algorithm, we have shown that k-NN
classification may be used with good results for music genre classification, if
provided the appropriate feature collection to work with. Indeed, the reported
results are the best realized with a k-NN classifier for this particular music col-
lection (GTZAN). Observing the difference between our results and previous
results reported for k-NN classification points to a methodological problem with
previous studies: the k-NN classifiers were compared unfairly to the competing
approaches. We thus argue that when evaluating the quality of k-NN classifica-
tion, the evaluators must work with the strengths of k-NN classification, namely
scalability and efficiency, for a fair comparison.



282 H. Pálmason et al.

Acknowledgements. This work was partially supported by Icelandic Student
Research Fund grant 100390001, Austrian Science Fund (FWF) grant P25655 and
Austrian FFG grant 858514 (SmarterJam).

References

1. Aucouturier, J.J., Pachet, F.: Representing musical genre: a state of the art. J.
New Music Res. 32(1), 83–93 (2003)

2. Babenko, A., Lempitsky, V.S.: The inverted multi-index. TPAMI 37(6), 1247–1260
(2015)

3. Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep
descriptors. In: Proceedings of CVPR, Las Vegas, NV, USA (2016)

4. Bergstra, J., Casagrande, N., Erhan, D., Eck, D., Kégl, B.: Aggregate features and
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Abstract. With the arrival of Data Lakes (DL) there is an increasing
need for efficient dataset classification to support data analysis and infor-
mation retrieval. Our goal is to use meta-features describing datasets to
detect whether they are similar. We utilise a novel proximity mining
approach to assess the similarity of datasets. The proximity scores are
used as an efficient first step, where pairs of datasets with high proximity
are selected for further time-consuming schema matching and dedupli-
cation. The proposed approach helps in early-pruning unnecessary com-
putations, thus improving the efficiency of similar-schema search. We
evaluate our approach in experiments using the OpenML online DL,
which shows significant efficiency gains above 25% compared to match-
ing without early-pruning, and recall rates reaching higher than 90%
under certain scenarios.

1 Introduction

Data Lakes (DL) [1] are huge data repositories covering a wide range of het-
erogeneous topics and business domains. Such repositories need to be effectively
governed to gain value from them; they require the application of data gov-
ernance techniques for extracting information and knowledge to support data
analysis and to prevent them from becoming an unusable data swamp [1]. This
involves the organised and automated extraction of metadata describing the
structure of information stored [15], which is the main focus of this paper.

The main challenge for data governance posed by DLs is related to informa-
tion retrieval: identify related datasets to be analysed together as well as dupli-
cated information to avoid repeating analysis efforts. To handle this challenge
it was previously proposed in [2] to utilise schema matching techniques which
can identify similarities between attributes of different datasets. Most techniques
proposed by the research community [4] are designed for 1-to-1 schema matching
applications that do not scale up to large-scale applications like DLs prone to
gather thousands of datasets.

c© Springer International Publishing AG 2017
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To facilitate such holistic schema matching and to deal with the sheer size
of the DL, [4] proposed to utilise the strategy of early pruning which limits
the number of comparisons of pairs of datasets. We apply this approach in this
paper by proposing a technique which approximates the proximities of pairs of
datasets using similarity-comparisons of their meta-features. More specifically,
we use a supervised machine learning approach to model topic-wise related clas-
sification of datasets. We then utilise this model in assigning proximities between
new datasets and those already in the DL, and then predicting whether those
pairs should be compared using schema matching (i.e., have related informa-
tion) or not. We implement this technique in the datasets-proximity (DS-Prox)
approach presented in this paper. Our focus is on early-pruning of unneces-
sary dataset comparisons prior to applying state-of-the-art schema matching
and deduplication (the interested reader is referred to [4,13] for more details on
such techniques).

Our contributions include the following: 1. a novel proximity mining approach
for calculating the similarity of datasets (Sect. 4), 2. applying our new technique
to the problem of early-pruning in holistic schema matching and deduplication
within different scenarios for maintaining the DL (Sects. 2, 3), and finally, 3. test-
ing the proposed proximity mining approach on a real-world DL to demonstrate
its effectiveness and efficiency in early-pruning (Sect. 5).

2 Problem Statement

Our goal is to automate information profiling, defined in [2], which aims at effi-
ciently finding relationships between datasets in large heterogeneous repositories
of flat semi-structured data (i.e., tabular data like CSV, web tables, spreadsheets,
etc.). Those repositories usually include datasets uploaded multiple times with
the same data but with different transformed attributes. Such datasets are struc-
tured as groups of instances describing real-world entities, where each instance
is expressed as a set of attributes describing the properties of the entity. We
formally define a dataset D as a set of instances D = {I1, I2, ...In}. The dataset
has a schema of attributes S = {A1, A2, ...Am}, where each attribute Ai has a
fixed type, and every instance has a value of the right type for each attribute. We
focus on two types of attributes: continuous numeric attributes and categorical
nominal attributes, and two types of relationships for pairs of datasets [D1,D2]:

– Rel(D1,D2): Related pairs of datasets describe similar real-world objects or
concepts from the same domain of interest. These datasets store similar infor-
mation in (some of) their attributes. Typically, the information contained in
such attributes partially overlap. An example would be a pair of datasets
describing different human diseases, like one for diabetes patients and another
for hypertension patients. The datasets will have similar attributes (partially)
overlapping their information like the patient’s age, gender, and some com-
mon lab tests like blood samples.
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– Dup(D1,D2): Duplicate pairs of datasets describe the same concepts. They
convey the same information in most of their attributes, but such informa-
tion can be stored using differences in data. For example, two attributes can
describe the weight of an object but one is normalised between 0 and 1 and
the other holds the raw data in kilograms. Both attributes are identified to
be representing similar information although their data are not identical.

Examples. We scrutinise the relationship between two pairs of datasets in
Fig. 1. Each dataset has a set of attributes. An arrow links similar attributes
between two datasets. For example, attributes ‘A1’ from D2 and D3 are nominal
attributes with two unique values, making them similar. A numeric attribute like
‘A2’ in D2 holds similar data as attributes ‘A3’ and ‘A4’ from D3, as expressed by
the intersecting numeric ranges. In our approach we extract meta-features from
the datasets (for this example, the number of distinct values and means respec-
tively) to assess the similarity between attributes of a given pair of datasets.
The Rel and Dup properties are then used to express datasets similarities. For
example, Dup(D1,D2) returns ‘1’ because they have similar information in most
attributes (even though ‘A5’ and ‘A3’ do not match). Based on these two prop-
erties, our proposed approach will indicate whether two datasets are possibly
related (e.g., Rel(D2,D3) =‘1’) and should be considered for further scrutinis-
ing by schema matching, or if they are possibly duplicated (e.g., Dup(D1,D2)
=‘1’) and should be considered for deduplication efforts.

D2: census_data D3: health_data

A1: type {f,m} A1: gender {female,male} 

A2: age { 0<A2<100} 

A3: age { 30<A3<60} A3: race {01,02,03,04} 

A2: Ethnicity {AS,AF,ER,LT} 

A4: Household { 0<A4<16} A4: Temp { 35<A4<42} 

A5: income { 50k<A5<300k} A5: H_rate { 40<A5<160} 

Rel(D2,D3) = 1
Dup(D2,D3) = 0D1: 1992_city_data 

A1: salary {25k<A1<600k} 

A2: age { 20<A2<97} 

A3: family_Size { 2<A3<11} 

A4: iden ty {w,m,t}

A5: house_type {h,t,v,s,p,l} ...
Rel(D1,D2) = 1

Dup(D1,D2) = 1

. . .

. . .

Fig. 1. Similarity relationships between two pairs of datasets

Scenarios. We aim at governing the DL by maintaining the Rel and Dup rela-
tionships between the datasets it contains. We consider two typical scenarios.
In scenario (a), we want to dredge a data swamp which we don’t know any
relationships for, thus, for all pairs in the DL we need to find if they are related
or duplicated. In scenario (b), we have an existing DL for which we know all
relationships between the datasets. However, given the dynamic nature of DLs
new datasets are frequently ingested. Thus, we need to compare this dataset
against the datasets already in the DL to find its relationships with them.
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3 Related Work

As described in [15], metadata describing the information stored in datasets
need to be collected to effectively govern big data repositories. Such metadata
are usually automatically collected across multiple datasets using data profil-
ing techniques like schema matching [11], which seeks to identify schematic
overlaps between datasets. This involves detecting related objects (instances
or attributes) and matching instances between two different schemata [4]. The
main line of research in this field is focused around improving the efficiency
of matching techniques for two very large schemata. In our research, however,
we focus on matching attributes between multiple large amounts of schemata,
closely related to the field of holistic schema matching [4,13]. A more restrictive
case of schema matching involves deduplication [13]; finding highly overlapping
instances [6]. Similar to our special requirements for schema matching, we also
seek to detect duplicated schemata instead of instances. This is when schemata
have similar overlapping attributes, not necessarily the same instances.

As described in [4], it is recommended to utilise early-pruning mechanisms for
holistic schema matching, which filters out unnecessary matching efforts using
less complex techniques. This is commonly done using similarity search tech-
niques which seek to eliminate unnecessary comparisons of datasets [12]. Several
techniques for instance-based matching were proposed including techniques like
clustering [3,6,8], hashing [12], and indexing [10,12]. Alternatively, we propose to
focus on attribute-based matching across multiple-schemata for governing the DL
which needs new and efficient techniques. This field was not sufficiently stud-
ied before, with only preliminary results in [14]. We propose a new approach
utilising a novel technique of computationally cheaper meta-features proximity
comparisons. We seek to prevent unnecessary and expensive schema matching
computations in further steps. We propose a machine learning approach for
early-pruning that is based on metadata collected from datasets. Such learning
techniques were proposed for future research in similarity search [5] where they
use a supervised machine learning model based on SVM to find similar strings
for deduplication. [5] shows that using machine learning leads to more accurate
similarity search from different domains of knowledge.

4 The DS-Prox Approach

We propose a proximity computation based on overall meta-features extracted
from the datasets, which we call DS-Prox. We are seeking to have approximate
similarity comparisons of pairs of datasets for the early-pruning task. Here we
apply cheap computation steps for the overall similarity search, to prevent fur-
ther expensive detailed analysis of the content of datasets which are estimated to
be dissimilar. Similar to our previous work in [2], we seek to profile the datasets
ingested in the DL by extracting some meta-features describing the overall con-
tent and attributes in the datasets. We compute distances between each of the
meta-features as proximity metrics. We take a sample of pairs of datasets which
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are analysed by a data analyst and annotated whether they hold related or dupli-
cate data by means of the Rel and Dup properties. Rel and Dup are boolean
functions retrieving either 1 (similar/duplicate respectively) or 0 (dissimilar/not
duplicate). We then use machine learning techniques over the proximity metrics
to create two independent models which can classify pairs of datasets according
to Rel(D1,D2) and Dup(D1,D2) respectively. The classification models are used
to score pairs of datasets with a similarity measure Sim(D1,D2). The similarity
score ‘Sim’ is defined independently for each of the relationships Rel(D1,D2)
and Dup(D1,D2) as a number between 0 and 1, where 0 means dissimilar and
1 means most similar: Sim(D1,D2) ∈ [0, 1].

4.1 The Meta-Features Distance Measures

For each dataset in the DL, we extract meta-features using data profiling tech-
niques. This includes general statistics about the dataset and its attributes as
described in Table 1. Our purpose for those meta-features is to describe the gen-
eral structure and content of the datasets for an approximate comparison using
our proximity metric and classification models. We compute distances for each
meta-feature mi from Table 1 between each pair of datasets [D1,D2] using Eq. 1
which gives the relative difference as a number between 0 and 1. Those distances
we feed to the supervised machine learning algorithm in our approach.

distmi
(D1, D2) =

max{mi(D1),mi(D2)} − min{mi(D1),mi(D2)}
max{mi(D1),mi(D2)}

(1)

4.2 The Approach

The approach proposed for early-pruning depends on classical machine learning
which is divided into two phases: Supervised Learning Phase and Scoring and
Classification Phase. In the first phase, which can be seen in Fig. 2, we build
a classification model for each of the properties Rel and Dup using supervised
learning techniques. First, for each dataset we extract its meta-features from
Table 1 which returns its data profile (In Fig. 2 we see a sample of two meta-
features: number of attributes ‘nAttr’, and number of instances ‘nIns’). Then, for
each dataset, we generate all pairs with each of the other datasets and compute
the distances between their meta-features using Eq. 1. We also present the pairs
of datasets to a human-annotator who manually decides whether they satisfy
(assign ‘1’) or not satisfy (assign ‘0’) Rel(D1,D2) and Dup(D1,D2). Any pair
annotated as a match for Dup(D1,D2) must also be annotated as a match for
Rel(D1,D2) (i.e., all duplicate pairs of datasets are also related). We feed both
the annotated pairs of datasets with their distances as training examples to a
learner which creates two classifiers: Mrel and Mdup.

In the second phase, we apply the classifiers to the scenarios discussed in
Sect. 2, to score each new pair of previously unseen datasets. In scenario (a),
we have a setting where there are two DLs. DL1 has a group of datasets which
have previously known annotations of all their Rel(D1,D2) and Dup(D1,D2)
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Table 1. DS-Prox meta-features

Type Meta-feature Description

General Number of instances The number of instances in the
dataset

Number of attributes The number of attributes in the
dataset

Dimensionality The ratio of number of attributes
to number of instances

Attributes by
type

Number per type The number of attributes per type
(Nominal or Numerical)

Percentage per type The percentage of attributes per
type (Nominal or Numerical)

Nominal
attributes

Average number of values The average number of distinct
values per nominal attribute

Standard deviation of
number of values

The standard deviation in the
number of distinct values per
nominal attribute

Minimum/maximum number
of values

The minimum and maximum
number of distinct values per
nominal attribute

Numeric
attributes

Average numeric mean The average of the means of all
numeric attributes

Standard deviation of the
numeric mean

The standard deviation of the
means of the numeric attributes

Minimum/maximum numeric
mean

The minimum and maximum mean
of numeric attributes

Missing values Missing attribute count The number of attributes with
missing values

Missing attribute percentage The percentage of attributes with
missing values

Minimum/maximum number
of missing values

The minimum and maximum
number of instances with missing
values per attribute

Minimum/maximum missing
values percentage

The minimum and maximum
percentage of instances with
missing values per attribute

Mean number of missing
values

The mean number of missing
values from each attribute

Mean percentage of missing
values

The mean percentage of missing
values from each attribute

relationships between all pairs of datasets. On the other hand, DL2 is without
any annotations of such relationships and is therefore a data swamp we would
like to dredge. Therefore, we need to learn the models for Rel(D1,D2) and
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Fig. 2. DS-Prox: supervised machine learning

Dup(D1,D2) from DL1 and apply them to DL2 which has different datasets.
In scenario (b), we have an existing DL for which we know all relationships
between the datasets. We need to deal with a new dataset as it arrives in this
DL. We learn the models from the DL, and we apply them to each new dataset
Di ingested within the same DL. The models should identify all datasets in the
DL which are related or duplicate of Di.

When applying the classifiers, we compute for each pair of datasets the simi-
larity score of Simrel(D1,D2) and Simdup(D1,D2) using the classifiers extracted
in the previous phase. The Sim score is the positive-class distribution value gen-
erated by each classifier. The predicted distribution-value achieved for the ‘true’
class from each classifier is checked against a minimum threshold to indicate
whether the pair of datasets are overall related or duplicates. In our approach,
pairs of datasets are evaluated first if they match the Dup(D1,D2) relation-
ship (indicating that it also matches Rel(D1,D2). If it fails this duplicate test,
then we evaluate if the pair still satisfies Rel(D1,D2). The output classifiers can
classify in the future any new pairs of datasets as either related or duplicate
according to two matching approaches: 1-to-1 matching or cluster matching.
1-to-1 matching: all pairs satisfying Rel(D1,D2) and Dup(D1,D2) need to
be selected for further schema matching and deduplication. The calculations are
performed under the assumption that each and every pair of matching datasets
should be correctly identified using our models.
Cluster-based matching: It is common to use clustering based approaches
for the matching process [3,4,8]. Groups of datasets with close proximity are
segmented into clusters. In our case, the relationship Rel can be used to cluster
the datasets in the DL, after all relationships are discovered. We therefore relax
our requirements for the second phase so that a new dataset should match with
any single dataset in the same cluster in order to consider it a positive match.
Therefore, if a dataset matches one or more dataset(s) from a cluster, we consider
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all pairs of datasets in this cluster as positively matching pairs (even if the
classifier did not indicate a positive match for some of those pairs separately).
The rationale behind this approach is that in a real holistic schema matching
setting, a new dataset ingested should be compared to all the datasets in a
cluster it matches to. Clustering can take place after schema matching identifies
the relationships between datasets (which is outside the scope of this paper, but
the reader can refer to [3,8] for such clustering in instance-based matching).

We illustrate our general approach with a toy example in Fig. 3. Suppose
we have two meta-features nIns and nAttr for each dataset. To classify a
pair [(nIns1, nAttr1), (nIns2, nAttr2)] we compute the relative differences. In
Fig. 3(a) we have plotted (ΔnIns,ΔnAttr) for all pairs in the training data.
‘+’ indicates a matching pair, ‘−’ a non-matching pair. Based on this data we
learn a classifier, for instance a separating hyperplane as shown in Fig. 3(a) by
the red line. Here, for simplification, we show pairs of datasets plotted based on
the distances of only two meta-features (nIns and nAttr). The actual approach
would consider all meta-features in Table 1.

(a) (b)

Fig. 3. DS-Prox cut-off thresholds tuning (Color figure online)

Most classification models produce a score instead of a binary output. In the
example of the separating hyperplane the obtained distance to the hyperplane
can be used as a score. This score can be compared against different cut-off
thresholds to decide on the final classification ‘+’ or ‘−’. The threshold can be
chosen to lead to different results, as seen in Fig. 3(b). If we choose the cut-off
threshold ‘C1’ we restrict the classifier to return less pairs of high proximity
(i.e., low distance), leading to lower recall but less work. Alternatively, if we
alter the cut-off threshold to ‘C2’, we relax the classifier to return pairs of lower
proximity. This leads to more pairs (i.e., more work) returned by the classifier
as positive matches and higher recall of positive cases, but, with more pairs
marked incorrectly as matching. Therefore, the cut-off threshold can be tweaked
by the data scientist according to practical requirements in order to increase
recall at the expense of more work or vice versa. This is the trade-off which
we seek to optimise in our experiments when selecting different thresholds. We
can use different thresholds ‘crel’ and ‘cdup’ for each of the classifiers evaluated.
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This means that we consider a positive match if the classifier scores a new pair
of datasets with a score greater than the threshold as in Eqs. (2) and (3).

Rel(D1,D2) =

{
1, Simrel(D1,D2) > crel

0, otherwise
(2)

Dup(D1,D2) =

{
1, Simdup(D1,D2) > cdup

0, otherwise
(3)

The complexity of our approach is quadratic in the number of datasets, how-
ever, it applies the cheapest computational steps for early-pruning (just comput-
ing distances in Eq. 1 and the classifier scoring model on each pair). This way,
we save unnecessary expensive schema matching processing in later steps.

5 Experimental Evaluation

We tested an implementation of the DS-Prox approach on OpenML1, which can
be considered an online DL. It consists of different datasets covering heteroge-
neous topics, each having a name and a description.

5.1 Datasets

The main challenge is to create the ground-truth which we use to evaluate our
approach. To achieve this, we created an experimental environment where we
extracted the following independent sets of datasets from OpenML:

– Restricted-topics sample: First, we extract some datasets by topic
using 11 keywords-search over OpenML, e.g., “Disease”, “Cars”, “Flights”,
“Sports”, etc. This restricted sample consists of 130 datasets and we consider
them to be similar if they belong to the same topic.

– All-topics sample: This is an independent set of other datasets collected
from OpenML. To collect this sample, we scraped the OpenML repository to
extract all datasets not included in the restricted-topics sample and having
a description of more than 500 characters. Out of the 514 datasets retrieved
we selected 213 with descriptive descriptions (i.e., excluding datasets whose
descriptions do not allow to interpret its content and to assign a topic).

Therefore, we created two new groups of datasets from OpenML for our
experiments, each having its own independent set of datasets without any over-
lap. Having two independent sets strengthens our results and allows us to gen-
eralise our conclusions. A domain expert and one of the authors collaborated to
manually label the pairs of datasets with the same topic as duplicated and/or
related. The interested reader can download the two annotated datasets from
GitHub2. The details of each sample is summarised in Table 2, which lists the
1 http://www.openml.org.
2 https://github.com/AymanUPC/datasets proximity openml.

http://www.openml.org
https://github.com/AymanUPC/datasets_proximity_openml
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Table 2. A description of the OpenML samples collected

Sample Datasets Topics Top topics Rel(D1,D2) Dup(D1,D2)

Restricted-Topics 130 29 Diseases (45),
Health (31), Cars
(13), Academic
Courses (6),
Sports (5)

1205 72

All-Topics 213 79 Computer
software defects
(17), citizens
census data (12),
digit handwriting
recognition (12),
Diseases (11)

570 128

number of datasets, the number of topics, top topics by the number of datasets,
and the number of related and duplicated pairs per sample.

Some of the pairs from the all-topics sample can be seen in Table 3. Dataset
with ID 23 should match all datasets falling under the topic of ‘census data’ like
dataset 179. Both datasets have data about citizens from a population census.
In rows 4 and 5 we can see examples of duplicated datasets, which have highly
intersecting data in their attributes. Duplicate pairs in row 4 have the same
number of instances, but described with different number of attributes, which
are overlapping. The duplicate pairs in row 5 have identical number of attributes,
yet, the attributes are transformed using pre-processing techniques and there are
different number of instances between both datasets, so in essence the second
dataset is a transformed and cleaned version of the first. We aim to detect such
kind of scenarios using our DS-Prox approach.

Table 3. An example of pairs of datasets from the all-topics sample from OpenML

No. DID 1 Dataset 1 DID 2 Dataset 2 Topic Relationship

1 23 cmc 179 adult Census data related

2 14 mfeat-fourier 1038 gina
agnostic

Digit
handwriting
recognition

related

3 55 hepatitis 171 primary-
tumor

Disease related

4 189 kin8nm 308 puma32H Robot motion
sensing

duplicate

5 1514 micro-mass 1515 micro-mass Mass
spectrometry
data

duplicate
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5.2 Experimental Setup

In order to evaluate our approach, we create an experimental setup where we
have two sets of datasets for each experiment: 1. Training set and 2. Test set. The
training set is used in the supervised learning phase to create the classification
models. The classification models are then evaluated using the test set. We use
the restricted-topics sample as a training set, and we use both the restricted-
topics and the all-topics samples in the scoring phase as test sets to evaluate our
approach. We describe how we used those samples to create the training and
test sets within our experiments for the two scenarios from Sect. 2:

– Scenario (a) from Sect. 2: We evaluate our approach by using the restricted-
topics sample as the training set and the all-topics sample as the test set. In
this case the testing set is an independent collection of datasets. We evaluate
both of the 1-to-1 matching and cluster matching approaches for Rel(D1,D2).
We also evaluate the 1-to-1 matching with Dup(D1,D2).

– Scenario (b) from Sect. 2: We evaluate our approach using a leave-one-out
(LOO) variant evaluation method and the restricted-topics sample. Here we
remove a dataset and all its pairs from the original training set and we use
those pairs for evaluation of the output classifiers as a separate test set.
We also remove all duplicate pairs of this dataset from the training set to
guarantee independence between the training and evaluation environments.
We repeat this for every dataset in the input training set. We use the 1-to-1
matching approach in our evaluation.

To execute our experiments, we profile the datasets to extract their meta-
features. We use the training set of annotated datasets with the WEKA3 tool to
create the classification models using different supervised techniques: Bayesian
(Bayesian Network with K2 search, Näıve Bayes), Regression (LogitBoost),
Support Vector Machines (Sequential Minimal Optimization), and Decision
Trees (Random Forest). We also use Ensemble Learners [7]: AdaBoost (with
Decision Stump classifier), Classification Via Regression (with M5 Tree classi-
fier), and Random Subspace (with Regression Tree classifier). We tested different
techniques because it was suggested by [7] that some individual techniques can
outperform the ensemble learners in classification problems. We evaluate the
classifiers with 10 different cut-off thresholds for ‘crel’ and ‘cdup’ from Eqs. (2)
and (3), in order to cover a wide range of values. We benchmark the techniques
against the decision table technique [9] which simply assigns the majority class
based on matching the features to a table of learned examples.

5.3 Results

We evaluate the effectiveness of our approach using the recall, precision, and
efficiency-gain measurements, as described in Eqs. (4), (5) and (6) respectively.
Here, TP means true-positives which are the pairs of datasets correctly classified
3 https://weka.wikispaces.com/Use+WEKA+in+your+Java+code.

https://weka.wikispaces.com/Use+WEKA+in+your+Java+code
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by the classifier. FN are false negatives, FP are false-positives, TN are true-
negatives, and N indicates the total number of possible pairs of datasets. The
efficiency gain measures the amount of reduction in work required, in terms of
number of pairs of datasets eliminated by the classifier.

recall =
TP

TP + FN
(4)

precision =
TP

TP + FP
(5)

efficiency − gain =
TN + FN

N
(6)

We change the cut-off thresholds, and we aim to maximize this as much as
possible while maintaining the highest recall possible. The effectiveness of our
approach is evaluated by recall and precision. By applying our approach with
the different scenarios and relationships, we conduct 4 sets of experiments as in
Table 4. The results are depicted in the graphs in Fig. 4.

Table 4. A description of the experiments conducted

Experiment Graphs in Fig. 4 Matching approach Scenario Relationship

1 row 1: (a) and (b) 1-To-1 (b) Rel(D1, D2)

2 row 2: (c) and (d) 1-To-1 (a) Rel(D1, D2)

3 row 3: (e) and (f) Cluster-based (a) Rel(D1, D2)

4 row 4: (g) and (h) 1-To-1 (a) Dup(D1, D2)

The measures shown in the graphs are all averages from all datasets involved
in the test sets for a specific data mining technique and a certain cut-off threshold
for the proximity score (darker points have higher cut-off values). The common
measure for all graphs, which is the recall plotted on the y-axis, is highlighted
by having some of its main values labelled on each graph. Graphs (a) and (b) are
the same graphs as (c) and (d) respectively but for the 1-to-1 matching approach
applied with the different scenarios. We select for the experiments certain target
results, which are minimum expected values for each measure. All area above
those values are shaded as follows: Min. recall: 0.75 for 1-to-1 matching &
0.9 for cluster matching, Min. efficiency gain: 0.33 for 1-to-1 matching &
0.25 for cluster matching, Min. precision: 0.25 for all approaches. This means
that we were targeting at least 75% recall rate for 1-to-1 matching and 90%
recall rate for the cluster based matching (which improves our previous results
in [2]). We aimed for at least 25% efficiency gains with the cluster matching
approach, which exceeds those achieved in [3]. However, we acknowledge that
their approach applied to instances-matching within the same dataset, not cross-
schema attribute-matching as in our case. For experiment 4 for Dup(D1,D2),
we aim for a min. recall of 0.9, min. efficiency gain of 0.75, and min. precision of
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Fig. 4. Recall-efficiency plots (left column) and recall-precision plots (right column)
for experiments 1,2,3 and 4 in each row respectively
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0.33. In real-world applications, the data scientist can choose different minimum
thresholds for each measure according to practical requirements.

5.4 Discussion

General trend. From the results depicted in Fig. 4, the optimum technique
and cut-off threshold is the one in the top-right quadrant of each graph, opti-
mising both measures plotted. The recall-precision and recall-efficiency plots
follow the general trend expected which indicate the trade-off between both
measures in each plot, yet, more optimised solutions are possible for balancing
recall-efficiency, as seen by the classifiers performing in the top-right quadrant.
As the cut-off thresholds increase, there is a drop in recall against an increasing
efficiency gain. Still, the top mining techniques and thresholds can be used to
achieve high efficiency gain and recall. This is discussed for each property below.
As the precision rates are generally low, we conclude that our approach can only
be used as an early-pruning step, and should be followed by other more expensive
and more detailed matching steps. Yet, a good compromise can still achieve high
recall and efficiency gains; efficiency gains up to 0.5 for Rel and 0.8 for Dup. Such
efficiency gains can make an important difference for computationally-expensive
applications of holistic schema matching in the DL environment.
Rel evaluation. The recall-efficiency plots indicated that it was possible to
achieve an optimum technique and threshold in the top-right quadrant, which
represent the compromise of not sharply losing recall with higher efficiency gain.
For example, from Fig. 4(e) for experiment 3, using the AdaBoost technique at a
threshold of 0.5 can lead to 0.42 efficiency gains while still maintaining 0.95 recall.
If a recall of 1.0 is required, then this can be achieved by the cut-off threshold
of 0.3 for the same technique, but only 0.13 efficiency gain is achieved. The
data scientist will have to decide if this efficiency gain is sufficient and whether
a recall rate of 100% is critical in their application, else, a 0.05 drop in recall
should be allowed to achieve much higher efficiency gain using the techniques
and thresholds in the top quadrant. For the 1-to-1 matching in Fig. 4(c), we
can achieve 0.75 recall and 0.35 efficiency gain. There is a drop in recall, as
would be expected, because the classifier has more challenges in matching all
possible ‘related’ datasets, while in the cluster matching approach, a single match
to a dataset in a cluster acts like a pivot which results in matching all the
required related datasets in the same cluster. The cluster-matching approach
shows an improved performance over the 1-to-1 matching approach, therefore it
is recommended to use DS-Prox with the clustering-based approach.
Dup evaluation. For the results in Fig. 4(g) and (h), the top performing tech-
niques were Random subspace and Random Forest at 0.2 cut-off thresholds. This
achieved about 0.97 recall and 0.76-0.8 efficiency gain. The baseline method was
not able to differentiate at different cut-off thresholds, and had best recall of
0.65, except for the lowest cut-off of 0.1 where it achieved a jump to 0.94 recall.
Since the recall was very high for our target efficiency gain using the 1-to-1
approach, the cluster-based approach did not yield any better results.
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Baseline comparisons. Different techniques can yield better results than the
baseline for several of our experiments. There is not one single technique which
is best, yet, ensemble learners tend to perform better than their counterparts.
However, simple techniques like logistic regression and Näıve Bayes can still
have good performance as seen in the graph (e) top-right quadrant. The base-
line technique was never in the top-quadrant of graph (e) and many techniques
outperformed it. In the 1-to-1 matching in graphs (a) and (c), the baseline clas-
sifier was comparable with the other techniques. The top techniques include the
iterative optimiser in graph (c) with 0.75 recall and 0.35 efficiency gain. Nearly
1.0 recall was possible using the same classifier at a lower threshold, yet with only
0.09 efficiency gain. For experiment 1, Random Forest and Random Subspace
outperformed the baseline with 0.3 cut-off thresholds.
Generalizability. Although our approach is generic and does not apply to a
specific domain only, we note that we do not claim that the classifiers for one
type of data or of a certain domain will have the same guaranteed effectiveness
when applied in another setting. The approach might need to be adjusted and
retrained within other settings. Albeit, our results from experiments 2 and 3 show
a positive indicator of the possibility to train the model on specific domains,
independent of those used in the test set (or real-world setting), and still be
effective. We think that this needs further experimentation in the future.

6 Conclusion and Future Work

This paper presented a novel approach of similarity search within a DL based
on a proximity mining technique for early-pruning in holistic dataset schema
matching and deduplication applications. The approach uses supervised machine
learning techniques based on meta-features describing semi-structured datasets.
Experiments on a real-life DL demonstrate the effectiveness in achieving high
recall rates and efficiency gains. Proposed techniques support data governance
in the DL by identifying relationships between datasets. The drawback of our
approach, however, is that it needs some manual effort to annotate training
examples for the classifiers. In the future, we will test the generalizability of
applying the same classifier to different data sources. We plan to experiment
with more detailed meta-features which might lead to improved results. We will
also test our approach on other kinds of semi-structured data (like RDF or
XML).
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Abstract. We propose a new approach for browsing through large lists
in the absence of a predefined hierarchy. DeepBrowse is defined by the
interaction of two fixed, globally-defined permutations on the space of
objects: one ordering the items by similarity, the second based on mag-
nitude or importance. We demonstrate this paradigm through our Wik-
iBrowse app for discovering interesting Wikipedia pages, which enables
the user to scan similar related entities and then increase depth once a
region of interest has been found.

Constructing good similarity orders of large collections of complex
objects is a challenging task. Graph embeddings are assignments of ver-
tices to points in space that reflect the structure of any underlying sim-
ilarity or relatedness network. We propose the use of graph embeddings
(DeepWalk) to provide the features to order items by similarity.

The problem of ordering items in a list by similarity is naturally
modeled by the Traveling Salesman Problem (TSP), which seeks the
minimum-cost tour visiting the complete set of items. We introduce a
new variant of TSP designed to more effectively order vertices so as to
reflect longer-range similarity. We present interesting combinatorial and
algorithmic properties of this formulation, and demonstrate that it works
effectively to organize large product universes.

1 Introduction

Browsing is a form of information retrieval, where one does not know exactly
what they want but hope to recognize it when they see it. Browsing through
menus or lists of items is a very common component of user interface design
for web and mobile applications. Menus are effective for presenting small sets of
possible selections to the user, but rapidly become unwieldy and tedious to use
beyond a dozen or so possibilities. Hierarchical systems, like faceted search or
DAG-like structures help to efficiently navigate through large sets of possibili-
ties, but constructing such taxonomies generally requires considerable effort and
domain expertise.

We propose a new approach to list navigation, permitting serendipitous dis-
covery over lists of hundreds of thousands of items without the need for a pre-
defined hierarchy. Our approach DeepBrowse is based on two basic concepts:
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1. We organize the universe of items in a fixed order, according to similarity.
Thus local regions in the full list will be coherent, because each item should
be similar to its neighbors.

2. To provide the diversity necessary for serendipitous discovery, we modulate
the set of items visible from our current position by significance. At the
highest level of navigation, we select from a broad array of the most popular
or important items, but once we identify an item of interest we want to see
more choices like that. Our interface enables the user to move between smaller
and larger item universes at will.

These concepts and their presentation are extremely simple, but realizing
them with minimum domain knowledge requires considerable technology under
the hood. Consider the problem of constructing effective similarity orderings.
How can we computationally measure the pairwise similarity between members
of item-universes like books, movies, and music? We propose a general approach
based on deep learning, namely the use of graph embeddings to construct simi-
larity orderings.

How can we construct the most effective similarity order for browsing? We
define an appropriate and novel optimization criteria for this task. Although it
is NP-complete to construct the optimal order, we provide an approximation
algorithm and heuristics which construct excellent orderings in practice. And
finally, how can we order arbitrary items (e.g. books, movies, and music) by
relative significance? We propose series of generally-available proxies to capture
this notion.

This paper is organized as follows. We first introduce the DeepBrowse inter-
face paradigm, and discuss its implementation through Android apps over three
distinct item universes: Wikipedia pages, movies, and dictionary words. We then
delve into the technical details of constructing similarity orderings through graph
embeddings and combinatorial optimization. Finally, we report the results of a
user study gauging the effectiveness of our interface, and review the research
literature in several topics relevant to our work.

Specifically, our work makes the following contributions:

– A Paradigm for List-Oriented Browsing. We abstract the notion of
browsing to the basic operations of scanning and deepening: scanning along a
fixed similarity order, and deepening to expose more specialized items once a
region of interest has been identified. We show that these operations permit
us to access any list item of known position in O(log n) operations, assuming
the two orderings are independent.
We note that our approach can naturally be integrated with faceted search
interfaces, by using the facet selection values as conditionals to block unde-
sired items from appearing in the display window.

– Implementation in Three Domains. We have created three Android apps
implementing the DeepBrowse paradigm in three distinct domains: Wikipedia
pages (WikiBrowse), movies (MovieBrowse), and vocabulary words (Word-
Browse). We have released these apps in the Android app store, and encourage
the reader to play with it to get a feel for the interface in action.
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– Deep Learning/Embedding Approach for Measuring Item Similar-
ity. The notion of graph embeddings (DeepWalk) serves as a unifying app-
roach to measure pairwise similarity between classes of items as diverse as
people, movies, and vocabulary words. Starting from a partial similarity net-
work, DeepWalk learns a high-dimensional embedding for each vertex in the
graph, generalizing its structure and reducing the problem of computing pair-
wise distance to a vector difference and dot product.
We demonstrate that this approach scales to entity universes with hundreds
of thousands of items, and provides a general and convenient abstraction for
quantifying item similarity.

– Similarity Orders for Effective Browsing. The famous traveling sales-
man problem (TSP) seeks the minimum cost (maximum similarity) tour over
a set of n items. However, the objective function in browsing is different than
in transportation problems: we seek to maximize the similarity among items
in each visible window, not just adjacent pairs.
To improve browsing orders, we develop the notion of k-robust TSP tours,
generalizing the traditional (or 1-robust) TSP problem. To the best of our
knowledge, this variant of TSP has never been previously studied in the lit-
erature.
We give efficient and effective heuristics to construct k-robust tours, and
present experimental results that they achieve their objective of increasing
categorical coherence with the parameter k.

– User Study. Browsing implies that the user does not have a well-defined
task in mind, complicating the question of how to evaluate the success of
their venture. Still, we perform a modest user study, demonstrating that our
similarity order improved both performance and user experience on serendip-
itous discovery tasks over alphabetical order. We also demonstrate that user
performance increases rapidly with exposure to the interface.

2 Related Work

Serendipitous Browsing. Serendipity is defined as the occurrence of some-
thing unexpected in a happy or beneficial way. André et al. [2,3] summa-
rizes serendipity related research along two dimensions: the activity engaged
in when encountering serendipitous information (directed browsing/non-
directed browsing/none), and what type of information was found (rele-
vant/not relevant to the goal). DeepBrowse falls into the category of non-
directed browsing [13,25] where users do not have a pre-defined goal while
using it. [17,21] show that organizing images according to similarity is use-
ful for serendipitous browsing on images. StumbleUpon [14] allows users to
stumble through the Web one (semi-random) page at a time. Bordino et
al. [8] investigates the potential of entities in promoting serendipitous search
from user-generated content (UGC). Clarke et al. [10] proposes a framework
that systematically rewards novelty and diversity in information retrieval
evaluation.
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Graph Embeddings. Extensive literature has discussed different methods
for graph embeddings. Multidimensional scaling [11], Laplacian eigenmaps [6]
and IsoMap [24] all have good performance on small graphs, but the time com-
plexity of these algorithms is too high to fit for a large-scale graph. Thus, these
methods are not applicable to the network of Wikipedia people, which con-
sists of about 500,000 vertices. Recently, methods are developed for building
graph embeddings for large-scale graph. Deepwalk [20] presents an efficient
online algorithm for learning representation of vertices in a network. By per-
forming truncated random walk in the graph, Deepwalk treats the walks as
sentences in a language model, and utilizes the Skip-gram model [18] on the
random walks to train the vertex embeddings.
Traveling Salesman Problem. Traveling salesman problem (TSP) is a
widely studied algorithmic problem [15]. Given a weighted graph, the TSP
problem seeks a minimum weighted Hamiltonian cycle. The Euclidean TSP is
proved to be NP-complete [19], so the main interest is in developing approx-
imation algorithms [22]. Heuristics like 2-opt [12], Lin-Kerninghan [16], all
considerably improve the solution quality.
Variants of the standard TSP problem have also drawn researchers atten-
tion. The maximum-scatter TSP [4] is perhaps the most relevant work to
our definition of k-robust TSP; it maximizes the minimum distance between
each vertex and all of its neighbors which are at most m points away in the
tour. Another related TSP variant is discussed by [7], which requires con-
structing a tour that minimizes

∑n
i=1 l(i). Here, l(i) is the distance traveled

before the i-th vertex in the TSP tour. These two problems both take the dis-
tance between each vertex and its close neighbors into consideration, which
is similar to our notion of k-robust TSP. Although approximation methods
provide strict theoretical bound for these problems, their time complexities
are at least quadratic in n, which is not feasible for the large-scale graphs we
consider here.

3 The DeepBrowse Paradigm

3.1 Formulation

The DeepBrowse search paradigm is defined over any universe U of n items by the
interaction among two permutations (similarity and significance) by two opera-
tions on these permutations (scanning and deepening). DeepBrowse is designed
to facilitate efficient browsing through very large item universes on small displays
capable of representing only a few items simultaneously.

The similarity and significance permutations are defined as follows:

– Similarity – This permutation P1 over U orders items by semantic similar-
ity, so items x = P1(i) and y = P1(i + j) should be similar or related, for
1 ≤ i ≤ n− 1 and 1 ≤ j ≤ w, where w reflects the size of the display window.
Similarity permutations can naturally be constructed given a pairwise-
distance function d(x, y), although other approaches can be built on clustering
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(pairs in the same cluster have smaller distance than intra-cluster pairs), text
description similarity, customer co-purchase data, etc. In this paper, we will
generally employ a method using L2 distance on graph embeddings of the
underlying universe. We preserve a single precomputed similarity order of
items for all users.

– Significance – The permutation P2 over U orders items by popularity, impor-
tance, or merit, so for items x = P2(i) and y = P2(i + 1) then x is deemed
more significant than y, for 1 ≤ i ≤ n − 1. Thus the most significance item is
P2(1) and the least significance P2(n).
The significance order of items is of great importance for efficient browsing.
Item universes often exhibit power-law behavior, where a small fraction of the
items command a large fraction of user interest and attention. The significance
permutation explicitly encodes this into the search process. Natural measures
of significance include sales, views, downloads, likes, frequency of use, critical
reviews, and ranking functions built by a combination of such variables. Net-
work centrality algorithms like PageRank provide potential ranking functions
on similarity networks even in the absence of such metadata.

We note that these permutations are very small indexing structures, each
requiring n lg n bits for an n-item universe. Each such permutation takes only
200 KB for n = 100, 000, and 2.5 MB for n = 1, 000, 000, although more space
may be necessary to turn this into an efficient index. These permutations are all
precomputed for the given universe U .

The scanning and deepening operations rely on state variables m and p, both
of which are bounded between 1 and n:

– The significance horizon m defines the size of the currently active universe,
namely the set of the m items highest ranked by significance. The deepening
operation increases or decreases this value m, further enlarging or restricting
the size of this active universe.

– The position p defines the point currently of central interest in similarity
permutation P1. The scanning operation increases or decreases p, moving us
forward or backward in this similarity permutation.

We presume that the display is capable of displaying a sequence of w elements
at any given time. The central item displayed items is P1(p). The w/2 items
above (below) it are those items from P1(p) to P1(p + x) such that P1(p + i) is
displayed iff the rank of P1(p + i) in P2 ≤ m, and x is as small as possible. The
w/2 items below P1(p) are defined analogously.

When m is large relative to n, a large fraction of the items are suitable
for display, and it is efficient to simply walk past the items in P1 of insufficient
magnitude. However, for m � n, it may require a prohibitive amount of skipping
to identify the nearest items for display. We recommend keeping two separate
data structures for P1: the first over the full universe and the second over only
the top

√
n items from P2, and toggle between them for different values for m.
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3.2 Implementation

We have implemented DeepBrowse as an Android application, so far instantiated
over three separate search domains:

– WikiBrowse – Here we seek to identify interesting people to read about in
Wikipedia. Our dataset here consists of the pages of n = 496, 614 historical
figures in Wikipedia, with a natural network defined by the links between
their Wikipedia pages.

– MovieBrowse – Here we seek to identify interesting movies to watch from the
Internet Movie Database (IMDB). Our dataset here consists of n = 73, 232
films defining the vertex of a network, with an undirected edge (vi, vj) when
IMDB recommends movie i (j) to viewers of movie j (i).

– WordBrowse – Here we seek to identify interesting words, worth checking
the definition of in an on-line dictionary. Our dataset here consists of n =
100, 232 English words, each associated with its vector representation from
the Polyglot multilingual word embeddings [1].

In this section, we will introduce our basic user interface design, instantiated
as WikiBrowse for a motivating example. Figure 1 presents several screenshots,
which we use to illustrate the major components of our design: the magnitude
slider and the content scroll.

Fig. 1. Screenshots of the WikiBrowse interface, supporting searching through all his-
torical figures appearing in Wikipedia. In this series, with George Washington selected
as the central item, the universe size is expanded from the top 1000 historical figures
to 5000, and finally 500,000 items, as we move from left to right. Each progressive shift
successively exposes items of more specialized interest in the similarity order, those
with closer connections to the central entity.

The magnitude slider, on top of our user interface, modulates the effective
size of the entity universe, here restricting focus to the top 1,004 people in sig-
nificance order. The current selection, George Washington appears in 37,891th
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position in the full TSP tour over almost 500,000 historical figures, although
all but the top 1,004 are currently hidden from view. The size of the displayed
universe can be modulated by sliding left or right.

These figures are accessible by scrolling up and down through the names,
ordered by similarity. Thus, Spanish explorers Hernando Cortez and Francisco
Pizarro appear as neighbors, as do inventors Robert Fulton and Thomas Edison,
and automotive pioneers Karl Benz and Henry Ford. The names, here centered
around George Washington, all have significance rank better than 1,004, as
reflected by the number to the right of their names and color encoded in the box
to the left of their name. Clicking on this box brings up the relevant Wikipedia
page. The color strip on right reflects the category/cluster associated with each
entity: for George Washington this is Politicians – U.S.

These screenshots also illustrate how the neighbors of a given item change
as we slide right to increase the allowable significance rank. The neighborhood
around George Washington gets progressively filled with lower-wattage figures of
closer association, such fellow patriots of the American revolution Molly Pitcher
and Betsy Ross. At its most expansive setting (right) Washington’s neighbors
are very obscure but relevant figures, e.g. William Flora, Abraham Markoe, and
William Todd all served as soldiers under Washington during the revolution.

3.3 Search Complexity Analysis

Here we analyze the complexity of accessing a specific item x = P1(i) of known
position i using the scanning and deepening operations, provided that the sim-
ilarity permutation P1 and the significance permutation P2 are independent. If
P1 and P2 were identical, searching for x would require O(n) time. However, the
correlation between P1 and P2 is usually very weak in practice. For WikiBrowse,
MovieBrowse and WordBrowse, the Spearman correlation coefficient are 0.04,
−0.18 and 0.19 respectively.

Under this independent assumption, it is easy to show that accessing
x only takes O(log n) operations with high probability. Let f(n) denotes
the time complexity of accessing x in an n-item universe U , and Y =
{P1(j1), P1(j2), · · · , P1(jw)} denotes the initial displayed items. By scanning
through Y , we can locate P1(jk) and P1(jk+1) such that jk ≤ i ≤ jk+1. Then, we
perform a deepening operation to seek for x between P1(jk) and P1(jk+1). Since
P1 and P2 are independent, there are approximately n

w items between P1(jk)
and P1(jk+1). This gives the following recursion:

f(n) = f(
n

w
) + O(w) (1)

By applying the master theorem we have f(n) = O(log n) since w is a
constant.



DeepBrowse: Similarity-Based Browsing Through Large Lists 307

4 Constructing the Permutations

Here we describe a general pipeline for generating the significance and similarity
permutations for n items, which works well for the three domains we describe:
Wikipedia pages, vocabulary words, and movies.

4.1 Ranking Construction

The ranking permutation P2 is best constructed from domain-specific metadata
for the given entity universe. For our three initial search domains:

– WikiBrowse – To measure the significance of people in Wikipedia, we use
the historical rankings published in [23]. It uses Wikipedia as its main data
source, performing a statistical factor analysis of criteria such as PageRank,
article readership (hits), length, and editing history – although each of these
component variables defines an independent ranking. Details of this analysis,
including corrections to reflect historical aging, appear in [23].

– MovieBrowse – To measure the significance of movies, we use the number
of votes the film received in IMDB to indicate its importance. Alternate
permutations might be defined by box-office gross, critical scores, quality
ratings, or some combination of these variables.

– WordBrowse – To measure the significance of words, we sorted them accord-
ing to their frequency of appearance in the English edition of Wikipedia.
Weighting these by TF-IDF score or Google search frequency would give
other reasonable criteria.

4.2 Similarity Permutation Construction

As a general approach to measuring pairwise similarity between arbitrary pairs
of items, we start with a partial domain-similarity network of items:

– WikiBrowse – Here we start with the network where the vertices are
Wikipedia pages, and the edges are links between pages: (a, b) implies that
page a refers to page b.

– MovieBrowse – Here we start with the network where the vertices are movies
from IMDB, and the edges are recommendation links: (a, b) implies that movie
b is recommended to people who liked movie a.

– WordBrowse – Here we use the Polyglot word embeddings space directly:
(a, b) implies that word a has word b as one of its k-nearest neighbors.

To generalize from these partial graphs, we employ the DeepWalk [20] tech-
nique to construct a high-dimensional vector representation for each item. Deep-
Walk performs random walks over this graph to generate sequences of vertices,
which can be interpreted “sentences” over the “vocabulary” of vertices. Using
this formalism, Skip-gram embeddings can be constructed to build a vector rep-
resentation for each vertex.
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This high-dimensional representation allows for the fast computing of item
similarity. We used the Euclidean distance between the high-dimensional repre-
sentations of the two vertices, but the cosine distance/vector dot product could
alternately be used. Specifically, more details about the similarity measurement
between Wikipedia figures can be found in [9].

4.3 k-robust TSPs

The problem of optimizing similarity order has a natural connection to the
famous traveling salesman problem (TSP). In particular, if we define the similar
order over the vertices of a graph/network, the natural optimization goal is to
minimize the total distance between adjacent vertices in the tour, i.e. find the
TSP.

However, since phone screen is capable of displaying multiple items at the
same time, it is desirable that in our interface mutually similar items appear
throughout the same screen, not merely as neighboring elements. Thus the TSP
objective function does not result in a browsing order which is optimally visually
appealing.

To address this issue, we propose (to our knowledge) the novel combinatorial
notion of a k-robust TSP tour. Given a graph G = (V,E), the k-robust cost
C(k, T ) of tour T = {t1, t2, . . . t|V |, t1} is defined as:

C(k, t) =
|V |∑

i=1

k∑

j=1

d(ti, ti+j) (2)

This cost is the weight of the kth power of the tour in a graph theoretic sense.
Thus we take into account the cost between a vertex and all the vertices within
a window size of k.

Fig. 2. The optimal k-robust TSP tour over all the U.S. state capital cities, for k = 1
(left), k = 2 (center), and k = 3 (right). The tours show greater regional coherence and
more zigzags with increasing k.

For k = 1, this objective function is the same as a standard TSP tour, but
this is not the case for larger values of k. Figure 2 illustrates this by showing the
optimal k-robust tours of U.S. state capital cities for 1 ≤ k ≤ 3. These tours
clearly differ. Further they show greater geographic coherence as k increases.

This is more easily appreciated by considering the points on a
√

n × √
n

unit grid graph, as shown in Fig. 3. The crinkly space-filling Hilbert curve has a
bend at every possible location, as opposed the straight-edged snake tour, which
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Fig. 3. All Hamiltonian cycles of the unit grid graph are minimum cost TSP tours for
the grid. However, the space-filling Hilbert curve defines a better 2-robust tour than
the conventional snake order, by a factor of ∼√

2.

minimizes bends. The cost d(ti, ti+2) is thus
√

2 = 1.414 for the Hilbert curve
vs. d(ti, ti+2) = 2 for the snake tour.

Approximating Optimal k -robust Tours. That the complexity of finding
the optimal k-robust tour is NP-complete follows directly from the hardness of
TSP for k = 1. This motivates the question of finding provable approximations
to the optimal k-robust tour.

In fact, the optimal TSP tour approximates the optimal k-robust tour to
within a factor of k:

Theorem 1. The optimal TSP tour T = (t1, . . . , tn) serves as a Θ(k) approxi-
mation to the optimal k-robust tour, on metric graphs where n is relatively prime
to k!.

Proof. First, observe that the k-robust distance function on a metric graph sat-
isfies the triangle inequality. This gives a trivial bound on di,i+k, namely

di,i+k ≤
k∑

j=1

d(ti, ti+j). (3)

Let OPT be the TSP cost of optimal tour T . Thus OPT =
∑n

i=1 d(i, i + 1),
giving a simple upper bound on the k-robust cost of T is C(k, 2) × OPT . This
suggests an O(k2) approximation ratio.

But we can tighten this bound by observing that the edges of the form (i, i+j)
for all 1 ≤ i ≤ n form a closed tour visiting all n points, if j is relatively prime
to n. The cost of this tour must be ≥OPT , or else it would have defined the
optimal tour. Thus the sum of the edges in the kth power of T must be at most
k × OPT , yielding the result.

4.4 Heuristic Optimization for k-robust TSP

We use a nearest neighbor based heuristic for building the initial TSP tour. We
start from a random vertex in the graph, and repeatedly prepend the nearest
neighbor of the current TSP tour to it. Formally, if the current partial TSP tour
is T = (v1, v2, · · · , vn), the nearest neighbor u to this TSP tour is defined as:

arg m
u

in

k∑

i=1

d(u, vi), u ∈ V − T (4)
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The algorithm runs in O(D|V |2) (D is the dimensionality of vertex represen-
tation), but we can speed it up to O(mD|V |) by sampling only m candidate ver-
tices for consideration for insertion, at some cost in quality. Here, we sample the
m nearest neighbors of each vertex as candidates by constructing a ball tree on
the graph. The algorithm for querying the m nearest neighbors in a ball tree runs
in O(D|V |log|V |), thus the whole algorithm runs in O(mD|V |+D|V |log|V |). In
the experiments below, we choose m = 500, D = 64.

Then, we adapt the widely used 2-opt heuristic to improve the resulting
greedy tour. The 2-opt approach repeatedly swaps a pair of vertices (vi, vj) in
the TSP tour, thus reversing the tour between vi and vj . We accept a swap
if it reduces the k-robust cost. This process is repeated until the tour is locally
optimal. For large-scale graphs, we only perform 2-opt until the tour cost reaches
a predefined threshold.

We use two metrics to assess the k-robustness of our tours:

– Label consistency rate (LC) – Items in a real-world universe tend to occur into
natural domain-specific clusters. A good browsing order should respect these
clusters, positioning items in the same cluster close to each other in the tour.
The label consistency rate measures the ratio of neighbors of v which share the
same cluster label. Each vertex vi in G = (V,E) is assigned a cluster label ci.
The label consistency rate l of tour T = (v1, v2, · · · , v|V |, v1) is defined as:

l =
∑

li,j
2k|V | , 1 ≤ i ≤ |V |, i − k ≤ j ≤ i + k (5)

where:

li,j =
{

0, ci = cj
1, ci �= cj

(6)

– Average k-neighbor distance (D) – Here dk measures the average distance
between each vertex and all its neighbors in a window of size k, so

dk =
1

|V |
|V |∑

i=1

k∑

j=1

d(ti, ti+j) (7)

4.5 k-robust TSP: Experimental Results

We evaluated our k-robust TSP heuristic on each of the three datasets associated
with our WikiBrowse, MovieBrowse, and WordBrowse apps. The cluster label for
each dataset was generated by the K-means++ algorithm [5], with the number
of clusters is set to 8 for each dataset.

We employed our heuristic to built k-robust TSP tours for each 1 ≤ k ≤ 4,
and measure the cost of each of these tours under the distance and label consis-
tency metrics for various k′ values from 1 to 16. The heuristic explicitly seeks to
minimize the distance, but implicitly seeks to maximize label consistency.

Our results are shown in Table 1. The dominant results for each column are
shown in bold, and highlight along the main diagonal for both evaluation metrics.
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Table 1. Experimental result for k-robust TSP tour optimization for the Wikipedia
dataset. D@k denotes the average k-neighbor distance for the given tour, while LC@k
denotes the k-neighbor label consistency rate. Tours designed to optimize robustness
for a given 1 ≤ k ≤ 4 dominate the performance for the criteria they were designed
for under both measures of quality. Smaller values of D@k and larger values of LC@k
indicate better performance.

WikiBrowse D@1 D@2 D@3 D@4 D@8 D@16 LC@1 LC@2 LC@3 LC@4 LC@8 LC@16

1-Robust Tour 1.62 1.73 1.81 1.87 2.04 2.25 93.0 91.9 91.0 90.2 87.8 84.2

2-Robust Tour 1.67 1.71 1.77 1.82 1.96 2.13 92.7 92.3 91.7 91.1 89.3 86.6

3-Robust Tour 1.69 1.73 1.76 1.81 1.93 2.09 92.5 92.1 91.8 91.3 89.9 87.6

4-Robust Tour 1.71 1.75 1.78 1.80 1.91 2.05 92.4 92.0 91.7 91.4 90.2 88.2

In particular, tours optimized for k-robustness tend to perform best for the k they
were optimized for, which confirms the soundness of our optimization heuristic.
Further, designs for k = 4 outperform tours optimized for smaller k when tested
for higher levels of robustness, namely k′ = 8 and k′ = 16.

5 User Study

Evaluating a user interface for serendipitous browsing is complicated by the
nature (or lack) of the task. Success is achieved when the user finds something
interesting to them, not a particular item proposed by the investigator.

To provide a baseline for comparison and assess the value of the similarity
order, we constructed two versions of the WikiBrowse app for both user studies.
The standard version uses our 4-robust TSP tour to provide conceptual orders.
The alternate version uses alphabetical order instead. we asked our subjects
to browse on the app for 5 min, and mark all the items they find interesting
enough to read its Wikipedia page. Since by default the app displays the 100
most significant people who are already well-known to most subjects, we asked
the participants to mark only those people who are not within the top 100. 16
different subjects (9 males and 7 females) were recruited to participate in this
study. All the subjects were students at a local university, all of whom have
normal or corrected-to-normal eye vision. Each participant was given a brief
questionnaire about their experience at the conclusion of their task. To rule out
order effects, half of the participants tried the similarity order version first, while
the other half used the alphabetical order version first.

For the serendipity discovery task, the average number of interesting peo-
ple found within five minutes of browsing is 17.7 (SD = 7.95) in the similarity
order app, versus 11.6 in the alphabetical order app (SD = 6.20), which means
the similarity order app yields a much higher chance of encountering interest-
ing people. Also, subjects who used the alphabetical order app first made sig-
nificantly more serendipitous discoveries when they switched to the similarity
order app (from 11.5 to 20.6 in the mean). In contrast, subjects who used the
similarity order app first showed degraded performance with alphabetical order
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Table 2. Average scores for the user interface satisfaction questionnaire, using a 7-
point Likert scale, with 1 = strongly disagree, 7 = strongly agree. Alpha denotes the
average score and standard deviation for the alphabetical order app, while Sim stands
for that of the similarity order app.

Question Alpha Sim

I notice the similarities between the type of people
appearing near each other

1.8 (0.66) 5.9 (1.17)

The interface is good for discovering interesting Wikipedia
people

4.1 (1.27) 5.4 (1.00)

The interface is good for finding a specific person in
Wikipedia

4.9 (1.39) 4.0 (1.06)

It was easy to learn how to use this interface 5.9 (1.03) 6.1 (0.70)

(from 14.75 to 11.75 in the mean). Thus, the similarity order app proves superior
to the alphabetical order app in encouraging serendipitous discoveries.

Table 2 reports the results of our user satisfaction survey, graded on a 7-point
Likert scale. Subjects clearly noticed that the neighboring items were more simi-
lar with the k-robust tour than alphabetical order. By contrast, the alphabetical
order was deemed better for locating specific figures, exactly the expected result
since there is no way to locate specific items by name in the similarity order
short of exhaustive search, versus binary search for alphabetical order. Ques-
tions addressing user satisfaction generally yielded approval. Subjects generally
felt the interface as easy to use and good for discovering interesting people.

6 Conclusion

We have proposed a new design for browsing-oriented user interfaces. Implement-
ing a domain-specific DeepBrowse interface can be reduced to the problem of
constructing two permutations, one measuring the similarity between items, and
the other the relative significance of each item over the universe. We show how to
construct these permutations in a systematic way using graph embeddings and
combinatorial optimization. Finally, we report a user study which demonstrates
that our interface meets its basic design objectives.

References

1. Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: distributed word representations for
multilingual NLP. In: CoNLL 2013, p. 183 (2013)
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Abstract. We present a demo of behaviour-based similarity retrieval in
network traffic data. The underlying framework is intended to support
domain experts searching for network nodes (computers) infected by mali-
cious software, especially in cases when single client-server communication
does not have to be sufficient to reliably identify the infection. The focus is
on interactive browsing enabling dynamic changes of the retrieval model,
which is based on a recently proposed statistical description (fingerprint)
of a communication between two network hosts and the bag of features
approach. The demo/framework provides unique insight into the data and
enables annotation of the data and model modifications during the search
for more effective identification of infected hosts.

1 Introduction

Due to the continuous sophistication of computer viruses (malware), the preva-
lent approach to detect them relying on identification of a specific sequence of
bytes in stored files, mail attachments, or packet content became insufficient [12].
Consequently, researchers and vendors of intrusion detection/prevention systems
(IDS/IPS) are searching for alternatives, one of them being behaviour-based app-
roach, in which the IDS describes the behaviour of legitimate users/programs and
tries to detect anomalies or behaviours specific for infected computers [2,5,10].
For example, infected computers are frequently used to send spam, hence, a
computer suddenly sending large number of e-mails is suspicious and should be
verified if it is not infected. Similarly, upload of large volume of data might be sus-
picious for ex-filtering company sensitive data. The behaviour can be described
on the level of system calls, TCP/IP traffic, or HTTP(s) network traffic. The
last two are particularly interesting, as they enable to monitor large number of
computers just from observing their network traffic, without actually deploying
any tool on computers themselves or otherwise annoying the user.
c© Springer International Publishing AG 2017
C. Beecks et al. (Eds.): SISAP 2017, LNCS 10609, pp. 315–323, 2017.
DOI: 10.1007/978-3-319-68474-1 22
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Behaviors can be modeled on different levels of communication, e.g., above we
have exemplified high-level behavior requiring the knowledge of the “purpose” of
the communication (e.g., send mail). Examples of lower level behaviors specific
for particular types of malware are frequencies and sizes of messages or even
packets used in communication with its controlling server. It has been shown [7,8]
that same malware have a specific footprint that can be detected.

Nevertheless, the behaviour-based detection of infected computers has its
weaknesses, which is the high false positive rate. Therefore, any framework that
would simplify the verification of infections, finds computers behaving similarly
to already known infections, or improves the understanding of how the infected
computer behaves is highly needed. The framework proposed here aims to group
computers with a similar behaviour and highlight reasons why the computers
inside the group behave similarly. By doing so, it increases the understanding of
malware’s behaviour and helps to tackle the above problems.

At this moment, we would like to clarify the terminology because we consider
similarity search associated with content-based retrieval. In intrusion detection
community the content means usually only the payload of the packet, but not the
metadata1 available without inspecting packet’s payload. However, in this paper
the content refers only to the metadata, i.e., to the set of connection properties
that can be aggregated in a d-dimensional Euclidean space, as will be clear from
the text. We adopted this terminology to be more aligned with the terminology
used in image retrieval by which our methods are inspired.

Although the presented framework is general, we aimed it to use persistent
HTTP(s) connections as introduced in [7,8] as the most elementary items in
the model of computer’s communication. The reason for choosing general fea-
tures is the availability of the data to us and the fact that they also model
HTTPs connection, which are more and more frequently adopted for legitimate
but also malicious purposes (using HTTPs protocol effectively rules out the
signature-based detection methods). Methods presented in [7,8] are designed
to detect/classify single persistent communication by means of so-called com-
munication fingerprints aggregating persistent communication properties. We
believe that identifying infected computers on the basis of a set of their persis-
tent connections should improve the accuracy, as some malware have persistent
connections that are similar to that of harmless traffic individually, but quite
unique together.

For the prototype (demo) of our framework described in Sect. 3, we have
used data from HTTP traffic which has been partially labelled by Cisco’s CTA
engine [1]. The labelling of network data is very difficult, as we are never certain,
that the computer is actually infected.2 Thus, the labelling is not perfect, some
unlabelled (background) computers can be actually infected, and the computers
infected by one type of malware can be infected by other malware simultaneously.

1 E.g., number of sent bytes, length of the connections, IP addresses, port used, etc.
2 No one wants to work on infected computers and simulated infections work poorly.
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2 Retrieval Model

The retrieval model used by our framework employs the bag-of-features (BoF)
representation [14], where the descriptors (feature vectors) aggregate fingerprints
of communication between clients and servers [7,8]. The descriptors and a para-
meterizable distance are then used to evaluate k-nearest neighbor queries neces-
sary for our interactive browsing interface. In the following text, the fingerprints
and descriptors derived from the fingerprints are described in more detail.

2.1 Communication Fingerprints

For client-server communication, multiple requests are observed; each modeled
by a vector r = (rup, rdown, rtd, rti), where rup is bytes sent, rdown is bytes
received, rtd is duration of the request, and rti is inter-arrival time between
this and previous request from the same client. The distribution of multiple
requests ri between the client and the server can be then aggregated into a four
dimensional joint soft histogram h that serves as a fingerprint. In [7,8] authors
demonstrated that fingerprints alone can be used to distinguish various appli-
cation servers. However, unlike traditional web applications and services, the
identification of fingerprints representing malicious software is more challenging,
because only a group of fingerprints can be discriminative for some malicious
softwares.

2.2 Descriptors on Fingerprints

We assume malicious software installed on one client that sends requests to vari-
ous servers. Thus, the descriptors used by our framework are based on an aggre-
gation of fingerprints for each client. So, each descriptor corresponds to a client
that is initially represented as a set of fingerprints. Since each fingerprint can be
interpreted as a high-dimensional vector in Rn, where n is the number of bins in
the fingerprint (i.e., in the joint histogram), the client can be interpreted as a set
of points in Rn. In order to aggregate points for each client, the retrieval model
employs the BoF representation that is based on a so-called codebook evaluated
in a preprocessing phase. The codebook consists of codewords that correspond
to the centroids obtained by a clustering of a sampled set of fingerprints. In this
case, we used k-means clustering to create codebook with k = 10000 codewords.
Given a representative codebook, the utilized descriptor representing a client
is a k-dimensional (sparse) vector, where each bin corresponds to a normalized
frequency of client fingerprints assigned to a particular codeword, or, to a set of
codewords in the soft-assignment variant of the descriptor. The BoF compacts
the descriptors into histograms which simplifies also the group of fingerprints
identification problem. Instead of identifying various groups of malicious finger-
prints that are common for an infected set of clients, the model restricts the
problem to identification of a group of histogram bins, corresponding to mali-
cious codewords. The simplification helps with the efficiency of the retrieval,
although, it brings also some ambiguity to the client representation.
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2.3 Distance on Descriptors

Given the descriptors and a distance, the framework can evaluate k-nearest
neighbour queries [4,15] needed for browsing operations and similarity graph
construction (see next section). We consider the weighted cosine measure and
weighted euclidean distance that allow the user to specifically control the impact
of individual codewords on the entire retrieval process. For example, when users
browse and locate a suspicious communication from some set of clients, they can
decide to focus just on a specific set of codewords (weights of other codewords
are set to zero) to find more clients with this type of communication. Note that
we assume potentially inaccurate annotation of the data and so the system heav-
ily relies on the interaction with the users. Such use cases require specific user
interfaces and supportive visualizations.

3 Exploration Framework (demo)

The (demo of our) exploration framework3 consists of two main parts – server
side component and user interface. The server side is responsible for data
preprocessing (communication fingerprint extraction, codebook generation and
client representation) and also retrieval model evaluation (k-nearest neighbor
query evaluation, distance matrix for set of clients construction). The user inter-
face consists of a browsing interface and a similarity analysis part. The user inter-
face uses graph-based visualization of data with additional information enabling
faster orientation in the explored data and manual distance modifications. Since
the server side operations are straightforward routines, in the following sections
we focus on the description of the user interface in more detail.

3.1 Browsing Interface

The browsing interface presents clients as graph nodes and their similarity rela-
tions as edges, based on the employed BoF representation and a selected distance
measure. In order to graphically display similarity relations4 between actually
displayed clients, the force directed placement [3] is utilized, where more/less
similar clients are attracted/repulsed (see Fig. 1). Since not all clients can be
displayed at once, only a selected subset of k clients is initially presented (page
zero). The subset can be selected randomly, or, by a structured query over meta-
data related to clients (e.g., IP mask of involved clients/servers or extreme val-
ues in histogram bins). Given a page zero view, users can select a specific client,
executing thus a k-nearest neighbor query. The result of the query forms a new
view (i.e., graph-based layout), where users can select another client. In such way,
users can browse the set of clients in order to find specific clusters of clients. Note
that the placement of clients as well as the similarity distance is unsupervised
and the annotation of classes is displayed as the color of the nodes.
3 The demo is available as web app at herkules.ms.mff.cuni.cz/NetworkData.
4 The similarity relations are represented by distance matrix evaluated by the server.

http://herkules.ms.mff.cuni.cz/NetworkData
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Figure 1 is an example of what users see in the browser view. One can see
how clients infected by the CAMZ01 or CADP015 (light blue) malwares formed
a tight cluster, being very different from the rest. Similarly, clients infected by
CADP01 (dark green) are very different from the healthy clients (dark blue,
clients not infected by the malware). Notice a healthy client in the middle of
clients infected by CADP01 malware, which is with a high probability actually a
client infected by a malware, and its blue color is due to the imperfect labelling.
Another nice cluster is the dark violet with COPR01 and CAMZ01 malwares.

The browsing interface is inspired by multimedia exploration systems where
users can browse image collections using a visual similarity model [6,9,11,13].
However, unlike image exploration systems where the nodes are represented as
images with understandable contents for users, the clients represented by fre-
quency histograms of fingerprints are less intuitive (even for experienced users).
Therefore, the displayed graph requires additional information that can help
users with fluent browsing, without the need to frequently inspect property files
of each displayed node. For example, the graph can contain additional nodes and
edges representing selected servers connected to the actually displayed clients.
Such augmented graph can help users to distinguish similar clients connected to
the same servers from similar clients connected to different servers.

Fig. 1. An example of the browsing interface, where coloured circles represent clients,
edges correspond to client similarities and colors represent annotations. (Color figure
online)

5 The name of malware families are as reported by the Cisco CTA engine.
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3.2 Similarity Analysis

Once users locate a suspicious group of clients using the browsing interface, fur-
ther investigation is needed to confirm/reject the suspicion. For this purposes,
the similarity analysis part focuses on a selected set of clients (by right click)
and shows more detailed information about the clients. More specifically, the
actual version of the framework supports two different detail views based on
either servers or more general codewords corresponding to similar behavioural
patterns. In the detail view, all involved servers/codewords and all their cor-
responding connections to the investigated clients are displayed to uncover all
the relations hidden by the retrieval model used by the browsing interface. The
detailed view enables users to investigate, analyze, better understand and even
select significant servers/codewords and directly modify the retrieval model used
by the browsing interface. The modified retrieval model can be used in the brows-
ing interface to locate clients with similar selected properties. The modification
of the retrieval model is intended as just temporal or user profile-based because
permanent modifications (e.g., permanent zero weights for some codewords) can
reduce the ability of the model to identify novel malwares.

The detail view based on clients and servers contains fixed nodes as selected
clients and additional nodes as servers. The connections depict communication
fingerprints between clients and corresponding servers. Figure 2 is an example of
the detail view of all fingerprints of three clients infected by CADP01, COPR01
(green) and CAMZ03 (red) malwares. We observe that most of the fingerprints
are unique to given server (orange node). But there are servers in the middle of
the figure which are visited by two clients infected by COPR01 and CAMZ03
malwares. These are the servers of the interest, because after filtering out popular
servers (e.g. facebook, google, etc.) those are likely to be specific for a given
malware family and further investigation of traffic to them helps to understand
particularities of this malware’s behaviour. The client in the bottom infected by
CADP01 malware has no server connected to the other two clients. However, in
this view we cannot recognize whether the client is not infected also by malwares
CADP01, COPR01.

To investigate not only servers but also similar behavioural patterns encoded
by communication fingerprints, the framework employs also a detail view based
on codewords. In this detail view, the nodes correspond to codewords affected by
the selected clients. The connection between a client and a codeword corresponds
to information that the client has non-zero number of fingerprints assigned to
the codeword. The relative number of fingerprints assigned the codeword from
all selected clients is visualized as an intensity of the codeword nodes. Figure 3 is
an example of the detail view created for the same clients as used in Fig. 2. We
observe that most of the fingerprints are unique to a given codeword. However,
now the client in the bottom infected by CADP01 malware has several codewords
connected to the other two clients (see three clusters marked by blue circle). This
means that the client has similar behavioural patterns as two infected clients
visiting different servers. Such codewords require further investigation in order
to identify potential additional infection not recognized by Cisco’s CTA engine.
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Fig. 2. An example of the client-server detail visualization. (Color figure online)

Fig. 3. An example of the client-codeword detail visualization. (Color figure online)



322 J. Lokoč et al.

After inspecting the fingerprints and their relations, the users can annotate
codewords, or even set a codeword weight (i.e., priority). Using weights, users can
focus only on codewords corresponding to malicious fingerprints. This affects the
retrieval model used in the browsing interface, so once users switch back to the
browsing interface, new infected clients can be detected for another inspection.

4 Conclusion and Future Work

We presented (a demo of) a framework focusing on behaviour-based similarity
retrieval in network traffic data. Such framework can be used as a support tool
by domain experts trying to identify network nodes with malicious software. We
presented the basic interfaces and utilized a retrieval model based on a fingerprint
representation of a client-server communication and the bag of features approach.
In the future, we plan to investigate options for automatic training of the retrieval
model using available annotations, automatic analysis of missing annotations and
visualization of such annotations in the browsing interface. We also plan to use
the framework to identify malicious edges (i.e., fingerprints).

Acknowledgements. This research has been supported by Czech Science Foundation
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Abstract. A major challenge of the contemporary information age is
the overwhelming and increasing data amount, especially when looking
for specific information. Searching for relevant information is no longer
manually possible, but has to rely on automatic methods, specifically,
similarity search. From a formal perspective, similarity search can be
seen as the problem of finding entities, which are considered to be simi-
lar to a query with respect to certain describing features. The question
which features or which weighted combination of features to use for a
given query creates a need for semi-automatic methods to address the
needs of diverse users. Furthermore, the quality of the results of a similar-
ity search is more than effectiveness, measured by precision and recall.
The user ideally needs to trust the results and understand how they
were computed. We propose to apply Visual Analytics methodologies,
for synergistic cooperation of user and algorithms, to integrate three
key dimensions of similarity search: users, tasks, and data for effective
search. However, there exists a gap in knowledge how user, task as well as
the available data influence each other and the similarity search. In this
concept paper, we envision how Visual Analytics can be used to tackle
current challenges of similarity search.

Keywords: Similarity search · Recommender systems · Visual analytics

1 Introduction

Humans assess two objects as being similar if they are considered to be compa-
rable with respect to certain properties. These properties can be either physical
properties (e.g., dimensions, light reflectance, material, etc.) or semantic meta
information (e.g., armchairs and chairs are functionally similar). For example,
two books can be judged similar if they share similar content, or two movies
c© Springer International Publishing AG 2017
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if they have the same combination of genres. At the same time, two books can
be similar because of equally colored covers and movies might be considered sim-
ilar because of common actors. The notion of similarity is compound of differ-
ent factors, including users, preferences, different options to define and measure
properties, and also uncertainty. Besides the goal of searching for similar items,
there are several other tasks that a user might want to accomplish. According
to the exploration-search axis, introduced by Zahálka and Worring [28] in the
field of Multimedia Analytics, there are two extreme values, namely Exploration
and Search. In between those tasks, there are a variety of other tasks such as
Browsing, Summarization, and Ranking, etc. which have to be considered as well
when it comes to effective retrieval since an analytical work-flow may not only
consist of similarity-search.

Digital data storage and processing enabled the research of automated simi-
larity queries and founded the scientific area of information retrieval. A manual
search for similar objects might be appropriate for small collections. However,
with the advent of computers, the size of collections typically found is increasing
rapidly. Prominent examples are Spotify with over 30 million songs and Amazon
with over 200 million products. These volumes of information clarify the need for
(semi-)automatic methods to retrieve and rank data items. A first mentioning
of automatic retrieval of similar objects by Holmstrom [10] dates back as far as
1948. However, due to increasingly more complex objects, larger collections, and
new user demands, automated similarity assessment is still an active research
field. The existence of challenges, such as the Netflix Prize and conferences,
such as the ACM RecSys, illustrate the practical importance and relevance of
working on data- and user-adaptive similarity search. Among other things, the
interaction with Recommender Systems (RSs) and helping users understand how
their actions influence the recommendations are open challenges in the field of
RSs [20]. The effectiveness of a RSs is dependent on more factors than just
the quality of the similarity assessment method alone [26]. Similarity search
should create trust, should be comprehensible, and transparent. In this paper,
we identify interdepending factors influencing similarity search. We highlight
arising research aspects and envision a Visual Analytics approach solving the
introduced challenges.

2 Foundations

Many influencing factors need to be considered when engaging with the subject
of similarity search. We categorize the influencing factors as building blocks of the
respective pillars of similarity search. An overview about the identified pillars
can be seen in Fig. 1. In the following paragraphs, we describe and explain the
three pillars data, task, and user in detail.

Data. Users need data to perform their retrieval tasks. Therefore, it is essential
to pay particular attention when working with data, since errors made in early
steps, for example during preprocessing, persist within the system and will neg-
atively impact the quality of the results. In the case of IR or RSs, data might
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Fig. 1. An overview of the three pillars of similarity, Data, Task, and User. Each pillar
consists of multiple building blocks, which in turn can have more building blocks.

already be available beforehand, e.g., provided by a database with records of
some kind of media (music, videos, products, images, etc.). Metadata describing
the raw data, such as annotations, tags or derived data is usually available as
well. Finally, there is also user-generated data. Bobadilla et al. [5] describe the
two ways of user data acquisition, in the case of IR and RS. Data can either
be acquired explicitly, e.g., through user ratings, comments, etc., or implicitly,
e.g., by the number of times a song was played. However, it is crucial to con-
sider the noise or uncertainty in the data, especially for RSs, since there is not
only natural, but also malicious noise [17]. Since RSs use real-world data, often
provided by users, preprocessing is vital to enable similarity search providing
relevant results. In data preprocessing, relevant descriptive features are derived
and computed. These features should describe the represented objects very accu-
rately and simultaneously enable similarity assessments. Amatriain et al. [3] give
an overview of preprocessing methods in the context of RSs. The choice of the
right similarity measure, for example, should be appropriate for the underlying
data, even when already dealing with abstract representation of objects, such
as feature vectors. The computation of feature vectors and the selection of sim-
ilarity (distance) measures is highly domain dependent. A good example for
the domain dependency are tf-idf vectors for the retrieval of text documents,
where cosine similarity is the appropriate choice, since it ignores the length of
the text documents and finds items of similar content. However, the similar-
ity measure of genetic code – represented by letters and being textual data
from an abstract point of view – employs other algorithms such as, Levenshtein,
Needleman-Wunsch [16] or Smith-Waterman [25]. This holds also true for other
types of data. Lew et al. [14] provide an overview of such data types.

Task. Tasks in similarity search have different backgrounds and goals, e.g.,
to explore data and formulate a hypothesis or to confirm/reject an existing
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hypothesis. Herlocker et al. [9] define eleven common tasks in which RSs are
beneficial and helpful for users. We use this tasks exemplary to illustrate how
the user’s task influences the similarity search. The core recommendation task is
to Find Good Items with respect to a specific information need. Early RSs [24]
implemented this task by providing the user with a sorted list of results. For
this kind of task, a range or k -nearest neighbor (k -NN) query using a classi-
cal similarity method is sufficient. However, depending on the definition of good
items, adjustments of the similarity method are needed. For instance, the task
find good hairdressers should not only consider the rating, but also the location,
price, user preference, etc. Another important task is to Find All Good Items.
In this case, neither the range nor k is known, hence a simple range or k -NN
query is not sufficient for this kind of task. A simplified assumption would be,
that all good items belong to the same cluster. Then instead of searching for
the items themselves, one could search for the nearest cluster prototype. This
task is especially important for lawyers or patent examiners, where missing one
item can have a great impact. A third task is Just Browsing. Here, the user
wants to explore the item or data space without a clear objective or information
need. The similarity search should provide users with new items that might be
of interest.

User. The user, applying similarity search to fulfill tasks on data, is judging
the success or failure of the similarity-based application. User requirements are
often complex and not always free of ambiguity. Users need to be considered
not only by their ways of interaction but also by their characteristics and the
search context. Users can have different levels of expertise in one or another
field [18]. Behavioral scientists, for example, search for movement patterns dif-
ferently than sport scientists might. Humans are intrigued by their own per-
spectives and insights. People are, consequently, often working collaboratively
to satisfy their information need. Many more important characteristics for users
exist and influence the perceived similarity such as a user’s current location or
time of day [1]. Additionally, not only the context, but also the perception and
cognitive biases of the user have an influence during and after searching [13].
Currently, users are integrated into the process of similarity search by giving
explicit feedback, for instance, by rating an item, or implicitly by analyzing the
items a user previously viewed or for how long she or he viewed these items.
Also, in E-commerce, metadata available on the users are exploited to learn and
predict user preferences. Therefore, for a successful similarity search, it is key
to understand who the users are, what they want to achieve, and under which
circumstances they work with the similarity search.

3 Research Aspects

Although similarity search is a well researched and discussed area, there are many
open challenges to tackle. Research aspects are categorized with respect to the
previously introduced facets of similarity search. This Section is not intended
to be a complete and exhaustive survey of the state-of-the-art, since this would
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exceed the scope of this paper. We rather envision and describe areas in which
future research has to cope with open questions.

Data Accessibility and Usability. One constantly increasing main challenge
for nowadays similarity search is that the employed data are often not accessible
and usable enough. The curse of dimensionality [4], for example, falsifies the
assumption that as more describing features are used, the similarity assessment
will improve. Instead, severe effects on the similarity search have to be expected
with an increasing number of dimensions. A dataset containing 15 dimensions, for
example, can have a distance between the nearest neighbor close to the distance
of the farthest neighbor. Although state-of-the-art similarity methods [11,15]
have shown that similarity search in high-dimensional data is possible to a certain
extent, the selection of proper discriminative features and a semantic meaningful
combination is crucial and complicated. Another challenge dealing with data is
the preservation of privacy as stated in [8,20]. Besides ethical and legal issues
it is important to ensure that the intersection of query results of different data
sources does not reveal more information than intended.

Models for Data and Context. On top of the data accessibility exists a
noticeable lack when it comes to appropriate data and context models. This
lack of data and context models is immediately affecting all of the introduced
pillars in Sect. 2. For example, automatic methods cannot detect, handle, and
remove all noise and uncertainty in the available data of RSs [17]. This can,
for example, be illustrated by restaurant recommendations, assuming we have
restaurants with noisy data of natural or malicious origin. Should a restaurant
with a noisy rating still be considered as a good item, if it has otherwise positive
attributes such as price and location? Furthermore, offering context-depending
results of a similarity search helps in recommending good items [1,8].

Visualization and Interaction. Eventually, the easiest way to provide a user
with relevant items is to purely rely on the data and a static similarity measure.
However, incorporating users by capturing their feedback and allowing them to
modify the query and/or the similarity measure already improves the perfor-
mance [23]. Nevertheless, visualizing an abstract similarity space and explain
why results were found or not found is highly application and user dependent.
Additionally, a lack of traceability combined with missing transparency [20] may
lead to situations in which users are unaware where their insights came from and
how the interactions with the system generated the results. As a consequence,
the task might change during the process of analysis. YouTube, to name one
famous example from one of the largest RSs in the world, uses Deep Neural Net-
works [6] for its recommendations. The shift towards a deep learning approach
comes at the loss of transparency. For a given recommendation it is vague, how
the data was weighted and which factors influenced the result. However, there
are initial works proposing visualizations for neural networks that might help to
overcome this problem. For instance, from Rauber et al. [19], which enables the
inspection of relationships between neurons and classes.
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4 Methodology

In Sect. 3 we described how the multitude facets of similarity search are influ-
enced and influence each other. Understanding how these facets interdepend is
crucial in order to improve the design of IR and RSs. In the following, we envi-
sion how such a system could be designed to support similarity search in the
best possible way.

As we need various opportunities to reflect expert knowledge in the analysis
process, we propose to follow a Visual Analytics process, as described by Keim et
al. [12]. In Visual Analytics, heterogeneous data sources are processed and used
to generate visualizations and models, thus enabling users to apply visual as well
as automatic analysis methods. By interacting with the visualizations users are
able to share background knowledge and context information via interactions.
This information is then used to update the underlying model, which creates
or updates models and visualizations. Following such a tight coupling of user
and system will result in a continuous and mutual discourse, which will lead to
higher confidence and better results.

A high-level description of the human and computer processes in Visual Ana-
lytics is given by Sacha et al. [22]. It helps to facilitate an understanding of the
individual components and concepts of the Visual Analytics process and their
interactions. Their Knowledge Generation Model for Visual Analytics can serve
as a guideline on how to design new Visual Analytics systems or how to evaluate
existing ones. One recent example where this is illustrated is the Note Taking
Environment of Sacha et al. [21], which design is based on the knowledge gen-
eration model. Additionally, they show how Visual Analytics systems can be
evaluated by measuring and investigating the trust of the user in the system.

In order to show how applying the Visual Analytics process can help tackle
the open research aspects presented in Sect. 3, we incorporated them at the
corresponding component in the Visual Analytics process, as illustrated in Fig. 2.
With the iterative and interconnected model for Visual Analytics, we are able to
reflect the interdependent nature. This enables us to develop an understanding of
the interdependencies of the different facets of similarity search and how Visual
Analytics can help to tackle the open research aspects. The rationales behind
this integration are outlined as follows.

Both the Visual Analytics model as well as our proposed pillars of similarity
search have a data component, which serves as a base for the automatic analysis
via data mining or similarity methods. With respect to the previously stated
research aspects, data accessibility and usability questions are faced here. The
transformation of the original raw data into meaningful and descriptive features
is key for a successful similarity search. This transformation step is often also
iterative and influenced by the curse of dimensionality, especially in the design
phase of a similarity search Visual Analytics system.

Models for data and context influencing the similarity search as described
as the second research aspect are key to understand how users employ RSs.
Another important aspect which still needs more attention in the field of RSs
are visualizations of both, the results and the underlying model [8]. It is not
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Fig. 2. Main research questions in similarity search integrated in the Visual Analytics
model of Keim et al. [12]. The iterative and interconnected model of Visual Analytics
reflects the interdependencies of our described research challenges.

only important to identify, how a user can interact with these visualization [2],
but also what the rationales behind these interactions are [27]. By capturing
these interactions, as well as contextual information, conclusions about the goals
of the users can be drawn. This enables us to train the underlying model of
the similarity search according to their expectations. Consequently, by Visual
Analytics we are able to enrich the similarity search by “Insight Provenance”
and traceability of the results.

As the key ingredients of Visual Analytics are visualization and interaction,
the overlap to the third research aspect is granted per se. Visualization and user
interaction can be used to utilize the user’s domain knowledge [7]. In a two-
dimensional spatial visualization of documents, documents are distributed by
their similarity to each other. By spatially rearranging documents, for example
by drag-and-drop, users can communicate to the system, which documents they
find similar, which in turn trains the similarity model according to their feedback.
As a consequence, the user’s domain knowledge is captured, interpreted, and
applied to the whole dataset.

5 Conclusion

We believe following a Visual Analytics approach will improve similarity search
applications, in particular IR and RSs. With the user-centered focus of Visual
Analytics combined with data analytics, information visualization, and interac-
tion, query results can be made transparent and interpretable. Finally, trans-
parent query results will increase users’ trust in the similarity search results.
However, as a direct consequence of applying the Visual Analytics process on
similarity search, new challenges are emerging. There is a need for an increased
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understanding of the relationship of the components in the process and the
influences of the various parameters. This can lead to new insights which help
to identify errors, improve robustness, and increase quality of, as well as trust
in similarity search.
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