
Improving Visual Relationship Detection
Using Semantic Modeling of Scene Descriptions

Stephan Baier1(B), Yunpu Ma1,2, and Volker Tresp1,2

1 Ludwig Maximilian University, 80538 Munich, Germany
stephan.baier@campus.lmu.de

2 Siemens AG, Corporate Technology, Munich, Germany
{yunpu.ma,volker.tresp}@siemens.com

Abstract. Structured scene descriptions of images are useful for the
automatic processing and querying of large image databases. We show
how the combination of a statistical semantic model and a visual model
can improve on the task of mapping images to their associated scene
description. In this paper we consider scene descriptions which are rep-
resented as a set of triples (subject, predicate, object), where each triple
consists of a pair of visual objects, which appear in the image, and the
relationship between them (e.g. man-riding-elephant, man-wearing-hat).
We combine a standard visual model for object detection, based on con-
volutional neural networks, with a latent variable model for link pre-
diction. We apply multiple state-of-the-art link prediction methods and
compare their capability for visual relationship detection. One of the
main advantages of link prediction methods is that they can also gener-
alize to triples which have never been observed in the training data. Our
experimental results on the recently published Stanford Visual Relation-
ship dataset, a challenging real world dataset, show that the integration
of a statistical semantic model using link prediction methods can sig-
nificantly improve visual relationship detection. Our combined approach
achieves superior performance compared to the state-of-the-art method
from the Stanford computer vision group.

Keywords: Visual relationship detection · Knowledge graph · Link pre-
diction

1 Introduction

Extracting semantic information from unstructured data, such as images or text,
is a key challenge in artificial intelligence. Semantic knowledge in a machine-
readable form is crucial for many applications such as search, semantic querying
and question answering.

Novel computer vision algorithms, mostly based on convolutional neural net-
works (CNN), have enormously advanced over the last years. Standard applica-
tions are image classification and, more recently, also the detection of objects
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Fig. 1. The input to the model is a raw image. In combination with a semantic prior
we generate triples, which describe the scene.

in images. However, the semantic expressiveness of image descriptions that con-
sist simply of a set of objects is rather limited. Semantics is captured in more
meaningful ways by the relationships between objects. In particular, visual rela-
tionships can be represented by triples of the form (subject, predicate, object),
where two entities appearing in an image are linked through a relation (e.g.
man-riding-elephant, man-wearing-hat).

Extracting triples, i.e. visual relationships, from raw images is a challenging
task, which has been a focus in the Semantic Web community for some time
[2–4,27,32,38] and recently also gained substantial attention in main stream
computer vision [6,7,18,25]. First approaches used a single classifier, which
takes an image as input and outputs a complete triple [7,25]. However, these
approaches do not scale to datasets with many object types and relationships,
due to the exploding combinatorial complexity. Recently, [18] proposed a method
which classifies the visual objects and their relationships in independent pre-
processing steps, and then derives a prediction score for the entire triple. This
approach was applied to the extraction of triples from a large number of poten-
tial triples. In the same paper, the first large-scale dataset for visual relationship
extraction was published.

The statistical modeling of graph-structured knowledge bases, often referred
to as knowledge graphs, has recently gained growing interest. The most popular
approaches learn embeddings for the entities and relations in the knowledge
graph. Based on the embeddings a likelihood for a triple can be derived. This
approach has mainly been used for link prediction, which tries to predict missing
triples in a knowledge graph. A recent review paper can be found in [20].
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In the approach described in this paper, statistical knowledge base models,
which can infer the likelihood of a triple, are used to support the task of visual
link prediction. For example if the visual model detects a motorbike, it is very
likely that the triple motorbike-has part-wheel is true, as all motorbikes have
wheels. We suggest that integrating such prior knowledge can improve various
computer vision tasks. In particular, we propose to combine the likelihood from
a statistical semantic model with a visual model to enhance the prediction of
image triples.

Figure 1 illustrates our approach. The model takes as input a raw image and
combines it with a semantic prior, which is derived from the training data. Both
types of information are fused, to predict the output, which consists of relevant
bounding boxes and a set of triples describing the scene.

For combining the semantic prior with the visual model we employ a proba-
bilistic approach which can be divided into a semantic part and a visual part. We
show how the semantic part of the probabilistic model can be implemented using
standard link prediction methods and the visual part using recently developed
computer vision algorithms.

We train our semantic model by using absolute frequencies from the training
data, describing how often a triple appears in the training data. By applying
a latent variable model, we are able to also generalize to unseen or rarely seen
triples, which still have a high likelihood of being true, due to their similarity to
other likely triples. For example if we frequently observe the triple person-ride-
motorcycle in the training data we can generalize also to a high likelihood for
person-ride-bike due to the similarity between motorcycle and bike, even if the
triple person-ride-bike has not been observed or just rarely been observed in the
training data. The similarity of motorcycle and bike can be derived from other
triples, which describe, for example, that both have a wheel and both have a
handlebar.

We conduct experiments on the Stanford Visual Relationship dataset recently
published by [18]. We evaluate different model variants on the task of predict-
ing semantic triples and the corresponding bounding boxes of the subject and
object entities detected in the image. Our experiments show, that including the
semantic model improves on the state-of-the-art result in the task of mapping
images to their associated triples.

The paper is structured as follows. Section 2 gives an overview of the state-
of-the-art link prediction models, the employed computer vision techniques and
related work. Section 3 describes the semantic and the visual part of our model
and how both can be combined in a probabilistic framework. In Sect. 4 we show
a number of different experiments. Finally, we conclude our work with Sect. 5.

2 Background and Related Work

Our proposed model joins ideas from two areas, computer vision and statistical
relational learning for semantic modeling. Both fields have developed rapidly in
recent years. In this chapter we discuss relevant work from both areas.
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2.1 Statistical Link Prediction

A number of statistical models have been proposed for modeling graph-
structured knowledge bases often referred to as knowledge graphs. Most methods
are designed for predicting missing links in the knowledge graph. A recent review
on link prediction can be found in [20]. A knowledge graph G consists of a set
of triples G = {(s, p, o)i}Ni=1 ⊆ E × R × E . The entities s, o ∈ E are referred to
as subject and object of the triple, and the relation between the entities p ∈ R
is referred to as predicate of the triple.

Link prediction methods can be described by a function θ : E × R × E → R,
which maps a triple (s, p, o) to a real valued score. The score of a triple θ(s, p, o)
represents the likelihood of the triple being true. Most recently developed link
prediction models learn a latent representation, also called embedding, for the
entities and the relations. In the following we describe the link prediction meth-
ods, which are used in paper.

DistMult: DistMult [35] scores a triple by building the tri-linear dot product of
the embeddings, such that

θ(s, p, o) = 〈a(s), r(p), a(o)〉 =
∑

j

a(s)jr(p)ja(o)j (1)

where a : E → R
d maps entities to their latent vector representations and simi-

larly r : R → R
d maps relations to their latent representations. The dimension-

ality d of the embeddings, also called rank, is a hyperparameter of the model.

ComplEx: ComplEx [33] extends DistMult to complex valued vectors for the
embeddings of both, relations and entities. The score function is

θ(s, p, o) = Re(〈a(s), r(p), a(o)〉) = 〈Re(a(s)), Re(r(p)), Re(a(o))〉
+ 〈Im(a(s)), Re(r(p)), Im(a(o))〉
+ 〈Re(a(s)), Im(r(p)), Im(a(o))〉
− 〈Im(a(s)), Im(r(p)), Re(a(o))〉

(2)

where a : E → C
d and r : R → C

d; Re(·) and Im(·) denote the real and
imaginary part, respectively, and · denotes the complex conjugate.

Multiway NN: The multiway neural network [8,20] concatenates all embeddings
and feeds them to a neural network of the form

θ(s, p, o) =
(
βT tanh (A [a(s), r(p), a(o)])

)
(3)

where [·, ·, ·] denotes the concatenation of the embeddings a(s), r(p), a(o) ∈ R
d.

A is a weight matrix and β a weight vector.



Visual Relationship Detection Using Semantic Modeling 57

RESCAL: The tensor decomposition RESCAL [21] learns vector embeddings
for entities and matrix embeddings for relations. The score function is

θ(s, p, o) = a(s) · R(p) · a(o) (4)

with · denoting the dot product, a : E → R
d and R : R → R

d×d.
Typically, the models are trained using a ranking cost function [20]. For our

task of visual relationship detection, we will train them slightly differently using
a Poisson cost function for modeling count data, as we will show in Sect. 3.2.
Another popular link prediction method is TransE [5], however it is not appro-
priate for modeling count data; thus we are not considering it in this work.

2.2 Image Classification and Object Detection

Computer vision methods for image classification and object detection have
improved enormously over the last years. Convolutional neural networks (CNN),
which apply convolutional filters in a hierarchical manner to an image, have
become the standard for image classification. In this work we use the following
two methods.

VGG: The VGG-network is a convolutional neural network, which has shown
state-of-the-art performance at the Imagenet challenge [28]. It exists in two ver-
sions, i.e. the VGG-16 with 16 convolutional layers and VGG-19 with 19 convo-
lutional layers.

RCNN: The region convolutional neural network (RCNN) [11] proposes regions,
which show some visual objects in the image. It uses a selective search algorithm
for getting candidate regions in an image [31]. The RCNN algorithm then rejects
most of the regions based on a classification score. As a result, a small set of
region proposals is derived. There are two extensions to RCNN, which are mainly
faster and slightly more accurate [10,23]. However, in our experiments we use
the original RCNN, for a fair comparison with [18]. Our focus is on improving
visual relationship detection trough semantic modeling rather than on improving
computer vision techniques.

2.3 Visual Relationship Detection

Visual relationship detection is about predicting triples from images, where the
triples consist of two visual objects and the relationship between them. This is
related to visual caption generation, which recently gained considerable popu-
larity among the deep learning community, where an image caption, consisting
of natural text, is generated given an image [16,17,34]. However, the output in
visual relationship detection is more structured (a set of triples), and thus it is
more appropriate for further processing, e.g. semantic querying. Related work
on relational reasoning with images can also be found in visual question answer-
ing [1,15,26,39] and has also been subject to neural symbolic reasoning [27,38].
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The extraction of semantic triples has also been successfully applied to text
documents, e.g. the Google Knowledge Vault project for improving the Google
Knowledge Graph [8].

Some earlier work on visual relationship detection was concerned with learn-
ing spatial relationships between objects, however with a very limited set of only
four spatial relations [9,12]. Other related work attempted to learn actions and
object interactions of humans in videos and images [13,19,22,24,36,37]. Full
visual relationship detection has been demonstrated in [6,7,25], however, also
with only small amounts of possible triples. In [6], an ontology over the visual
concepts is defined and combined with a neural network approach to maintain
semantic consistency.

The Stanford computer vision group proposed a scalable model and applied
it to a large-scale dataset, with 700,000 possible triples. In their work, entities
of the triples were detected separately and a joint score for each triple candidate
was computed [18]. The visual module in [18] uses the following computer vision
methods, which we will also use in our approach. An RCNN for object detection
is used to derive candidate regions. Further, a VGG-16 is applied to the detected
regions for obtaining object classification scores for each region. Finally, a second
VGG, which classifies relationships, such as taller-than, wears, etc., is applied to
the union of pairs of regions. The model also contains a language prior, which
can model semantic relationships to some extend based on word embeddings.
The language prior allows the model to generalize to unseen triples. However,
our experiments show that integrating state-of-the-art link prediction methods
for modeling semantics is more appropriate for improving general prediction and
generalization to unseen triples.

3 Modeling Visual Relationships

In the following we describe our approach to jointly modeling images and their
corresponding semantics.

3.1 Problem Description

We assume data consisting of images and corresponding triple sets. For each
subject s of a triple (s, p, o) there exists a corresponding region is in the image.
Similarly, each object o corresponds to an region io, and each predicate p to an

Fig. 2. The subject and object of the triple relate to two regions in the image, and the
predicate relates to the union of the two regions.
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Fig. 3. The pipeline for deriving a ranked list of triples is as follows: The image is
passed to a RCNN, which generates region candidates. We build pairs of regions and
predict a score for every triple, based on our ranking method. The visual part is similar
to [18], however the ranking method is different as it includes a semantic model.

region ip, which is the union of the regions is and io. Thus, one data sample
can be represented as a six-tuple of the form (is, ip, io, s, p, o). Figure 2 shows an
example of a triple and its corresponding bounding boxes. During training, all
triples and their corresponding areas are observed. After model training the task
is to predict the most likely tuples (is, ip, io, s, p, o) for a given image. Figure 3
shows the processing pipeline of our method, which takes a raw image as an
input, and outputs a ranked list of triples and bounding boxes.

3.2 Semantic Model

In contrast to typical knowledge graph modeling, we do not only have one global
graph G, but an instance of a knowledge graph Gi for every image i. Each triple
which appears in a certain image can be described as a tuple (s, p, o, i). The
link prediction model shall reflect the likelihood of a triple to appear in a graph
instance, as a prior without seeing the image. By summing over the occurrences
in the i-th dimension, we derive the absolute frequency of triples (s, p, o) in the
training data, which we denote as ys,p,o. We aim to model ys,p,o using the link
prediction methods described in Sect. 2.1. As we are dealing with count data, we
assume a Poisson distribution on the model output θ(s, p, o). The log-likelihood
for a triple is

log p(ys,p,o|(s, p, o), Θ) = ys,p,o log η(θ(s, p, o)) − η(θ(s, p, o)) − log(ys,p,o!), (5)

where Θ are the model parameters of the link prediction method and η is the
parameter for the Poisson distribution, namely

η(θ(s, p, o)) = exp(θ(s, p, o)). (6)

We train the model by minimizing the negative log-likelihood. In the objective
function the last term log(ys,p,o!) can be neglected, as it does not depend on
the model parameters. Thus the cost function for the whole training dataset
becomes

cost =
∑

(s,p,o)

η(θ(s, p, o)) − ys,p,o log η(θ(s, p, o)). (7)
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Using this framework, we can train any of the link prediction methods described
in Sect. 2, by plugging the prediction into the cost function and minimizing
the cost function using a gradient-descent based optimization algorithm. In this
work we use Adam, a recently proposed first-order gradient-based optimization
method with adaptive learning rate [14].

3.3 Visual Model

Our visual model is similar to the approach used in [18]. Figure 3 shows the
involved steps. An image is first fed to an RCNN, which generates region pro-
posals for a given image. The region proposals are represented as bounding boxes
within the image. The visual model further consists of two convolutional neural
networks (CNNs). The first CNN which we denote as CNNe takes as input the
subregion of the image defined by a bounding box and classifies entities from
the set E .

The second CNN, which we denote as CNNr takes the union region of two
bounding boxes as an input, and classifies the relationship from the set R. While
training, both CNNs use the regions (bounding boxes) provided in the training
data.

For new images, we derive the regions from the RCNN. We build all possible
pairs of regions, where each pair consists of a region is and io. We apply CNNe to
the regions, to derive the classification scores CNNe(s|is) and CNNe(o|io). Then
the union of the regions is and io is fed to CNNr to derive the score CNNr(p|ip),
where ip = union(is, io). Figure 2 shows an example of the bounding boxes of
the subject and the object, as well as the union of the bounding boxes, which
relates to the predicate of the triple.

3.4 Probabilistic Joint Model

In the last step of the pipeline in Fig. 3, which we denote as ranking step, we need
to combine the scores from the visual model with the scores from the semantic
model. For joining both, we propose a probabilistic model for the interaction
between the visual and the semantic part. Figure 4 visualizes the joint model for
all variables in a probabilistic graphical model. The joint distribution factors as

p(s, p, o, is, ip, io) ∝ p̃(s, p, o) · p̃(is|s) · p̃(ip|p) · p̃(io|o) (8)

with p̃ denoting unnormalized probabilities. We can divide the joint probability
of Eq. (8) into two parts. The first part is p̃(s, p, o), which models semantic triples.
The second part is p̃(is|s) · p̃(ip|p) · p̃(io|o), which models the visual part given
the semantics.

Following [29,30] we derive the unnormalized joint probability of the triples
p̃(s, p, o) using a Boltzmann distribution. With the energy function E(s, p, o) =
− log η(θ(s, p, o)) the unnormalized probability for the triples becomes

p̃(s, p, o) = η(θ(s, p, o)). (9)



Visual Relationship Detection Using Semantic Modeling 61

Fig. 4. The probabilistic graphical model describes the interaction between the visual
and the semantic part for a given image. We assume the image regions is, ip and io to
be given by the RCNN and infer the underlying s, p, o triples.

The visual modules described in the previous section, model the unnormalized
probabilities p̃(s|is), p̃(p|ip), and p̃(o|io). By applying Bayes rule to Eq. (8) and
assuming equal probabilities for all image regions we get

p(s, p, o, is, ip, io) ∝ p̃(s, p, o) · p̃(s|is) · p̃(p|ip) · p̃(o|io)
p̃(s) · p̃(p) · p̃(o)

. (10)

The additional terms of the denominator p̃(s), p̃(p), p̃(o) can be derived through
marginalization of p̃(s, p, o).

For each image, we derive the region candidates is, ip, io from the RCNN.
We do not have to normalize the probabilities as we are finally interested in a
ranking of the most likely six-tuples (is, ip, io, s, p, o) for a given image. The final
unnormalized probability score on which we rank the tuples is

p̃(s, p, o, is, ip, io) = η(θ(s, p, o))
CNNe(s|is) · CNNr(p|ip) · CNNe(o|io)

p̃(s) · p̃(p) · p̃(o)
. (11)

4 Experiments

We evaluate our proposed method on the recently published Stanford Visual
Relationship dataset [18]. We compare our proposed method against the state-of-
the-art method from [18] in the task of predicting semantic triples from images.
As in [18] we will divide the setting into two parts: First an evaluation on how
well the methods perform when predicting all possible triples and second only
evaluating on triples, which did not occur in the training data. This setting is
also referred to as zero-shot learning, as the model has not seen any training
images containing the triples which are used for evaluation.

4.1 Dataset

The dataset consists of 5000 images. The semantics are described by triples, con-
sisting of 100 entity types, such as motorcycle, person, surfboard, watch, etc. and
70 relation types, e.g. next to, taller than, wear, on, etc. The entities correspond
to visual objects in the image. For all subject and object entities the correspond-
ing regions in the image are given. Each image has in average 7.5 triples, which
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describe the scene. In total there are 37993 triples in the dataset. The dataset is
split into 4000 training and 1000 test images. The data split is identical to the
split in [18], thus we can directly compare our results. There are 1877 triples,
which only occur in images from the test set but not in the training set.

4.2 Visual Relationship Detection

Experimental Setting. For doing visual relationship detection, we consider
four different types of settings. Three of them are identical to the experimental
settings in [18]. We add a fourth setting, which eliminates the evaluation of
correctly detecting the bounding boxes, and solely evaluates the predicted triples.
The four settings are as follows.

Phrase Detection: In phrase detection the task is to give a ranking of likely
triples plus the corresponding regions for the subject and object of the triple.
The bounding boxes are derived from the RCNN. Subsequently, we apply our
ranking function (see Eq. (11)) to the pairs of objects, as shown in Fig. 3. A triple
with its corresponding bounding boxes is considered correctly detected, if the
triple is similar to the ground truth, and if the union of the bounding boxes has
at least 50% overlap with the union of the ground truth bounding boxes.

Relationship Detection: The second setting, which is also considered in [18] is
relationship detection. It is similar to phrase detection, but with the difference
that it is not enough when the union of the bounding boxes is overlapping by at
least 50%. Instead, both the bounding box of the subject and the bounding box
of the object need at least 50% of overlap with their ground truth.

Triple Detection: We add a setting, which we call triple detection, which evalu-
ates only the prediction of the triples. A triple is correct if it corresponds to the
ground truth. The position of the predicted bounding boxes is not evaluated.

Predicate Detection: In predicate detection, it is assumed that subject and object
are given, and only the correct predicate between both needs to be predicted.
Therefore, we use the ground truth bounding boxes with the respective labels for
the objects instead of the bounding boxes derived by the RCNN. This separates
the problem of object detection from the problem of predicting relationships.

For each test image, we create a ranked list of triples. Similar to [18] we report
the recall at the top 100 elements of the ranked list and the recall at top 50.
Note, that there are 700000 possible triples, out of which the correct triples need
to be ranked on top.

When training the semantic model, we hold out 5% of the nonzero triples as
a validation set. We determine the optimal rank for the link prediction methods
based on that hold-out set. For the visual model (RCNN and VGG) we use a
pretrained model provided by [18].
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Table 1. Results for visual relationship detection. We report recall at 50 and 100 for
four different validation settings.

Task evaluation Phrase det. Rel. det. Predicate det. Triple det.

R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [18] 2.61 2.24 1.85 1.58 7.11 7.11 2.68 2.30

Lu et al. full [18] 17.03 16.17 14.70 13.86 47.87 47.87 18.11 17.11

RESCAL 19.17 18.16 16.88 15.88 52.71 52.71 20.23 19.13

MultiwayNN 18.88 17.75 16.65 15.57 51.82 51.82 19.76 18.53

ComplEx 19.36 18.25 17.12 16.03 53.14 53.14 20.23 19.06

DistMult 15.42 14.27 13.64 12.54 42.18 42.18 16.14 14.94

Results. Table 1 shows the results for visual relationship detection. The first
row shows the results, when only the visual part of the model is applied. This
model performs poorly, in all four settings. The full model in the second row
adds the language prior to it and also some regularization terms during training,
which are described in more detail in [18]. This drastically improves the results.
As expected the recall at top 100 is better than at top 50, however the difference
is rather small, which shows that most of the correctly ranked triples are ranked
quite high. The results for predicate detection are much better than for the
other settings. This shows that one of the main problems in visual relationship
detection is the correct prediction of the entities. In the last four rows we report
the results of our method, which adds a link prediction model to the visual model.
We compare the results for the integration of the four link prediction methods
described in Sect. 2.1. We see that with all link prediction methods the model
performs constantly better than the state-of-the-art method proposed by [18],
except for DistMult. For Relationship detection, which is the most challenging
setting, ComplEx works best, with a recall of 17.12 and 16.03 for the top 100 and
top 50 results respectively. RESCAL performs slightly better than the Multiway
Neural Network in all evaluation settings. For the setting of Triple Detection the
scores are higher for all methods, as expected, as the overlap of the bounding

Fig. 5. Recall at 50 as a function of the rank
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boxes is not taken into account. However, the relative performance between the
methods does not vary much.

Figure 5 shows the recall at 50 on the test set for our different variants as a
function of the rank. We see that the performances of ComplEx and RESCAL
converge relatively quickly to a recall of around 16. The Multiway Neural Network
converges a bit slower, to a slightly smaller maximum. DistMult converges slower
and to a much smaller maximum recall of 12.5.

4.3 Zero-Shot Learning

Experimental Setting. We also include an experimental setting, where we
only evaluate on triples, which had not been observed in the training data. This
setting reveals the generalization ability of the semantic model. The test set
contains 1877 of these triples. We evaluate based on the same settings as in the
previous section, however for the recall we only count how many of the unseen
triples are retrieved.

Results. Table 2 shows the results for the zero-shot experiments. This task is
much more difficult, which can be seen by the huge drop in recall. However,
also in this experiment, including the semantic model significantly improves the
prediction. For the first three settings, the best performing method, which is
the Multiway Neural Network, almost retrieves twice as many correct triples,
as the state-of-the-art model of [18]. Especially, for the Predicate Detection,
which assumes the objects and subjects to be given, a relatively high recall of
16.60 can be reached. In the zero-shot setting for Predicate Detection even the
integration of the worst performing semantic model DistMult shows significantly
better performance than the state-of-the-art method. These results clearly show
that our model is able to infer also new likely triples, which have not been
observed in the training data. This is one of the big benefits of the link prediction
methods.

Table 2. Results for the zero shot learning experiments. We report recall at 50 and
100 for four different validation settings.

Task evaluation Phrase det. Rel. det. Predicate det. Triple det.

R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [18] 1.12 0.95 0.78 0.67 3.52 3.52 1.20 1.03

Lu et al. full [18] 3.75 3.36 3.52 3.13 8.45 8.45 5.39 4.79

RESCAL 6.59 5.82 6.07 5.30 16.34 16.34 6.07 5.30

MultiwayNN 6.93 5.73 6.24 5.22 16.60 16.60 6.24 5.22

ComplEx 6.50 5.73 5.82 5.05 15.74 15.74 5.82 5.05

DistMult 4.19 3.34 3.85 3.08 12.40 12.40 3.85 3.08
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Fig. 6. Recall at 50 as a function of the rank for the zero-shot setting.

Figure 6 shows the recall at 50 on the zero-shot test set as a function of the
rank. As expected, the models start to overfit in the zero-shot setting if the
rank is to high. With a limited rank the models have less freedom for explaining
the variation in the data; this forces them to focus more on the underlying
structure, which improves the generalization property. ComplEx, which has more
parameters due to the complex valued embeddings, performs best with small
ranks and reaches the maximum at a rank of around 8. Multiway Neural Network
reaches the maximum at a rank of 10 and RESCAL at a rank of 14. The highest
recall is achieved by RESCAL at 5.3.

5 Conclusion

We presented a novel approach for including semantic knowledge into visual
relationship detection. We combine a state-of-the-art computer vision procedure
with latent variable models for link prediction, in order to enhance the modeling
of relationships among visual objects. By including a statistical semantic model,
the predictive quality can be enhanced significantly. Especially the prediction
of triples, which have not been observed in the training data, can be enhanced
through the generalization properties of the semantic link prediction methods.
The recall of the best performing link-prediction method in the zero-shot setting
is almost twice as high as the state-of-the art method. We proposed a probabilis-
tic framework for integrating both the semantic prior and the computer vision
algorithms into a joint model. This paper shows how the interaction of semantic
and perceptual models can support each other to derive better predictive accu-
racies. The developed methods show great potential also for broader application
areas, where both semantic and sensory data is observed. For example, in an
industrial setting it might be interesting to model sensor measurements from a
plant jointly with a given ontology. The improvement over the state-of-the-art
vision model shows that performance improvement does not only rely on better
computer vision models but also on improvements in the semantic modeling. As
part of future work, we will explore more expressive ontologies, for example by
integrating external information from publicly available knowledge graphs, to
further improve the results.
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