
Investigating Learnability, User Performance,
and Preferences of the Path Query Language

SemwidgQL Compared to SPARQL

Timo Stegemann(B) and Jürgen Ziegler

University of Duisburg-Essen, Duisburg, Germany
timo.stegemann@uni-due.de

http://interactivesystems.info

Abstract. In this paper, we present an empirical comparison of user
performance and perceived usability for Sparql versus SemwidgQL, a
path-oriented Rdf query language. We developed SemwidgQL to facili-
tate the formulation of Rdf queries and to enable non-specialist devel-
opers and web authors to integrate Linked Data and other semantic data
sources into standard web applications. We performed a user study in
which participants wrote a set of queries in both languages. We mea-
sured both objective performance as well as subjective responses to a
set of questionnaire items. Results indicate that SemwidgQL is easier to
learn, more efficient, and preferred by learners. To assess the applicability
of SemwidgQL in real applications, we analyzed its expressiveness based
on a large corpus of observed Sparql queries, showing that the language
covers more than 90% of the typical queries performed on Linked Data.

1 Introduction

The wealth of Linked Data published on the open Web [15] offers a wide range
of opportunities that are to date still underexploited in practical applications.
Integrating Linked Data from different sources into standard web sites, blogs or
other web applications would enable web authors and developers to reuse the vast
amount of information already available and create additional value by enriching
their content or by syndicating different data sources. However, a more wide-
spread use of textual and multimedia resources from Linked Data and, even more
so, of time-dependent data from the Internet of Things is currently significantly
hindered by their complexity. It thus seems important to lower the threshold for
users such as web developers or even normal web authors by providing techniques
for using Linked Data without requiring complicated technical installations or
the knowledge of powerful yet complex query languages such as Sparql.

To alleviate the problems involved in using linked data, we have developed
a JavaScript-based environment, that facilitates the integration of Linked Data
in web pages. A main component of this environment is the path query lan-
guage SemwidgQL that is intended to be significantly easier to use than stan-
dard Sparql. A first overview of the SemwidgJS environment was presented
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 611–627, 2017.
DOI: 10.1007/978-3-319-68288-4 36

612 T. Stegemann and J. Ziegler

in [16]. In this current paper, we focus on the path query language developed and
provide a description of its novel extensions. We further present a comprehen-
sive empirical user study comparing Sparql and SemwidgQL. The goal of this
study is to explore SemwidgQL’s effectiveness, efficiency, learnability for users,
and user preference in comparison to Sparql. The study supports our claim
that SemwidgQL is easier to learn, more efficient, and preferred by the learners.
To investigate how well SemwidgQL covers the range of Sparql queries used
in practice, we further analyzed several hundred thousand log entries of pub-
lic Sparql endpoints. Results indicate that SemwidgQL can cover most of the
requests that are currently made with Sparql.

2 Related Work

Several approaches to support querying, exploring and displaying Linked Open
Data have been described in literature so far. Many of these approaches are
specialized on browsing (e.g. [2,7]) and visualizing queried data values or sub
graphs (e.g. [8]) respectively, which is generating revealing insights but can only
be reused on other websites with large effort.

Fsl [11] and LDPath [14] are path query languages for Rdf data inspired by
XPath for Xml. LDPath is part of the Apache Marmotta platform for Linked
Data. One drawback of these languages is that they can only return single result
lists but not lists of results sets, which is necessary when querying a set of
different properties at once. Requesting coherent values from different properties
require distinct queries that request each property separately. Therefore, it is
not provided that these values stay connected, since the respective order can
be different, or values can be added to or removed from the data set between
requests. Rules for a translation into Sparql do not exist for these languages and
therefore they require direct access to the data or a special interface on the server
side. Language extensions for Sparql such as C-Sparql [1] and SparqlStream
[5] facilitate the usage of queries over streams of Rdf data. Time windows that
restrict the queried data to a period of time can be specified in a special From
Stream statement.

The performance of users for different query languages has already been eval-
uated in pre-Sql times [12]. However, since the effort is very high, user stud-
ies that compare different query languages are rarely conducted. Participants
require an extensive introduction to be able to use a query language at a satis-
fying level. Mostly this happens in the context of a lecture. We are not aware of
any user study that compares the participants’ performance with Sparql and
another query language of the Linked Data area.

3 SemwidgQL

SemwidgQL is a path query language that transcompiles to Sparql. In con-
trast to queries formulated in other Linked Data path query languages, such as
LDPath [14] or Fsl [11], SemwidgQL can therefore be used to query any public

Investigating Learnability, User Performance, and Preferences 613

Sparql endpoint without further special requirements. Unlike these languages,
SemwidgQL is also capable of querying sets of different properties at once, by
adding all properties of interest to the Select statement of its Sparql transla-
tion. Ultimately, SemwidgQL aims to combine the benefits of Sparql (such as
its prevalence in the Linked Open Data area or its ability of returning lists of
result sets) with the simplicity of path query languages.

In the following section, we give an overview of SemwidgQL’s core fea-
tures that have been described in more detail in a previous publication [16].
SemwidgQL has been significantly extended since then and we present fur-
ther features that were added to facilitate among others the querying of time-
sequential data, such as sensor data, and give experienced users more control
over the generated Sparql queries via filters and pseudo-filters. Specifications
of time windows are comparable to the approaches of Sparql streaming exten-
sions. In contrast to these extensions, SemwidgQL is compatible with regular
Sparql endpoints and requires no additional execution environment.

3.1 Core Features

As a path query language, SemwidgQL traverses Rdf graphs. The traversal is
indicated by the dot notation, which is reminiscent of the well-known syntax used
in object-oriented programming. Figure 1 shows the simplified basic structure of
a SemwidgQL query. Usually a query starts with a resource followed by one or
more properties. To further filter the result set, properties can be restricted.
Filters are enclosed in parentheses and are appended the property they restrict.
The left-hand side of a filter expression is typically a property (or a property
path) that refers to the property to restrict outside of the parentheses. The
right-hand side specifies a filter value that can be a literal, Iri, or even a nested
query. Between them stands a relational operator. Several filter expressions can

Fig. 1. Basic structure of a SemwidgQL query.

Table 1. Basic SemwidgQL queries and their meanings.

SemwidgQL query Technique Meaning

dbr:Vienna.rdfs:comment Path Expression Textual description of
Vienna

dbr:Vienna.^dbo:capital Inverse Property Country, where Vienna
is the capital

dbr:Vienna.^dbo:birthPlace

↪→ (rdf:type = dbo:SoccerPlayer)

Filter Soccer players, who
were born in Vienna

614 T. Stegemann and J. Ziegler

be combined by logical operators. Furthermore, SemwidgQL allows wildcard
selectors, inverse property selections, and multiple property selections. Table 1
shows some exemplary SemwidgQL queries.

3.2 Advanced Features

In addition to SemwidgQL’s core features, we have implemented several filter and
pseudo-filter keywords that, among others, simplify restricting language of string
literals or allow aggregation of results. Also, they facilitate querying of time-
sequential data with flexibly specified sampling intervals. Filter and pseudo-filter
keyword expressions can be combined with normal SemwidgQL filter expressions
and with each other as well. While filter expressions in SemwidgQL result in filter
expressions in Sparql, pseudo-filter expressions can have an impact on different
parts of the translated query. An overview of these expressions is given below.

Filter Expressions

@lang: With this keyword the language of the property can be filtered by
the given language code.
@self: This keyword refers to the property to restrict itself. Instead of fil-
tering a property that is related to the property to restrict, it can be filtered
directly.
@timestart/@timeend: These keywords allow the filtering of values after,
before, or (when combined) between two points of time. The right-hand side
of the expression can be an absolute date or a relative point in time, depending
on the time of the query execution. The expression is parsed as an equation,
whose first part is a timestamp or the term now followed by the amount of
time that has to be added or subtracted. This can be expressed in seconds,
minutes, hours, day, weeks, or a combination of these (e.g. now - 1 h 5 min).
@type: This keyword is equivalent to the property rdf:type.

Pseudo-Filter Expressions

@aggregate: This keyword allows to apply an aggregate function to the vari-
able of the property within the Select statement. Allowed values are Count,
Sum, Min, Max, Avg, and Sample.
@hide: If set to true, the variable of the property will not be part of the
Select statement.
@optional: If set to true, the triple pattern, in which the property is created,
will be enclosed in an Optional statement.
@predicate: Typically, the predicate of a triple pattern is not part of the
Select statement. If set to true, the predicate of the triple pattern, in which
the property is created, will be added to the Select statement.
@timeinterval: This keyword is used to group and aggregate time-sequential
values. On the right-hand side of the expression, a sampling interval can be

Investigating Learnability, User Performance, and Preferences 615

defined. All returned values within this interval will be aggregated. By default,
the Sample aggregate function will be applied to all variables, but different
functions can be specified by the @aggregate keyword. Similar to @timestart
and @timeend, the length of the interval can be expressed in seconds, minutes,
hours, day, weeks, or a combination of these.

*(ip:sensor = ir:TH_LF285 && ip:type = 'Temperature').[ip:value(@aggregate = 'AVG'),
ip:measuredAt(@timeinterval = '60 min' && @timestart = 'now - 7 days' && @aggregate = 'MIN')]

⇓
SELECT DISTINCT SAMPLE(?wildcard) AS ?wildcard

AVG(?value) AS ?value MIN(?measuredAt) AS ?measuredAt
WHERE {

?wildcard ip:value ?value .
?wildcard ip:measuredAt ?measuredAt .
?wildcard ip:sensor ?sensor .
?wildcard ip:type ?type .
FILTER (

?sensor = ir:TH_LF285_01 && STR(?type) = "Temperature"
)
FILTER (

xsd:dateTime(?measuredAt) >= now() - 604800
)
BIND(FLOOR((xsd:dateTime(?measuredAt) -

xsd:dateTime("1970-01-01T00:00:00")) / (3600)
) AS ?measuredAt_timeinterval)

}
GROUP BY ?measuredAt_timeinterval
ORDER BY DESC(?measuredAt_timeinterval)

Fig. 2. A SemwidgQL query and the corresponding Sparql query that requests the
average temperature measurements that were made by a specific sensor during the last
week, aggregated on an hourly base.

A SemwidgQL query and its rather complex translation into Sparql is
shown in Fig. 2. The query contains normal SemwidgQL filter expressions com-
bined with previously presented filter and pseudo-filter keyword expressions. It
requests the average temperature measurements that were made by a specific
sensor (located in our office) during the last week, aggregated on an hourly base.

4 Empirical User Study

We conducted an empirical user study comparing Sparql and SemwidgQL.
SemwidgQL was developed to be effective, efficient, and easy to learn by non-
expert users. The goal of our study is to explore whether SemwidgQL can fulfill
these requirements in comparison to Sparql. In addition we want to investigate
the users’ satisfaction. At the beginning of this section, we will describe the
design of the study and its procedure. Afterwards, we will present the results.
In conclusion, we interpret and discuss these results.

616 T. Stegemann and J. Ziegler

4.1 Method

Design: We conducted an empirical user study with a mixed methods design
and repeated measures, combining objective performance measures and a subjec-
tive questionnaire. For the performance measure, participants had to complete
several query interpretation and formulation tasks. Effectiveness was measured
by the number of correct answers of all query tasks.

Efficiency was measured by the participants’ performance measures for the
query formulation tasks. We investigated these tasks regarding nine dependent
variables, i.e. (a) number of keystrokes (number of keystrokes made by a partic-
ipant, including deletion and substitution of characters), (b) number of correc-
tions (number of correcting keystrokes made by a participant, such as backspace,
delete, replacing several selected characters etc.), (c) number of conjunct correc-
tions (a coherent sequence of correcting keystrokes forms a conjunct correction,
e.g. multiple backspaces in succession; typing of a character ends a conjunct
correction), (d) number of pauses (number of pauses taken by a participant; a
pause starts after two seconds without a keystroke; a pause might be an indica-
tor for that a participant requires some time to think about further actions that
are required to solve the task), (e) time of pauses (accumulated time of pauses
in seconds taken by a participant during a task; operationalizes thinking time),
(f) time on task (processing time of a task in seconds), (g) number of requests
(number of requests a participant made to the Sparql endpoint), (h) fraction
of erroneous requests (fraction of requests that could not be executed due to
parser errors etc.), (i) display time of solutions (time in seconds that a partic-
ipant inspected the sample solution; a high display time might be an indicator
that participants are uncertain about their solutions and therefore compare their
own and the model solution more thoroughly).

Learnability was evaluated by comparing the results of the query formulation
tasks from the initial and repeated measures regarding the above listed variables.

User preferences were measured through the answers from the questionnaire.
The questionnaire asked to rate six characteristics of Sparql and SemwidgQL
on the basis of an equidistant five-point numerical rating scale. The minimum
value always had a negative and the maximum value always had a positive
connotation. These items were related to the subjective assessment of Sparql’s
and SemwidgQL’s learnability, intuitiveness, logical structure, comprehensibility,
writing effort, and sophistication. Also, the participants were explicitly asked for
their personally preferred language and a brief explanation for their decision.

Participants: The study was attended by seven students (one female), all
enrolled on master courses in computer science at our University. The age of the
participants was between 23 and 28 years (M = 25.57;SD = 2.07). Three partic-
ipants had already gathered previous experience in Linked Data and Semantic
Web from different courses, and one student had already worked with Rdf and
Sparql as part of his bachelor thesis.

Investigating Learnability, User Performance, and Preferences 617

Procedure: The user study took place in the context of the introductory session
of a seminar on “Semantic Web Technologies and Applications” for graduate
students in the field of computer science. At the beginning of the seminar, the
participants were handed a three-page handout1, which contained an overview of
relevant Sparql and SemwidgQL commands, as well as a small Rdf graph that
was used for all examples and tasks of the presentation and evaluation. The graph
contained, among other things, some information about cities in the region,
such as label, population, districts, class, but also temperature measurements
of sensors. The data were chosen in such a way that the participants could
compensate for misunderstandings through their personal context knowledge.

The introductory session consisted of a three-hour lecture which was divided
into three one-hour sections. In the first section, the participants were taught
the basic ideas, techniques and formats on which Linked Data and the Semantic
Web are built. In the second section, the participants were given an introduction
to Sparql and in the third section an introduction to SemwidgQL. As far as
it was possible, the procedure corresponded to the procedure of the previous
section. Care was taken to explain both languages to a similar extent and it was
ensured that the participants understood both languages at a comparable level.

Afterwards, the participants had to complete a set of twelve query tasks. In
the first three tasks, they had to interpret predefined Sparql and SemwidgQL
queries. In the following nine tasks, they had to query predetermined informa-
tion using Sparql and SemwidgQL. Each task had to be processed with both
languages. Namespace definitions were predefined for both languages. The order
of the query languages changed at each task. At any time, participants could
query the Sparql endpoint and validate their queries and results. They could
quit tasks at any time and move on to the next one. No time limit was set for
solving a task. After each task, a model solution was presented.

Subsequently, the participants filled out a questionnaire in which they should
specify socio-demographic information and previous experiences with Semantic
Web and Linked Data techniques. Then they evaluated Sparql and SemwidgQL
regarding the above mentioned characteristics. One week after the introductory
session, the study was repeated.

Data Collection: The data of the interpretation and formulation of queries
were automatically collected via the specially prepared website on which the
participants had to solve their tasks. Each keystroke was recorded and stored
together with a time stamp in a central database. It was also recorded when the
Sparql endpoint was queried and it was recorded whether the query was valid
or contained errors. The time stamps, at which the participants started or ended
a task, the model solution was displayed, and a task was marked as successfully
completed or marked as canceled by the participants, were recorded as well. The
questionnaire data were collected via the online survey portal SoSci Survey2.

1 Handouts and tasks: https://semwidg.org/files/share/iswc2017 appendix.pdf.
2 https://www.soscisurvey.de/.

https://semwidg.org/files/share/iswc2017_appendix.pdf
https://www.soscisurvey.de/

618 T. Stegemann and J. Ziegler

4.2 Results

Correctness of Answers: Answers were divided into three categories. Correct
answers, answers with minor errors, and incorrect answers. Answers with minor
errors are syntactically correct and close to the model solutions, but can contain
minor inaccuracies, such as queries that contain a triple pattern for request-
ing a desired property but do not contain the corresponding variable in the
Select statement. Incorrect answers are syntactically incorrect, do not fulfill
the requirements given in the task description, or the task was aborted by the
user.

In total, we evaluated results of 147 tasks per language. From these results 21
belong to the query interpretation tasks and 126 belong to the query formulation
tasks. The participants performed slightly better, when interpreting SemwidgQL
queries compared to interpreting Sparql tasks. Regarding SemwidgQL, 86% of
the tasks were solved correctly, 14% of the solutions had minor errors. Regarding
Sparql, 76% of the tasks were solved correctly, and 24% of the solutions had
minor errors. There were no incorrect answers in terms of the query interpreta-
tion tasks. With regard to the query formulation tasks, the participants achieved
almost equally good results with both languages. Regarding Sparql, 90% of the
tasks were solved correctly, 6% of the solutions contained minor errors and 4%
were incorrect. Regarding SemwidgQL, 89% of the tasks were solved correctly,
7% of the solutions contained minor errors and 4% were incorrect.

Query Formulation Tasks: In the following subsections, we will describe the
results of the nine query formulation tasks (tasks 4–12), the participants had
to solve during the evaluation. For each of the following statistical tests, we
compared the participants’ performance regarding the nine dependent variables
listed in the study design subsection. For the subsequent tests, we restrict the
examined data to pairs of correct answers or answers with minor errors, since
data from incorrect or canceled solution would doubtlessly distort the results.

Analysis of Mean Performance: We compared the participants’ perfor-
mance regarding the above-mentioned dependent variables by calculating mul-
tiple dependent t-tests for paired samples. The further described results are
presented in detail in Table 2. SemwidgQL’s values regarding six of all nine
dependent variables were significantly better compared to Sparql. The number
of conjunct corrections (c) was descriptively better regarding SemwidgQL com-
pared to Sparql. However, this difference is not statistically significant. The
number of requests (g) and the fraction of erroneous requests (h) were better
in Sparql compared to SemwidgQL. These differences are also not statistically
significant.

Analysis of Learning Effects: We evaluated, how the participants perfor-
mance changed between the first and second pass of the user study. We also
compared the differences between Sparql and SemwidgQL during these two

Investigating Learnability, User Performance, and Preferences 619

Table 2. Differences between Sparql and SemwidgQL.

Sparql SemwidgQL t-test

M SD M SD t(124) p

(a) number of keystrokes 136.32 58.90 74.56 55.02 14.33 <.001 ***

(b) number of corrections 15.10 16.49 12.15 16.10 2.04 .044 *

(c) number of conjunct corrections 6.02 5.27 5.10 6.63 1.72 .088

(d) number of pauses 11.06 7.95 7.57 7.36 5.82 <.001 ***

(e) time of pauses (s) 99.82 122.89 67.84 73.91 2.99 .003 **

(f) time on task (s) 152.26 117.81 109.44 89.85 4.60 <.001 ***

(g) number of requests 3.54 4.51 4.26 5.78 −1.45 .150

(h) fraction of erroneous requests 0.19 0.27 0.21 0.27 −0.56 .578

(i) display time of solutions (s) 7.56 10.75 4.67 4.60 2.83 .005 **

*p < .05, **p < .01, ***p < .001

passes. Again, we calculated multiple dependent t-tests for paired samples. Dif-
ferences between Sparql and SemwidgQL at each pass are presented in Table 3
and Fig. 3. Differences between the first and second pass for each language are
shown in Table 4 and Fig. 3, in combination with the results of the previous tests.

In the first pass, results in terms of SemwidgQL were significantly better
regarding four of the nine dependent variables compared to Sparql, and descrip-
tively but not significantly better regarding two further dependent variables.
The participants never performed significantly better with Sparql. In the sec-
ond pass, results regarding SemwidgQL became significantly better at all but
one dependent variable compared to the first pass. Results regarding Sparql
became significantly better regarding four dependent variables. All other results
became descriptively but not significantly better. In comparison to Sparql,
participants performed significantly better with SemwidgQL regarding five of all
nine dependent variables. Again, the participants never performed significantly
better with Sparql.

Complexity-Dependent Analysis: We compared the performance of the par-
ticipants for Sparql and SemwidgQL regarding a task’s complexity. We assume
that complexity of a task is a predictor for the measured responses. For this
purpose, we conducted several linear regression analyses for the previously men-
tioned dependent variables and the complexity of a task as predictor variable.

In various works to determine the difficulty of Sparql (e.g. [10]) or other
(database) queries (e.g. [3,9]) Halstead’s complexity measure [6] has been used.
This measure is based on the number of distinct operators and operands as well
as the total number of operands of a query or piece of source code. Halstead’s
complexity measure tends to produce comparatively high values when Sparql
queries contain filter expressions because the number of operators increases
noticeably. Thus, it seems to overrate the influence of filter expressions on
complexity. Because of this limitation, we developed an alternative complexity

620 T. Stegemann and J. Ziegler

Table 3. Differences between Sparql and SemwidgQL per pass.

Sparql SemwidgQL t-test

Pass M SD M SD t(56) p

(a) number of keystrokes 1 143.74 71.14 83.65 66.78 2.54 .014 *

2 126.33 44.41 63.39 38.50 2.68 .010 **

(b) number of corrections 1 17.14 20.00 15.95 20.55 1.96 .056

2 12.28 11.28 7.74 8.81 3.40 .001 **

(c) number of conjunct corrections 1 6.09 6.05 6.44 8.82 0.71 .483

2 5.60 3.65 3.61 3.33 2.90 .005 **

(d) number of pauses 1 12.49 9.52 9.21 8.89 3.57 <.001 ***

2 8.79 4.87 5.54 5.03 4.00 <.001 ***

(e) time of pauses (s) 1 102.98 120.26 79.85 84.21 1.03 .309

2 80.88 115.70 49.39 50.57 3.58 <.001 ***

(f) time on task (s) 1 166.33 140.71 125.51 103.54 2.84 .006 **

2 118.67 53.56 85.65 61.55 3.85 <.001 ***

(g) number of requests 1 3.82 5.25 4.77 6.53 1.42 .161

2 2.89 2.66 3.11 3.18 2.53 .014 *

(h) fraction of erroneous requests 1 0.21 0.27 0.27 0.28 0.90 .374

2 0.17 0.26 0.12 0.22 3.77 <.001 ***

(i) display time of solutions (s) 1 10.40 14.60 4.58 4.63 3.33 .002 **

2 4.04 3.20 4.40 4.50 0.30 .765

*p < .05, **p < .01, ***p < .001

Table 4. Differences between first and second pass per language.

1st pass 2nd pass t-test

Langa M SD M SD t(56) p

(a) number of keystrokes A 143.74 71.14 126.33 44.41 2.54 <.001 ***

B 83.65 66.78 63.39 38.50 2.68 <.001 ***

(b) number of corrections A 17.14 20.00 12.28 11.28 1.96 .641

B 15.95 20.55 7.74 8.81 3.40 .004 **

(c) number of conjunct corrections A 6.09 6.05 6.44 3.65 0.71 .717

B 6.44 8.82 3.61 3.33 2.90 <.001 ***

(d) number of pauses A 12.49 9.52 8.79 4.87 3.57 .003 **

B 9.21 8.89 5.54 5.03 4.00 <.001 ***

(e) time of pauses (s) A 102.98 120.26 80.88 115.70 1.03 .109

B 79.85 84.21 49.39 50.57 3.58 .051

(f) time on task (s) A 166.33 140.71 118.67 53.56 2.84 .012 *

B 125.51 103.54 85.65 61.55 3.85 <.001 ***

(g) number of requests A 3.82 5.25 2.89 2.66 1.42 .264

B 4.77 6.53 3.11 3.18 2.53 .650

(h) fraction of erroneous requests A 0.21 0.27 0.17 0.26 0.90 .223

B 0.27 0.28 0.12 0.22 3.77 .266

(i) display time of solutions (s) A 10.40 14.60 4.04 3.20 3.33 .005 **

B 4.58 4.63 4.40 4.50 0.30 .613
aA: Sparql, B: SemwidgQL

*p < .05, **p < .01, ***p < .001

Investigating Learnability, User Performance, and Preferences 621

0

20

40

60

80

100

120

140

160

1st pass 2nd pass
0

3

6

9

12

15

18

1st pass 2nd pass
0

1

2

3

4

5

6

7

1st pass 2nd pass

0

2

4

6

8

10

12

14

1st pass 2nd pass
0

20

40

60

80

100

120

1st pass 2nd pass
0

30

60

90

120

150

180

1st pass 2nd pass

0

1

2

3

4

5

1st pass 2nd pass
.00

.05

.10

.15

.20

.25

.30

1st pass 2nd pass
0

2

4

6

8

10

12

1st pass 2nd pass

SPARQL SemwidgQL

a) b) c)

d) e)

h) i)

f)

g)

(*: p < .05, **: p < .01, ***: p < .001)

nu
m

be
r

of
 k

ey
st

ro
ke

s

nu
m

be
r

of
 c

or
re

ct
io

ns

nu
m

be
r

of
 c

on
ju

nc
t c

or
re

ct
io

ns

nu
m

be
r

of
 p

au
se

s
nu

m
be

r
of

 r
eq

ue
st

s

fr
ac

tio
n

of
 e

rr
on

eo
us

 r
eq

ue
st

s

di
sp

la
y

tim
e

of
 s

ol
ut

io
ns

 (
s)

tim
e

of
 p

au
se

s
(s

)

tim
e

on
 ta

sk
 (

s)

*** ***

**

*

**

** ***

**

*

*** ** **

Fig. 3. Differences between Sparql and SemwidgQL per pass, and differences between
first and second pass per language.

measure, which is based on the number of nodes of a query in Sparql Syn-
tax Expressions (Sse) notation3. Later on, we show that the empirical data are
better represented by the alternative Sse based complexity measure.

To calculate the Sse based complexity measure, we summed up the number
of nodes of the Sse syntax tree, but combined all nodes which were required
for matching the language in a filter expression into one. Since the participants
were taught this filter as a fixed expression in both languages, we assumed that
writing this expression requires no additional mental effort than a normal filter
expression. Also, we did not count the first projection node (i.e. Select), which
occurs in all Select queries. Table 5 shows the complexity values of the Sparql
sample solutions of each task in comparison, calculated according to Halstead’s
D as well as the Sse based complexity c. D and c values of tasks without filter

3 https://jena.apache.org/documentation/notes/sse.html.

https://jena.apache.org/documentation/notes/sse.html

622 T. Stegemann and J. Ziegler

Table 5. Comparison of complexity of Sparql sample solutions.

Task

4 5 6 7 8 9 10 11 12

Halstead D 2.67 4.00 3.50 8.25 3.60 7.71 3.75 8.40 9.10

Sse based complexity c 2 3 3 4 3 6 3 5 8

expressions (4, 5, 6, 8, 10) are very similar, while D values of tasks with filter
expressions (7, 9, 11, 12) are noticeably higher than c values. We argue that this
method is much closer aligned to the mental processes a user has to perform
when solving a task than Halstead’s method. We calculated the regression lines
for all response variables with each D and c as predictors and Sparql as query
language. Based on the yielded coefficient of determination R2, we calculated
a Wilcoxon Signed-Rank Test that supports our statement and indicates that
the median for c, Mdn = .86, was significantly better than the median for D,
Mdn = .56 (z = −2.35, p = .016).

The results of the linear regression analyses with c as predictor variable for
all response variables with Sparql and SemwidgQL are presented in Table 6
and Fig. 4. Since we did not want to compare the theoretical complexity of
Sparql and SemwidgQL but their practical performance at tasks with different
complexities, we chose the complexity value of the Sparql sample solution query

Table 6. Linear regression analyses with Sse based complexity as predictor.

Langa F (1, 7) p R2 f fi(c)b

(a) number of keystrokes A 92.43 <.001 .93 3.63 23.90c + 41.98

B 64.04 <.001 .90 3.02 21.32c − 9.57

(b) number of corrections A 36.93 .001 .84 2.30 4.00c − 1.30

B 24.22 .002 .78 1.86 4.33c − 4.95

(c) number of conjunct corrections A 42.98 <.001 .86 2.48 1.67c − 0.77

B 25.06 .002 .78 1.89 1.82c − 2.13

(d) number of pauses A 156.63 <.001 .96 4.73 3.08c − 0.72

B 81.27 <.001 .92 3.41 3.24c − 5.02

(e) time of pauses (s) A 34.19 .001 .83 2.21 39.51c − 50.15

B 60.02 <.001 .90 2.93 36.70c − 71.90

(f) time on task (s) A 92.33 <.001 .93 3.63 46.19c − 31.83

B 57.90 <.001 .89 2.88 40.24c − 47.17

(g) number of requests A 18.27 .004 .72 1.62 2.54c − 5.95

B 59.15 <.001 .89 2.91 2.18c − 3.41

(h) fraction of erroneous requests A 2.05 .195 .23 0.54 0.05c + 0.07

B 0.52 .494 .07 0.27 0.02c + 0.23

(i) display time of solutions (s) A 19.27 .003 .73 1.66 2.27c − 1.64

B 7.41 .030 .51 1.03 1.33c − 0.53
aA: Sparql, B: SemwidgQL
bLinear regression equation, i: measured response, c: complexity

Investigating Learnability, User Performance, and Preferences 623

R²=.93

R²=.90

0

50

100

150

200

250

2 3 4 5 6 7 8

nu
m

be
r

of
 k

ey
st

ro
ke

s

R²=.84

R²=.78

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

nu
m

be
r

of
 c

or
re

ct
io

ns

R²=.86
R²=.78

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

nu
m

be
r

of
 c

on
ju

nc
t c

or
re

ct
io

ns

SPARQL SemwidgQL

R²=.96

R²=.92

0

5

10

15

20

25

30

2 3 4 5 6 7 8

nu
m

be
r

of
 p

au
se

s

R²=.83

R²=.90

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8

tim
e

of
 p

au
se

s
(s

)

R²=.93

R²=.89

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8

tim
e

on
 ta

sk
 (

s)
R²=.72

R²=.89

0

5

10

15

20

2 3 4 5 6 7 8

nu
m

be
r

of
 r

eq
ue

st
s

R²=.23

R²=.07

.00

.10

.20

.30

.40

.50

.60

.70

.80

2 3 4 5 6 7 8

fr
ac

tio
n

of
 e

rr
on

eo
us

 r
eq

ue
st

s

R²=.73

R²=.51

0

5

10

15

20

25

2 3 4 5 6 7 8

di
sp

la
y

tim
e

of
 s

ol
ut

io
ns

 (
s)

a) b) c)

d) e) f)

g) h) i)

Fig. 4. Linear regression analyses with task complexity as predictor.

as complexity value for the corresponding tasks. Results indicate that there is
a significant association between complexity c and all response variables except
for fraction of erroneous requests (h). The corresponding regression equations
have very high R2 values (one third of them ≥ .90) and the effect sizes f are
also high, according to Cohen [4].

The regression lines for the values of SemwidgQL in the examined range
of c are in all cases, except number of requests (g) and fraction of erroneous
requests (h), below the regression lines for the values of Sparql. In four of
these seven cases, the slopes of the SemwidgQL lines are less steep than the
slopes of the Sparql lines, suggesting that SemwidgQL will perform better then
Sparql at more complex tasks. In the remaining three cases, the lines intersect
at complexity values above the investigated range.

Subjective Evaluation by the Participants: In the following subsection, we
will present the results of the questionnaire, the participants completed after the
query tasks. We calculated multiple Wilcoxon Signed-Rank Tests to compare the
participants’ subjective ratings for Sparql and SemwidgQL. Writing effort was

624 T. Stegemann and J. Ziegler

rated significantly better regarding SemwidgQL, Mdn = 4, compared to Sparql,
Mdn = 2 (z = −3.03, p = .001). Sophistication was also rated significantly better
regarding SemwidgQL, Mdn = 4, compared to Sparql, Mdn = 2 (z = −3.23,
p < .001). There were no significant differences regarding the subjective ratings
of learnability, intuitiveness, logical structure, and comprehensibility (see Fig. 5).
When asked for advantages of SemwidgQL over Sparql, the participants named
nine unique characteristics with 30 occurrences in total. Particularly the shortness
of queries and the similarity to object orientated programming languages were
frequently mentioned. The participants only named three unique advantages of
Sparql over SemwidgQL with 5 occurrences in total (see Fig. 6). In 79% of the

0% 20% 40% 60% 80% 100%

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

le
ar

n-
ab

ili
ty

in
tu

iti
ve

-
ne

ss
lo

gi
ca

l
st

ru
ct

ur
e

co
m

pr
e-

he
ns

ib
ili

ty
w

ri
tin

g
ef

fo
rt

so
ph

is
ti-

ca
tio

n

mean values1 2 3 4 5numerical rating (1 = negative, 5 = positive):

**

1 2 3 4 5

95% CI

(*
: p

 <
 .0

5,
 **

: p
 <

 .0
1,

 **
*:

p
<

 .0
01

)

4.07
4.00

3.50
4.07

4.21
4.50

4.07
3.86

2.43
4.29

2.29
4.07

Fig. 5. Subjective evaluation of Sparql and SemwidgQL.

0 1 2

more intuitive

completeness

similar to SQL

SPARQL

0 1 2 3 4 5 6 7 8 9 10

path query language

increased readability

quick detection of errors

more logical

more intuitive

easier to learn

easier to write

similar to OOP languages

short queries

SemwidgQL

Fig. 6. Cumulative numbers of stated advantages of Sparql and SemwidgQL.

Investigating Learnability, User Performance, and Preferences 625

answers SemwidgQL was named as the preferred query language. Accordingly,
Sparql was only preferred in 21% of the answers.

4.3 Discussion

The user study showed that the participants performed significantly better with
SemwidgQL regarding most of the evaluated dependent variables compared to
Sparql. Especially the time on task, the number of corrections, and the number
and time of pauses that the participants took to think about the correct solution
of the task indicate that SemwidgQL is easier to use than Sparql.

After the introductory session, the participants achieved better results with
SemwidgQL than with Sparql regarding most of the evaluated dependent vari-
ables. They improved significantly in the second pass in all but one area with
SemwidgQL. Most of the improvements with Sparql were not significant. The
participants had already performed better in the first pass with SemwidgQL, and
had improved even more in the second pass compared to Sparql. The results
suggest that SemwidgQL is easier to learn.

The reason for the better results with SemwidgQL was not that some already
simple tasks were made even easier. The linear regression analyses indicate that
the good results with SemwidgQL were achieved at all evaluated complexity
levels. Some regression lines predict that even more complex tasks than that
we have evaluated can be solved better with SemwidgQL. However, it should
also be noted that some regression lines indicate that users will perform worse
with SemwidgQL at tasks with higher complexity levels than evaluated. Since
continuously written SemwidgQL queries can become very unwieldy at a certain
length, this is to be expected.

The good results of the objective measures are supported by the participants’
subjective evaluation, the number of mentioned advantages and, of course, the
explicit personal preference for SemwidgQL of 79%.

5 Evaluation of SemwidgQL’s Expressiveness

To investigate how well SemwidgQL covers the range of Sparql queries used in
practice we analyzed to what extent our language is able to express the queries
that occur in the Linked Sparql Queries Dataset (Lsq), collected by Saleem
et al. [13]. We extracted 636,876 unique Select queries with 1,526,804 execu-
tions and then transformed them into a parameterized form. We mapped all
Iris, variables, literals and language tags of each query to a generic format (e.g.
SELECT ?v2 WHERE {<i1> ?v1 ?v2}), and replaced all wildcards in Select
statements with the corresponding list of variables from the Where statement
and harmonized language filter expressions. Completely identically parameter-
ized queries were merged automatically. We were able to manually merge further
pattern that were not syntactically but semantically identical (e.g. queries with
the same triple patterns in their Where clauses, but in different order, or queries
with and without the Distinct keyword, where the Distinct keyword is not

626 T. Stegemann and J. Ziegler

able to reduce the result set). Finally, we obtained 1619 unique query patterns
where the first 120 patterns of the most frequently executed queries represent
99% of the Select queries executed overall in the Lsq dataset.

Based on these 120 query patterns, we evaluated how well SemwidgQL covers
the range of Sparql queries used in practice. From these patterns 66, represent-
ing 91% of the overall executed queries, can be directly expressed in SemwidgQL
without any limitations. In contrast, 15 of these patterns, representing only 2%
of the overall executed queries, can not be expressed. These patterns contain
Group By expressions or function calls, such as bound or isLiteral, which are
not implemented in SemwidgQL. The remaining 39 patterns, representing 6%
of the queries executed overall, make use of Union graph patterns. SemwidgQL
does not provide an equivalent for these constructs. Nevertheless, some of these
patterns can be expressed without Union but with Filter expressions. Addi-
tionally, SemwidgQL allows the declaration of multiple queries in a single state-
ment. These queries are translated into separate Sparql queries. Combining
their results is up to the processing program.

We calculated the Sse based complexity measure for the 120 most frequently
used query patterns. Most of the requests made (89%) have a c value below or
equal to 8 and thus lay in the evaluated range of our user study. One third of
them have a c value of 2 or 3. Few query patterns have c values above 20 (up to
58). However, these patterns only represent less than 3% of the requests made.

6 Conclusion

We have presented SemwidgQL, a path query language for Rdf data that
transcompiles to Sparql. Our empirical user study indicates that SemwidgQL is
easier to learn, more efficient, and preferred by the learners compared to Sparql.
An additional evaluation of the Lsq dataset indicates that SemwidgQL, despite
its limited expressiveness, is capable of querying most of the data that is cur-
rently queried with Sparql. Also, the queries we used in the user study have
a comparable complexity to queries that are used in practice. SemwidgQL is
not intended as a replacement for Sparql but rather as a more light-weight
language that lowers the entry barriers to the Semantic Web and Linked Data
area. Results indicate that SemwidgQL is suitable for this purpose.

References

1. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: Proceedings of the 13th International Conference on
Extending Database Technology, EDBT 2010, pp. 441–452. ACM, New York (2010)

2. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J.,
Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the seman-
tic web. In: Proceedings of the 3rd International Semantic Web User Interaction
Workshop (2006)

3. Casterella, G.I., Vijayasarathy, L.: An experimental investigation of complexity in
database query formulation tasks. J. Inf. Syst. Educ. 24(3), 211 (2013)

Investigating Learnability, User Performance, and Preferences 627

4. Cohen, J.: A power primer. Psychol. Bull. 112(1), 155 (1992)
5. Corcho, O., Calbimonte, J.P., Jeung, H., Aberer, K.: Enabling query technologies

for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)
6. Halstead, M.H.: Elements of Software Science, vol. 7. Elsevier, New York (1977)
7. Harth, A.: VisiNav: a system for visual search and navigation on web data. Web

Semant. Sci. Serv. Agents World Wide Web 8(4), 348–354 (2010)
8. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:

revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y.,
Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol.
5887, pp. 182–187. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10543-2 21

9. Lassila, M., Junkkari, M., Kekäläinen, J.: Comparison of two XML query languages
from the perspective of learners. J. Inf. Sci. 41(5), 584–595 (2015)

10. Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.:
Semantic web application development with LITEQ. In: Mika, P., et al. (eds.)
ISWC 2014. LNCS, vol. 8797, pp. 212–227. Springer, Cham (2014). doi:10.1007/
978-3-319-11915-1 14

11. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: a browser-independent pre-
sentation vocabulary for RDF. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol.
4273, pp. 158–171. Springer, Heidelberg (2006). doi:10.1007/11926078 12

12. Reisner, P., Boyce, R.F., Chamberlin, D.D.: Human factors evaluation of two data
base query languages: square and sequel. In: Proceedings of the National Computer
Conference and Exposition, AFIPS 1975, pp. 447–452. ACM, New York, 19–22 May
1975

13. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked
SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol.
9367, pp. 261–269. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 15

14. Schaffert, S., Bauer, C., Kurz, T., Dorschel, F., Glachs, D., Fernandez, M.: The
linked media framework: Integrating and interlinking enterprise media content and
data. In: Proceedings of the 8th International Conference on Semantic Systems,
pp. 25–32. I-SEMANTICS 2012. ACM, New York (2012)

15. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 245–260. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 16

16. Stegemann, T., Ziegler, J.: SemwidgJS: a semantic widget library for the rapid
development of user interfaces for linked open data. In: Plödereder, E., Grunske,
L., Schneider, E., Ull, D. (eds.) 44. Jahrestagung der Gesellschaft für Informatik
GI, Informatik 2014. LNI, vol. 232, pp. 479–490 (2014)

http://dx.doi.org/10.1007/978-3-642-10543-2_21
http://dx.doi.org/10.1007/978-3-319-11915-1_14
http://dx.doi.org/10.1007/978-3-319-11915-1_14
http://dx.doi.org/10.1007/11926078_12
http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1007/978-3-319-11964-9_16

	Investigating Learnability, User Performance, and Preferences of the Path Query Language SemwidgQL Compared to SPARQL
	1 Introduction
	2 Related Work
	3 SemwidgQL
	3.1 Core Features
	3.2 Advanced Features

	4 Empirical User Study
	4.1 Method
	4.2 Results
	4.3 Discussion

	5 Evaluation of SemwidgQL's Expressiveness
	6 Conclusion
	References

