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Abstract. Automated acquisition (learning) of ontologies from data has
attracted research interest because it can complement manual, expensive
construction of ontologies. We investigate the problem of General Termi-
nology Induction in OWL, i.e. acquiring general, expressive TBox axioms
(hypotheses) from an ABox (data). We define novel measures designed to
rigorously evaluate the quality of hypotheses while respecting the stan-
dard semantics of OWL. We propose an informed, data-driven algorithm
that constructs class expressions for hypotheses in OWL and guarantees
completeness. We empirically evaluate the quality measures on two cor-
pora of ontologies and run a case study with a domain expert to gain
insight into applicability of the measures and acquired hypotheses. The
results show that the measures capture different quality aspects and not
only correct hypotheses can be interesting.

1 Introduction

In computer science, an ontology is a machine-processable representation of
knowledge about some domain. Ontologies are encoded in ontology languages,
such as the expressive Web Ontology Language [11] (OWL) based on Descrip-
tion Logics [3] (DLs). An ontology is a set of logical statements, called axioms.
Axioms can be universal statements or specific facts. The set of universal state-
ments of an ontology is called the TBox and represents schema-level conceptual
relationships, or terminology. The set of facts of an ontology is called the ABox
and represents instance-level class and property assertions, or data. Besides sim-
ple “SubClassOf” relationships and class definitions, OWL allows for encoding
complex TBox axioms such as general class inclusions (GCIs) where complex
class expressions occur on both sides, e.g. ∃hasChild.� � Mother � Father
states that “having a child implies being a mother or father”.

Since manual engineering of TBoxes is a difficult, time-consuming task, auto-
mated acquisition of them from data has attracted research attention. In this
paper, we investigate learning expressive TBox axioms (hypotheses) from a given
ABox (data). Our contributions are as follows:

– definitions of novel quality measures that can rigorously evaluate expressive
GCIs in OWL respecting its semantics;
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– an informed, bottom-up algorithm that efficiently constructs complex class
expressions (and thus GCIs) in OWL and guarantees completeness;

– an empirical analysis of the relationships between the quality measures via
mutual correlations;

– the design and execution of a case study which confirms the ability of our
approach to generate three different kinds of interesting hypotheses and gains
insight into relationships of the measures with hypothesis validity and inter-
estingness.

2 Preliminaries

We assume the reader to be familiar with DLs [3] and OWL [11]. We denote an
ontology as O := T ∪ A, where T and A are its TBox and ABox, respectively.
An axiom is denoted as α or η. A general class inclusion (GCI) is an axiom of the
form C � D, where C and D are (possibly complex) class expressions, and cor-
responds to a “SubClassOf” axiom in OWL. An object property inclusion (OPI)
is an axiom of the form R � S, where R and S are (possibly complex) object
property expressions, and corresponds to a “SubObjectPropertyOf” axiom in
OWL. A hypothesis is a TBox axiom (GCI or OPI). An ABox axiom, called
fact, is an assertion of the form C(a) or R(a, b), where C is a class expression, R
an object property, a, b individuals. The set of all terms occurring in an ontology
O is called the signature of O and denoted as ˜O (˜T is the signature of T ). We
denote the set of all individuals occurring in O as in(O). We use |= to denote
the usual entailment relation and ≡ to denote logical equivalence. The func-
tion �(C) returns the usual syntactic length [3,13] of a class expression C, e.g.
�(∃R.A � ∀R.(¬B � ∃S.B)) = 9; �(C � D) = �(C) + �(D); �(O) =

∑

α∈O �(α).

3 Related Work

There are different approaches to acquiring TBox axioms from data. The com-
mon approach is Class Description Learning [5,7,14–16,18] (CDL) which aims at
inducing a description (class expression) C of a given class name A using a set of
positive and negative training examples. Statistical Schema Induction [22] uses
Association Rules Mining (ARM) to generate and evaluate candidate axioms
using off-the-shelf quality measures [10]. BelNet [23] learns a Bayesian Network
from data and uses its structure to generate the corresponding TBox. In con-
trast to CDL, the last two approaches are not restricted to learning only class
descriptions and can generate GCIs with complex class expressions on both
sides. However, they require specifying shapes of generated axioms and have so
far been considerably limited in expressivity, i.e. richness of knowledge that gen-
erated axioms are able to capture. Moreover, they tend to view a given ABox
(data) under the Closed Word Assumption (CWA) or some form of it [9]. This
is unnatural for the standard semantics of OWL allowing for the Open World
Assumption (OWA), i.e. incomplete information. In addition, the approaches
usually ignore the given TBox while generating candidate axioms.
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Like ARM-based approaches, we focus on learning GCIs rather than class
expressions. The rationale is that the former can express arbitrary implications,
e.g. “people who pay dog tax also buy dog food”, while the latter cannot since it
captures commonalities in the given group of individuals (as positive or negative
examples), e.g. “people who pay dog tax”. Thus, the goals of learning GCIs
and learning class expressions are rather different. To draw further similarities
between our approach and ARM, we can view an individual as a transaction
that contains class expressions as its items. A class expression is included in the
transaction if and only if the individual is an instance of that class expression.
However, in contrast to items in ARM, class expressions can be logically related
to each other (in light of the TBox) and it can be unknown whether a class
expression is in the transaction or not because of the OWA. In addition, unlike
items in ARM, class expressions are not usually known in advance and naive
generation of them is infeasible in all but trivial cases.

4 Advanced Evaluation of Hypotheses

A candidate axiom, or hypothesis, can be evaluated by different quality criteria.
One can use the usual axiom length and depth [3,4,13] to evaluate readability.
As we suggested in [20], logical quality can be evaluated by consistency, infor-
mativeness, and logical strength (weakness): an axiom α is called consistent with
an ontology O if O ∪ {α} is consistent; α is called informative for a TBox T if
T 
|= α; α is said to be weaker than another axiom α′ if α′ |= α and α 
|= α′.
Statistical quality can be evaluated by fitness and braveness [20]. Intuitively,
fitness counts the number of facts entailed by a hypothesis and braveness counts
the number of “guesses” of a hypothesis.

Definition 1 (fitness, braveness). Let O := T ∪ A be an ontology, C a set
of class expressions with their negations included, α a GCI consistent with O.
Then, the fitness and braveness of α are defined as follows:

fit(α,O, C) := dlen(π(O, C), T ) − dlen(π(O, C), T ∪ {α})
bra(α,O, C) := dlen(ψ(α,O, C), O)

where π(O, C) := {C(a) | O |= C(a), C ∈ C, a ∈ in(O)},1 ψ(α,O, C) :=
π(O ∪ {α}, C) \ π(O, C), dlen(B,O) := min{�(B′) | B′ ∪ O ≡ B ∪ O}.

4.1 New Logical Measures

To capture further aspects of logical quality, we propose new logical measures:
dissimilarity and complexity. These are numeric logical measures (compare to
consistency, informativeness, and logical strength mentioned above).

Dissimilarity. Given a GCI C � D, one can measure how “dissimilar” C and D
are with respect to the TBox. Intuitively, the more dissimilar they are, the more
1 It is the result of retrieving instances of every C ∈ C.
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“surprising” the axiom is for the TBox. We adapt the class similarity measure
from [2].

Definition 2 (Dissimilarity). Let O := T ∪A be an ontology, C a set of class
expressions, subs(C, C, T ) := {C ′ ∈ C∪{C} | T |= C � C ′}. The dissimilarity
of α := C � D is defined as follows:

dsim(α, C, T ) := 1 − |subs(C, C, T ) ∩ subs(D, C, T )|
|subs(C, C, T ) ∪ subs(D, C, T )| .

Informally, given a TBox T , the dissimilarity of a GCI C � D measures how
many common subsumers the class expressions C and D have in a set C of class
expressions.

Example 1. Consider the following TBox:

T := {C1 � B1, B1 � A1, A1 � A,

C2 � B2, B2 � A2, A2 � A}.

Given C := ˜T (all classes of T ), the dissimilarity of α1 := C1 � C2 is higher
than the one of α2 := A1 � C2:

dsim(α1, C, T ) = 1 − |{A}|
|{A,A1, B1, C1, A2, B2, C2}| =

6
7

dsim(α2, C, T ) = 1 − |{A}|
|{A,A1, A2, B2, C2}| =

4
5

The dissimilarity of an OPI is defined analogously and omitted for the sake of
brevity. The minimal (maximal) value of dissimilarity implies that all subsumers
are the same (different). Dissimilarity is a symmetric measure, i.e.

dsim(C � D, C, T ) = dsim(D � C, C, T ).

Complexity. Given an axiom α, we can compare the complexity of the new
theory T ∪ {α} with the complexity of the old theory T by quantifying how
many new entailments the new theory has. As the set of new entailments is
infinite in general, we only consider a finite subset of them.

Definition 3 (Complexity). Let O := T ∪ A be an ontology, C a set of
class expressions. The complexity of α := C � D is defined as follows:
com(α, C, T ) := |{η | T ∪ {α} |= η, T 
|= η, η = C1 � C2, C1, C2 ∈ C}|.

Thus, we only count new entailments that are subsumptions between class
expressions from a fixed set C. The complexity of an OPI is defined analogously
and omitted for the sake of brevity. In contrast to dissimilarity, complexity is
asymmetric. They are rather independent measures, see Example 2.
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Example 2. Let us calculate the complexity of the axioms α1 and α2 from
Example 1:

com(α1, C, T ) = |{C1 � C2, C1 � B2, C1 � A2}| = 3,

com(α2, C, T ) = |{C1 � C2, C1 � B2, C1 � A2,

B1 � C2, B1 � B2, B1 � A2,

A1 � C2, A1 � B2, A1 � A2}| = 9.

Thus, α1 has lower complexity than α2 but higher dissimilarity. In addition,
consider the axiom α3 := B1 � C2 � A1: com(α3, C, T ) = 0 since T |= α3 but

dsim(α3, C, T ) = 1 − |{A,A1}|
|{A,B1, A1, C2, B2, A2}| =

2
3
.

4.2 New Statistical Measures

We propose new statistical measures that capture further aspects of statistical
quality while respecting the standard semantics of OWL and given TBox. They
are based on counting instances of certain kinds.

Definition 4 (Instance function). Let O be an ontology; C̊ ∈ {C, ?C}, where
C is a class expression. The instance function is defined as follows:

inst(C̊,O) :=
{

{a ∈ in(O) | O |= C(a)} if C̊ = C

{a ∈ in(O) | O 
|= C(a) ∧ O 
|= ¬C(a)} if C̊ = ?C

Basic Measures. Let us consider a GCI C � D. The axiom states that all
instances of C are also instances of D. Given an ontology O := T ∪ A, we can
check how well the data in A supports this statement taking the background
knowledge in T into account.

Definition 5 (Basic measures). Given an ontology O, the basic coverage,
support, contradiction, assumption of α := C � D are defined, respectively, as
follows:

bcov(α,O) := |inst(C, O)| bsup(α,O) := |inst(C � D, O)|
bcnt(α,O) := |inst(C � ¬D, O)| basm(α,O) := |inst(C, O) ∩ inst(?D, O)|

Support is presumably a positive measure, i.e. higher values indicate better
quality, while contradiction and assumption are presumably negative ones, i.e.
lower values indicate better quality. Coverage is neither positive nor negative
as it is the sum of support, contradiction, and assumption. Support is a sym-
metric measure, while others are not. The basic measures respect the OWA via
distinguishing assumption and contradiction.
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Example 3. Consider the ontology O := T ∪ A that models family relations,
where the TBox T and ABox A are as follows (hc, mt stand for hasChild,
marriedTo).

T = {Father � Man, Mother � Woman, Man � ¬Woman, mt � mt−},

A = {Man(Arthur), Father(Chris), Father(James), Woman(Charlotte),
Woman(Margaret), Mother(Penelope), Mother(V ictoria),
hc(James,Charlotte), hc(V ictoria, Charlotte), hc(Chris, V ictoria),
hc(Penelope, V ictoria), hc(Chris,Arthur), hc(Penelope,Arthur),
mt(Chris, Penelope), mt(James, V ictoria), mt(Arthur,Margaret)}.

Consider the following axioms:

α1 := ∃mt.� � Mother, α2 := ∃hc.� � Mother.

Their basic measures are calculated as follows:

bsup(α1,O) = 2 bcnt(α1,O) = 3 basm(α1,O) = 1 bcov(α1,O) = 6
bsup(α2,O) = 2 bcnt(α2,O) = 2 basm(α2,O) = 0 bcov(α2,O) = 4

Thus, α2 is better than α1 because its support is the same but its contradiction
and assumption are lower.

The basic measures can be defined for an OPI R � S in the same way as for a
GCI C � D. The only difference is that, instead of returning instances of a class
expression C, the instance function would return instances of an object property
expression R, i.e. individual pairs (a, b) which are entailed to be connected by R.
Please note that assumption resembles braveness [20] but counts “guesses” of a
hypothesis in a more straightforward way since it depends only on a hypothesis
and ontology.

Main Measures. The basic measures only consider the “forward” direction
of a GCI C � D. According to the semantics of OWL, C � D has also the
“backward” direction. Formally, C � D ≡ ¬D � ¬C which is called the law
of contraposition, where ¬D � ¬C is called the contrapositive of C � D. Thus,
C � D not only implies that all instances of C are instances of D but also implies
that all instances of ¬D are instances of ¬C. We refine the basic measures using
a syntactic trick to “merge” a GCI and its contrapositive into a single GCI.

Definition 6 (Main Measures). Let O be an ontology, α := C � D, and
α := C �¬D � ¬C �D. The main coverage, support, contradiction, assumption
of α are defined, respectively, as follows:

cov(α,O) := bcov(α,O) sup(α,O) := bsup(α,O)
cnt(α,O) := bcnt(α,O) asm(α,O) := basm(α,O)
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In comparison to the basic measures, see Definition 5, their respective
main measures additionally count individuals relevant for the contrapositive.
Example 4 shows how a main measure can differ from its basic measure.

Example 4. In Example 3, we evaluate α2 := ∃hc.� � Mother via the basic mea-
sures. Its basic assumption is basm(α2,O) = 0, i.e. α2 makes no “guesses”. How-
ever, its main assumption is asm(α2,O) = 1. Indeed, as Arthur is an instance
of ¬Mother, the axiom α2 assumes that Arthur has no children, i.e. he is an
instance of ¬(∃hc.�).

In contrast to the basic measures, the main measures always return the same
values for an axiom and its contrapositive. Thus, they respect the semantics of
OWL better than the basic measures. The main measures of an axiom can be
represented via the basic measures of that axiom and its contrapositive. These
properties are stated by Lemma 1.

Lemma 1. Let O be an ontology, α := C � D, and α′ := ¬D � ¬C. Then

cov(α,O) = cov(α′,O) = bcov(α,O) + bcov(α′,O) − bcnt(α,O)
sup(α,O) = sup(α′,O) = bsup(α,O) + bsup(α′,O)
cnt(α,O) = cnt(α′,O) = bcnt(α,O) = bcnt(α′,O)

asm(α,O) = asm(α′,O) = basm(α,O) + basm(α′,O)

Proof. Follows from Definitions 4, 5, and 6, see [19] for details.

Clearly, the basic and main measures coincide if ¬C and ¬D have no instances
in O, e.g. C and D are EL class expressions and O is in EL. Example 5 illustrates
how evaluating a disjointness axiom under the OWA differs from evaluating it
under the CWA which is commonly made for learning disjointness axioms, see
e.g. [8].

Example 5. Consider the ontology

O := {A(a1), . . . , A(am), B(b1), . . . , B(bn)}.

Under the CWA, the absence of information in O is treated as negation:

O¬ := O ∪ {¬B(a1), . . . ,¬B(am), ¬A(b1), . . . ,¬A(bn)}.

Consider the disjointness axiom α := A � ¬B. Under the CWA, it is assumed,
perhaps wrongly, to be of high quality: sup(α,O¬) = m+n, asm(α,O¬) = 0. In
contrast, under the OWA, its evaluation better reflects the state of knowledge
in O: sup(α,O) = 0, asm(α,O) = m + n.

Composite Measures. As an axiom C � D in OWL is similar to an associ-
ation rule X ⇒ Y in ARM, rule measures [10] can be adapted to OWL. The
challenge is to respect the OWA, i.e. consider that there is ?C, see Definition 4,
in addition to C and ¬C. Given a rule measure f(X,Y ), we suggest to translate
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it as follows. First, substitute each positive occurrence of a variable X (Y ) in
f(X,Y ) with a class expression C (D). If neither X nor Y occurs negatively
in f(X,Y ), then the translation is finished and results in the axiom measure
f(C,D). Otherwise, obtain two axiom measures as follows: substitute each neg-
ative occurrence ¬X (¬Y ) in f(X,Y ) with ¬C (¬D), resulting in f¬(C,D), and
with ?C (?D), resulting in f?(C,D). Following this procedure, we translate the
standard rule measures: confidence, lift, and conviction.

Definition 7 (Composite basic measures). Let O be an ontology; C̊ ∈
{C, ?C}, where C is a class expression;

PO(C̊1, . . . , C̊k) :=
1

|in(O)| |
k

⋂

i=1

inst(C̊i,O)|.

The basic confidence, lift, negated and assumed conviction of α := C � D are
defined, respectively, as follows:

bconf(α,O) :=
PO(C,D)
PO(C)

blift(α,O) :=
PO(C,D)

PO(C) · PO(D)

bconv¬(α,O) :=
PO(C) · PO(¬D)

PO(C,¬D)
bconv?(α,O) :=

PO(C) · PO(?D)
PO(C, ?D)

The OWA is taken into consideration via distinguishing negated and assumed
conviction. The composite basic measures can be rewritten using the basic cov-
erage, support, contradiction, and assumption, see [19] for details.

Example 6. We calculate the composite basic measures of the axioms α1 and
α2 in Example 3. We first calculate the required probabilities (M stands for
Mother): PO(M) = 2

7 , PO(¬M) = 3
7 , PO(?M) = 2

7 . Then, we use them along
with the basic measures calculated in Example 3:
bconf(α1,O) = 2

6 = 1
3 , blift(α1,O) = 2

6· 27
= 7

6 , bconv¬(α1,O) = 6· 37
3

= 6
7 , bconv?(α1,O) = 6· 27

1 = 12
7 ; bconf(α2,O) = 2

4 = 1
2 , blift(α2,O) = 2

4· 27
= 7

4 , bconv¬(α2,O) = 4· 37
2 = 6

7 , bconv?(α2,O) = 4· 27
0 = ∞.

The composite basic measures can be refined to treat GCIs according to the
standard semantics of OWL, i.e. as being equivalent to their contrapositives.

Definition 8 (Composite main measures). Let O be an ontology, α := C �
D, and α := C �¬D � ¬C �D. The main confidence, lift, negated and assumed
conviction of α are defined, respectively, as follows:

conf(α,O) := bconf(α,O) lift(α,O) := blift(α,O)

conv¬(α,O) := bconv¬(α,O) conv?(α,O) := bconv?(α,O)

A lemma analogous to Lemma 1 holds for the composite main measures, i.e.
they treat a GCI as being equivalent to its contrapositive and can be rewritten
using the main measures and hence the basic measures [19].
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5 Complete Construction of Hypotheses

We reduce the problem of constructing hypotheses to the problem of construct-
ing class (and property) expressions. Indeed, given a set C of class expressions
of interest, we can generate all possible GCIs using class expressions from C as
a left-hand side or right-hand side, i.e. {C � D | C,D ∈ C}. Thus, the number
of generated GCIs is quadratic in the size of C. As we suggested in [20], class
expressions C can be generated from some “seed” signature Σ using certain
construction rules (templates), e.g. all pairwise conjunctions, simple existential
restrictions, etc. However, it is generally hard to know which templates are likely
to produce useful class expressions. Moreover, a brute-force procedure that gen-
erates all class expressions is doomed even for inexpressive DLs, e.g. EL. For
example, given n class and m object property names, a number of all EL class
expressions of length up to 5 grows as fast as O(n3 + n2 · m2 + n · m4).

We propose an informed, bottom-up algorithm that constructs all class
expressions C of length up to �max in a given DL that have at least smin

instances, i.e. sufficient evidence in data. Importantly, the algorithm avoids con-
sidering all other class expressions that are numerous, e.g. all class expressions
without instances (and many others). We integrate two ideas in one algorithm:
enumerating class expressions via a refinement operator [7,14,16] and pruning
unpromising (insufficiently supported by data) class expressions from the search
a priori. A downward refinement operator2 ρ for DL specifies a set ρ(C) of
specialisations of a class expression C in that DL. Refinement operators nor-
mally use the classic subsumption � as an ordering on class expressions. Thus,
C ′ ∈ ρ(C) implies C ′ � C.3

Example 7. Given the terms M , W , hc (standing for Man, Woman, hasChild)
from Example 3, the refinement operator ρ can be used to traverse the space of
EL class expressions as follows:

ρ(�) = {M, W, ∃hc.�}
ρ(M) = {M � M, M � W, M � ∃hc.�}

ρ(W ) = {W � M, W � W, W � ∃hc.�}
ρ(∃hc.�) = {∃hc.M,∃hc.W,∃hc.∃hc.�,∃hc.� � M,∃hc.� � W,∃hc.� � ∃hc.�}
. . .

The mechanics of refinement operators allows for pruning unpromising class
expressions from the search without even generating them (and hence without
checking their instances). Indeed, a specialisation of a class expression cannot
have more instances than the class expression itself has, see Lemma 2.

Lemma 2 (Anti-monotone property of specialisations). Let O be an
ontology, C a class expression, ρ a (downward) refinement operator. Then,
C ′ ∈ ρ(C) implies |inst(C ′,O)| ≤ |inst(C,O)|.
2 It is sufficient to consider only downward refinement operators.
3 The statement C′ � C is the abbreviation of ∅ |= C′ � C.
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Lemma 2 implies that if C has an insufficient number of instances, then so
do all its further specialisations. It is essentially the anti-monotone property of
itemsets used in the Apriori algorithm [1] which we have defined for OWL class
expressions. Due to this similarity, we call our algorithm of constructing class
expressions DL-Apriori, see Algorithm 1.

Algorithm 1. DL-Apriori (O, Σ,DL, �max, smin)
1: inputs
2: O := T ∪ A: an ontology
3: Σ: a finite set of terms such that � ∈ Σ
4: DL: a DL for class expressions
5: �max: a maximal length of a class expression such that 1 ≤ �max < ∞
6: smin: a minimal instance threshold (support) such that 0 < smin ≤ |in(O)|
7: outputs
8: C: the set of all class expressions satisfying the input constraints
9: do

10: C ← ∅ % initialise the final set of class expressions
11: D ← {�} % initialise the set of class expressions yet to be specialised
12: ρ ← getOperator(DL, Σ, �max, T ) % initialise a refinement operator ρ
13: while D 
= ∅ do
14: C ← pick(D) % pick a class expression C to be specialised
15: D ← D\{C} % remove C from D

16: C ← C ∪ {C} % add C to C

17: C
′ ← specialise(C, ρ) % specialise C using ρ

18: DC ← {D ∈ urc(C′) | �D′ ∈ C ∪ D : D′ ≡ D} % discard syntactic variations

19: D ← D ∪ {D ∈ DC | |inst(D, O)| ≥ smin} % add suitable specialisations
20: end while
21: return C

DL-Apriori operates as follows. First, we initialise the refinement operator
ρ (see Line 12) with the given logic DL, signature Σ, maximal length �max, and
TBox T such that it only constructs specialisations satisfying the constraints
and takes T into consideration, e.g. its class hierarchy. The construction starts
from �, see also Example 7. The operator repeatedly specialises every expression
picked from the set D of candidates and adds its suitable specialisations to D

(see Line 14 – 19). A specialisation is suitable if it is not a syntactic variation
of an already constructed one (see Line 18 where the function urc(C′) returns
unique representatives of logically equivalent class expressions in a set C

′) and
satisfies the minimal support smin (see Line 19). Once the set D is empty, the
algorithm terminates. Intuitively, smin acts as a “noise threshold” that prunes
expressions with insufficient evidence and therefore should be sufficiently small
to avoid missing useful expressions.

Given DL ≤ SROI, DL-Apriori always terminates, guarantees to return
all class expressions modulo equivalence satisfying the input constraints, i.e. it is
complete, and only expressions satisfying the constraints, i.e. it is correct, see [19]
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for details. Completeness of DL-Apriori ensures that no class expression (and
thus no GCI) satisfying the input constraints is missed, i.e. all suitable class
expressions (modulo equivalence) are returned. Of course, one should specify
input constraints cautiously (which is rather easy to do) to avoid missing useful
class expressions.

Correctness, completeness, and termination of DL-Apriori can be proved for
DLs with number restrictions ≥ k.C and ≤ k.C, e.g. SROIQ. This would require
either making the function �(C) (the length of a class expression C) dependent
on k or introducing the parameter kmax which bounds k. Both ways regain the
properties of DL-Apriori for SROIQ but complicate the presentation.

6 Empirical Evaluation

We have implemented all presented techniques in a system called DL-Miner (see
the source code4 and demo interface5), as it is aimed at mining, i.e. constructing
and evaluating, axioms in DLs and OWL, see [19]. We use Java (version 8.91),
the OWL API [12] (version 3.5.0), and Pellet [21] (version 2.3.1) as a reasoner.
All experiments are executed on the following machine: Linux Ubuntu 14.04.2
LTS (64 bit), Intel Core i5-3470 3.20 GHz, 8 GB RAM.

6.1 Mutual Correlations of Hypothesis Quality Measures

It is worthwhile to investigate whether the quality measures indeed capture
different aspects of hypothesis quality. This can be clarified by examining their
mutual correlations. We investigate the following research question:

RQ. Do related measures strongly correlate? Do unrelated measures not
correlate?

The experimental data consists of two corpora of ontologies. The first cor-
pus, called handpicked, consists of 16 ontologies hand-picked from related work,
e.g. from [7,15]. The second corpus, called principled, comprises all BioPortal6

ontologies taken from [17] which contain some data (at least 100 individuals and
100 facts). It consists of 21 ontologies. In the handpicked and principled corpus,
9 and 14 ontologies, respectively, are at least as expressive as ALC. With regard
to the size, 3 and 0 ontologies, respectively, contain less than 100 individuals; 8
and 9 ontologies contain from 100 to 1000 individuals; 5 and 12 ontologies con-
tain more than 1000 individuals. Both corpora are made publicly available [19].
We run the experiment on each corpus independently.

For each ontology O, we run DL-Apriori, see Algorithm 1, with DL := ALC,
�max := 4, smin := 10. Since ˜O can contain many irrelevant terms, the seed sig-
nature is selected using the modular structure of the ontology as follows [20]:

4 https://github.com/slava-sazonau/dlminer.
5 http://www.dlminer.io.
6 http://bioportal.bioontology.org.

https://github.com/slava-sazonau/dlminer
http://www.dlminer.io
http://bioportal.bioontology.org
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Σ := crn(M)∪{�}, where M := ⊥-module(O, crn(A)) [6] and crn(O) returns
the set of all class and property names occurring in O. Then, we generate all
possible GCIs (which can thus have length up to 8) from the constructed class
expressions and OPIs with inverse properties and property chains. Using the
proposed quality measures and measures from [20], we evaluate 500 randomly
selected hypotheses per ontology. Then, we compute mutual correlations of the
quality measures across all hypotheses in a corpus. We present the results, see
Fig. 1, in the form of a correlation matrix, which is a symmetric matrix of (Pear-
son’s) correlation coefficients. For each correlation, we additionally run a statis-
tical significance test with significance level 0.05.
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(a) Handpicked corpus
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Fig. 1. Mutual correlations of quality measures for handpicked (a) and principled (b)
corpus: positive correlations are in blue, negative correlations are in red, crosses mark
statistically insignificant correlations (significance level 0.05). The abbreviations are
as follows: (B)SUPP – (basic) support, (B)ASSUM – (basic) assumption, (B)CONF –
(basic) confidence, (B)LIFT – (basic) lift, (B)CONVN – (basic) negated conviction,
(B)CONVQ – (basic) assumed conviction, CONTR – contradiction, FITN – fitness,
BRAV – braveness, COMPL – complexity, DISSIM – dissimilarity. (Color figure online)

First, we note that all main measures, except negated conviction for the
principled corpus, strongly and positively correlate with their basic counterparts
(please notice lines of dark blue squares parallel to the main diagonal in Fig. 1).
This result is expected because the basic measures are approximations of the
respective main measures. All the differences are due to the presence of negative
information in the ontologies. Another strong and positive correlation occurs
between assumption and braveness which is also expected since these measures
count (though differently) “guesses” of a hypothesis. Among other observations
are the positive correlations between conviction and confidence, particularly in
the principled corpus, that capture similar aspects of quality. Interestingly, lift
positively correlates with length and depth, i.e. longer hypotheses are likely to
be of higher quality as measured by lift. Thus, we can answer RQ as follows:
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related measures do correlate significantly, while unrelated measures mostly do
not. In other words, the measures do capture different aspects of quality.

In addition, we have examined the acquired hypotheses by eyeballing them.
Table 1 shows some high-quality hypotheses (please notice two property chains).

Table 1. Examples of acquired hypotheses

∃hasBond.� � ∃hasAtom.�
AssociateProfessor � ∃teaches.TeachingCourse

Patient � ∃hasShape.Irregular � ∃hasDensity.Illdefined

∀siblingof.Human � Human

OKRunningLoan � ∃hasLoanStatusV alue.(¬ProblemStatus)

married ◦ hasChild � hasChild

Movie � ∃cast.Actor

BetaSugar � ∃hasRingForm.� � Pyranose

clinicallySimilar ◦ hasSeverity � hasSeverity

P lanetaryLayer � ∃hasAstronomicalBody.�

6.2 A Case Study

In order to receive human feedback, we run a preliminary case study with one
domain expert. The subject of the study is the ontology,7 in the following called
ntds, created using data from the US National Transgender Discrimination Sur-
vey8 and curated by the domain expert. The ontology is in SROIQ and contains
169,058 individuals. We investigate the following research questions:

RQ1. What kinds of interesting hypotheses (if any) can we mine for the
domain expert?
RQ2. Which measures (if any) are indicators of interestingness of a
hypothesis?

To answer the research questions, we ask the domain expert to judge a
hypothesis by validity and interestingness (which are different notions):

– Validity shows whether a hypothesis captures a general truth about the
domain and can be perceived as an axiom to be added to the ontology.

– Interestingness shows how interesting a hypothesis is for a domain expert,
i.e. evaluates her curiosity and attention that she pays to a hypothesis.

The domain expert assesses validity of a hypothesis by choosing one of the
following three options: “correct”, “wrong”, “don’t know”. Interestingness of a
hypothesis is rated on the linear scale from 0 (lowest) to 4 (highest). We collect
7 The ontology is not public yet.
8 http://www.ustranssurvey.org/.

http://www.ustranssurvey.org/
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feedback using an online survey. To make a survey, we generate hypotheses as
above. Since purely random sampling is likely to result in few (or no) promising
hypotheses, we randomly select 30 hypotheses whose confidence exceeds 0.9 and
30 from all the rest to ensure variability of hypothesis quality in the survey which
thus consists of 60 hypotheses.

The survey was completed by one domain expert. In the feedback that we
received, the domain expert expressed interest in reviewing additional hypotheses
and gave us focus terms, i.e. class and property names of a certain topic. We
ran another survey of 60 hypotheses made analogously but using only the focus
terms instead of the (almost) entire signature. The survey was completed by the
same domain expert. Thus, 120 hypotheses were judged in total. In the following,
we refer to the initial, unfocused survey as Survey 1 and the follow-up, focused
survey as Survey 2, see Table 2.

Table 2. Assessment of hypotheses acquired for ntds (“-” denotes zero)

Validity Interestingness

0 1 2 3 4

Survey 1 (unfocused) Wrong 6 11 30 - -

Don’t know - 1 - 2 4

Correct - - - 6 -

Survey 2 (focused) Wrong 1 - 1 - 5

Don’t know - - - - 49

Correct - - - - 4

According to Table 2, in Survey 1, unknown and correct hypotheses are rated
to be much more interesting than wrong ones: all of them, except one, have high
values of interestingness. Amongst those, unknown hypotheses are marked to
be the most interesting and, according to the expert’s response, require further
analysis. The results of Survey 2 are much different from the results of Survey 1.
All hypotheses, except two, are marked by the highest value of interestingness,
including wrong ones. Moreover, the domain expert informed us in her response
that one of the wrong hypotheses not only indicated data bias but revealed an
error in the ontology.

Thus, a mined hypothesis can be interesting regardless of its validity. More
specifically, there are three kinds of interesting hypotheses: a correct hypoth-
esis reflects known domain knowledge which is not yet captured in the ontol-
ogy (enriches the TBox); an unknown hypothesis captures possibly true but
yet unknown domain knowledge worthy of further enquiry; a wrong hypothesis
indicates a modelling error or data bias. This answers RQ1 and confirms our
observations made in [20].

We now turn our attention to RQ2, i.e. compare measures with expert’s
judgements. Figure 2 shows correlations between the quality measures and
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expert’s judgements. Dissimilarity, confidence, length, and depth are the
strongest positive indicators of validity, see Fig. 2a. Lift turns from a non-
indicator in Survey 1 to a positive indicator in Survey 2. The strongest negative
indicators of validity are complexity, support, and assumption. The result that
support is a negative indicator is rather unexpected, considering its definition.
A possible explanation is that hypotheses with more evidence seem to be easier
to reject for the domain expert because “counterexamples” are easier to recall.
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Fig. 2. Correlations (in descending order) between hypothesis quality measures (abbre-
viated as in Fig. 1) and expert’s judgements: validity (a) and interestingness (b).

As Fig. 2b shows, confidence is a positive indicator of interestingness in Sur-
vey 1. However, it is not in Survey 2: length, depth, dissimilarity, and lift have
significantly stronger positive correlations. Thus, lift and dissimilarity turn from
non-indicators of interestingness in Survey 1 to its positive indicators in Survey
2. Moreover, length and depth become strong positive indicators of interesting-
ness showing that longer hypotheses are likely to be more interesting. This is not
surprising because longer hypotheses are capable of capturing phenomena that
shorter ones cannot capture, i.e. they are more powerful. Of course, a hypothesis
can be “too long” for a domain expert to perceive. As for validity, the strongest
negative indicators of interestingness are complexity, assumption, and support.
Support appears to be a negative indicator of interestingness because hypotheses
with high support are likely to be familiar to the expert since they reflect easily
seen patterns in the data. Overall, the results in Fig. 2 show that there is no
single best indicator of hypothesis quality. This further supports our view that
we need to consider multiple quality measures to identify promising hypotheses.

7 Future Work

The defined quality measures do not form the “complete list” of hypothesis qual-
ity measures. Clearly, there are other possible measures. In particular, additional
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rule measures can be adapted to OWL, e.g. cosine, Gini index, J-measure [10].
Such adaptation can respect the standard OWL semantics and its OWA using
the procedure of translating rule measures into axiom measures presented in this
paper.

Our implementation, DL-Miner, currently supports constructing GCIs for
ALC (as well as complex property hierarchies and inverses). It relies on the avail-
ability of suitable refinement operators that are currently proposed for ALC [16].
In order to construct class expressions beyond ALC while preserving complete-
ness, we need to design suitable refinement operators for more expressive DLs,
e.g. SROIQ(D) [11].

Besides sequentially examining acquired hypotheses, a domain expert can
potentially use them for interactive ontology completion and debugging. More
specifically, approved hypotheses can be added to the ontology which is then
used to mine new hypotheses and the step is repeated. Within such an iter-
ative process, modelling errors can be identified using wrong hypotheses and
then repaired. After that, a user can continue completing the ontology until it
is sufficiently enriched or new errors are found. This scenario and additional
investigations of the quality measures are subjects of further case studies.

Acknowledgements. We thank Amanda Hicks (the University of Florida) for par-
ticipating in our case study and giving us valuable feedback and Michael Rutherford
(the University of Arkansas for Medical Sciences) for translating data into OWL.
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