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2 Universitat Politècnica de Catalunya, Barcelona, Spain
{xoriol,teniente}@essi.upc.edu

Abstract. Ontology-based Data Access (OBDA) is gaining importance
both scientifically and practically. However, little attention has been paid
so far to the problem of updating OBDA systems. This is an essential
issue if we want to be able to cope with modifications of data both at
the ontology and at the source level, while maintaining the independence
of the data sources. In this paper, we propose mechanisms to properly
handle updates in this context. We show that updating data both at
the ontology and source level is first-order rewritable. We also provide
a practical implementation of such updating mechanisms based on non-
recursive Datalog.

1 Introduction

Ontology Based Data Access (OBDA) is a data integration approach that allows
for querying data sources through a unified conceptual view of the application
domain, expressed as an ontology [17]. In this way, users may ask queries without
being aware of the underlying structure of the data, while considering additional
knowledge provided by the ontology. One interesting feature of OBDA is that
data sources remain independent and only loosely coupled with the ontology
through the use of declarative mappings.

In OBDA, the ontology is usually specified in a lightweight language, like
a Description Logic (DL) of the DL-Lite family [4]. DL-Lite logics have the
ability of essentially capturing conceptual models such as UML class diagrams,
while being characterized by nice computational properties with respect to query
answering. Indeed, this task in DL-Lite based OBDA systems is first-order (FO)
rewritable, which means that any conjunctive query over the ontology (or TBox)
can be answered by rewriting it first into a FO-query over a virtual set of facts
(or ABox), and then into FO-queries over the data sources, by suitably unfolding
(traversing backward) the mappings [17].

Little attention has been paid so far in OBDA to the problem of updat-
ing, which is the main target of this paper. Namely, we consider “write-also
OBDA systems”, where a user may change the extensional level of the system,
in contrast with “read-only OBDA systems”, where this service is not provided.
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We recall that updating a logical theory means changing the old beliefs with new
ones, through both addition and removal of pieces of information. This is usually
accomplished according to the principle of minimal change, i.e., old information
contradicting the new one should be removed in a way that the new theory is as
close as possible to the previous one [8,9,16,18,21].

Besides guaranteeing the above behaviour, our goal is to allow users to update
the data at the ontology level while maintaining the independence of the data
sources. This is in contrast with the traditional way to handle updates in data-
bases, since we should not force the update to propagate to the sources, as done
in view updating [10,11,19]. Indeed, sources are not under the exclusive con-
trol of the ontology, and changing them has a high risk of deeply impacting the
contents used by other source clients.

Fig. 1. UML ontology of a library

For example, consider the ontology of a library specified as a UML class
diagram in Fig. 1, where books are approved by reviewers, movies and books are
items, some of which are available. Obviously, a movie is not a book, and an
item is not a reviewer. Such an ontology can be encoded through the following
DL-Lite axioms:

Movie � Item ∃ApprovedBy � Book ∃ApprovedBy− � Reviewer

Available � Item Book � Item Book � ¬Movie Item � ¬Reviewer

Then, consider an external source whose schema contains the relational tables
T Movie, T Book, T Copy, T Borrow, T RevAuthor, and T Rev, and link it to the
ontology through the mapping below, which we write as Datalog rules, whose
heads (resp. bodies) contain only ontology (resp. database) predicates.

Movie(x) :- T Movie(x)

Book(x) :- T Book(x)

Available(x):- T Copy(x,y), ¬T Borrow(y,z)

Reviewer(y) :- T RevAuthor(r,y)

ApprovedBy(x,y):- T Rev(x,r,z), z>=5, T RevAuthor(r,y)

Let the following set of facts be a database instance at the sources:

T Movie(Alien), T Book(Ubik), T Copy(Ubik,C1), T Copy(Ubik,C2),

T Borrow(C1,Bob)
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It is not difficult to see that the above mapping and database imply the (virtual)
ABox { Movie(Alien),Book(Ubik),Available(Ubik)}. Assume now that we want
to insert Item(Matrix) and to delete Available(Ubik). Notice that this update
does not correspond to any source database update. Indeed, to insert in the
database the item ‘Matrix’, we have to classify it either as a movie or as a book,
thus, entailing an unintended fact. The problem is even worse for the case of
deleting the availability of ‘Ubik’, for which we have to either delete the copy
‘C2’ (and thus deleting an existing copy of the book), or mark it as borrowed by
some unknown user of the library (when no borrowing might exist). Moreover,
these (unintended) changes in the database affect the contents used by other
database clients, whereas we only want to change some ABox assertions for the
users of the OBDA system.

To avoid these situations, we materialize the ABox facts that the user of the
OBDA system inserts (resp. deletes) and that are not derived (resp. derived)
from the data sources. In this way, the requested updates can always be accom-
plished without affecting the contents of the sources. This is achieved by materi-
alizing the differences between the current (virtual) ABox (as generated by the
data sources through the mappings) and the one desired by the user. To handle
these materialized facts, we use some special auxiliary ins/del relational tables
and suitably extend the mappings. As an example, consider the following new
mappings for Item and Available (which replaces the previous one):

Item(x) :- ins Item(x)

Available(x):- T Copy(x,y), ¬T Borrow(y,z), ¬del Available(x)

Now, we can achieve the previous ontology update by materializing the facts
ins Item(Matrix) and del Available(Ubik).

Let us now consider an update that contradicts previous data. Assume that
we want to insert Book(Alien). This contrasts the fact that ‘Alien’ is already
known to be a movie. We manage situations like this through the materialization
of additional insertions/deletions that allow us to keep the system consistent,
according to a specific minimal change criterion introduced in [7]. In our exam-
ple, to fully accomplish the update we materialize both ins Book(Alien) and
del Movie(Alien).

There is a further update scenario of interest in write-also OBDA systems.
Since the data sources are autonomous, they in turn can be freely changed by
their users. Thus we need to deal with two kinds of updates: ontology-level and
source-level. An ontology-level update is posed over the ontology, and is the
update we discussed so far. Instead, a source-level update occurs when a data
source is modified.

For the source-level case, our framework detects how the update at the
sources is reflected, through the mapping, in ABox insertions/deletions, and
based on them it computes the additional insertions/deletions that will main-
tain the system consistent. As we will show, only ABox insertions induced by a
source-level update may cause inconsistency, and to repair it we essentially treat
them as if they were ontology-level updates. Note however that, whereas we can
expect ontology-level updates directly specified by users to be coherent with
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the ontology, i.e., they alone do not violate TBox axioms, which is a classical
assumption in update theory, this does not necessarily hold for ABox insertions
induced by a source-level update. Consider an update at the sources that inserts
the facts T Movie(TheShining) and T Book(TheShining). This is a legal source-
level update, since no constraints are specified on the source database (it can
even be possible that tables T Movie and T Book belong to different databases).
This source-level update induces two ABox insertions, i.e., Movie(TheShining)

and Book(TheShining), which together violate the disjointness Book � ¬Movie.
To cope with this problem our framework repairs the induced ontology-level
update according to a minimality criterion which allows to filter away the con-
flicting insertions but to maintain their common consistent logical consequences.
In our example, this means that both Movie(TheShining) and Book(TheShining)

will be invalidated at the ontology level (i.e., the OBDA system will not infer
them), but their common consequence Item(TheShining) will be considered as
an ABox insertion induced by the source-level update. We remark that the last
form of inconsistency, which we call incoherence, is due to mutually conflicting
insertions in the update itself, and should not to be confused with the case when
the update is inconsistent with the previous state of the OBDA system, which
we discussed before.

The contributions we provide in this paper can be then summarized as fol-
lows.

– We define a new formal framework for ontology-level and source-level updates.
– We show that both update mechanisms are first-order rewritable, that is,

the new contents of the materialized differences when an update occurs can
be computed by means of first-order queries. This entails that ontology-level
and source-level updates are in AC0 (i.e., sub-polynomial) in data complexity,
which is the usual desired complexity for OBDA tasks.

– We prove these results by computing updates by means of non-recursive Data-
log programs, which can be straightforwardly translated into other (relational-
algebra equivalent) languages, such as SQL or SPARQL. Thus, we argue
that our framework is not only computationally feasible, but also practically
embeddable in current OBDA solutions with existing technology, and without
affecting the clients working on the source databases.

– We propose variants of update semantics to handle incoherent (in the sense
explained above) update specifications, which naturally arise in source-level
updates. To the best of our knowledge, incoherent updates have not been
studied before, and, as a side contribution, we formalize and study different
solutions to this problem.

The rest of the paper is organized as follows. In Sect. 2 we provide some
preliminaries on ontologies and read-only OBDA systems. In Sect. 3 we describe
how to transform read-only OBDA systems into write-also ones and provide
an overview of our techniques to manage both ontology-level and source-level
updates. In Sects. 4 and 5 we provide the algorithms to accomplish the two
kinds of updates, respectively, and show that both are first-order rewritable. We
conclude the paper in Sect. 6.
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2 Preliminaries

We assume to have three pairwise disjoint, countably infinite alphabets: NO for
ontology predicates, NS for relational predicates, and NI for constants. Moreover,
we use standard notions for relational databases [1].

Ontologies. A DL ontology O is pair 〈T ,A〉, where T is the TBox and A
is the ABox, providing intensional and extensional knowledge, respectively [2].
Roughly, DL ontologies represent knowledge in terms of concepts, denoting sets
of objects, and roles, denoting binary relationships between objects. In this paper
we focus on ontologies expressed in DL-LiteA [17]. A DL-LiteA TBox is a finite
set of axioms of the form B1 � B2, B1 � ¬B2, R1 � R2, R1 � ¬R2, and
(funct R), where: R, possibly with subscript, is an atomic role P , i.e., a binary
predicate in NO, or its inverse P−; Bi, called basic concept, is an atomic concept
A, i.e., a unary predicate in NO, or a concept of the form ∃R, which denotes the
set of objects occurring as first argument of R; (funct R) denotes the functionality
of R, which states that its first argument is a key. Suitable restrictions are
imposed on the combination of inclusions among roles and functionalities. A
DL-LiteA ABox is a finite set of facts of the form A(c) or P (c, c′), where c, c′ ∈ NI.

As for the semantics, we denote with Mod(O) the set of models of O. We say
that O is consistent if Mod(O) �= ∅, inconsistent otherwise, and that an ABox
A is T -consistent if 〈T ,A〉 is consistent. Moreover, we denote with O |= α the
entailment of a fact or axiom α by O, and with clT (A) the ground closure of A,
i.e., set of ABox facts α such that 〈T ,A〉 |= α. We assume that, for each atomic
concept or role N , T �|= N � ¬N .

Read-only OBDA systems. An OBDA specification is a triple J =
〈T ,M,S〉, where T is a DL TBox, S is a relational schema, called source schema,
and M is a mapping between S and T . As usual in OBDA, we assume M to be a
GAV mapping [14], which we represent as Datalog rules, whose head predicates
are from NO and body predicates are from NS. As usual in Datalog we require
such rules to be safe [1]. It is easy to see that M, seen as a program, is non-
recursive. Note that OBDA specifications of the above form can be considered
read-only, since they are not specifically thought to be updated, but are usually
only queried by users.

An OBDA system is a pair (J ,D), where J = 〈T ,M,S〉 is an OBDA
specification, and D is a source database, i.e., a set of facts for S. A representation
of a read-only OBDA system is given in Fig. 2(a). The semantics of (J ,D) is
given in terms of interpretations of T . To define it, we make use of the retrieved
ABox, i.e., the set

ret(M, D) = {N(t) | t ∈ eval(ϕ(x ), D) and N(x ):-ϕ(x ) ∈ M}

where N is a concept or role in NO and eval(ϕ(x ),D) denotes the evaluation of
ϕ(x ), seen as a query, over D. Then, a model of (J ,D) is a model of the ontology
〈T , ret(M,D)〉, and the notions of consistency and entailment introduced before
naturally extend to an OBDA system. We point out that in OBDA systems the
retrieved ABox is usually not really computed. To emphasize this, we often refer
to the retrieved ABox as the virtual ABox of an OBDA system.
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Fig. 2. (a) Read-only OBDA architecture (b) Write-also OBDA architecture.

3 Write-also OBDA Systems

Given a “read-only” OBDA specification J = 〈T ,M,S〉, our framework extends
the source schema S to be able to materialize some ABox insertions/deletions
without affecting the original source database. More in detail, the framework
extends the database schema S to a new schema S ′ by considering, for each
ontology atomic concept/role N , two additional tables ins N and del N, used to
trace insertions/deletions of ABox facts for N1. Then, the framework systemat-
ically changes the mapping M into a mapping M′ in the following way:

1. For each atomic concept/role N , add the new mapping assertion N(x ) :-
ins N(x ). This guarantees that the instances in ins N belong to the retrieved
ABox as instances of N (i.e., as N facts);

2. Replace each mapping assertion of the form N(x ) :- φ(x ), with the mapping
assertion N(x ) :- φ(x ) ∧ ¬del N(x ). This avoids the entailment of N facts
that are stored as deleted through instances of del N .

We call J ′ = 〈T ,M′,S ′〉 a write-also OBDA specification. It is not difficult
to realize that the OBDA specifications J and J ′ are equivalent, in the sense
that, when the contents of the new tables ins N /del N are empty, both OBDA
specifications have the same retrieved ABox. Thus, this mapping extension pre-
serves the semantics of the original one, but permits modifying the retrieved
ABox through the ins N /del N tables without collateral effects. In the follow-
ing, given a write-also mapping M′, we denote by π(M′) the original read-only
mapping M.

1 These tables are typically stored in a different database from those containing actual
data, but conceptually are part of S ′.
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We now intuitively illustrate how the framework modifies the contents of the
ins N /del N tables for accomplishing ontology-level and source-level updates.

Ontology-level update. An ontology-level update refers to the situation where
the update is posed over the ontology. It is intended to change the extensional
level of the write-also OBDA system, but without modifying the data at the
sources. Thus, it does not change the content of source predicates in the original
source schema S. It is accomplished by (1) computing the full set of ontological
insertions/deletions that are required to satisfy it in a consistent manner, and
(2) realizing the previous set of ontological insertions/deletions. The first step
is done through a Datalog program computed at compile time (that is, the
Datalog rules are fully determined by the OBDA specification, whereas Datalog
facts comes from the user requested update and the current database state of
the source schema S ′). Such program encodes the update semantics presented
in [7], which allows for solving possible inconsistencies between the new beliefs
implied by the update and the old ones. Such semantics also allow to preserve
logical consequences of the old beliefs that are still consistent with the update.
Then, the second step manipulates the ins/del tables accordingly, in order to
satisfy the previously computed insertions/deletions. Since such tables are not
accessible to data source clients, such update is transparent to them.

Source-level update. A source-level update refers to the situation in which the
update is posed over the source database. Such kind of update is always applied
to the sources as requested. However, it may have effects at the ontological
level, since it is propagated by the mapping. To handle source-level updates, the
framework: (1) computes which insertions/deletions of ABox facts are caused by
the database update (we call such facts retrieved ABox changes); (2) computes
the set of ontological insertions/deletions that are required to accomplish the
changes computed previously in a consistent manner; (3) realizes the previous
ontological updates. Step (1) is performed through the adaptation of a technique
from the literature on view change computation [20]. Step (2), even though
similar in principle to Step (1) for ontology-level updates, presents some further
complications. Indeed, even though the modification is coherent at the level of
the sources, there are no guarantees that it corresponds to a coherent update
at the level of the ontology. For instance, a source-level update might cause the
insertion of both the facts C(o) and D(o) in the retrieved ABox, whereas the
ontology entails that C and D are disjoint. In this situation, our framework
adopts a new update semantics suited for dealing with incoherent updates and,
according to it, modifies the content of the ins/del tables in order to reflect the
proper changes upon the retrieved ABox. Similarly as before, the first two steps
are computed through Datalog programs built at compile time.

4 Ontology-Level Update

We start with some notions on update over ontologies. Following [5,7,15], an
ontology update U is a pair of sets of ABox facts (A+

U ,A−
U ), where A+

U are inser-
tions and A−

U are deletions. We say that an update U = (A+
U ,A−

U ) is coherent
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with a TBox T if: (i) Mod(〈T ,A+
U 〉) �= ∅, i.e., the set of facts we are adding

is consistent with T ; (ii) A−
U ∩ clT (A+

U ) = ∅, i.e., the update is not asking for
deleting and inserting the same knowledge at the same time. Specifically, we
define the result of updating an ontology as follows.

Definition 1 [7]. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology and let
U = (A+

U ,A−
U ) be an update coherent with T . The result of updating O with U ,

denoted by O • U , is the ABox AU = A′ ∪ A+
U , where A′ is a maximal subset of

the closure clT (A) such that A′ ∪A+
U is T -consistent, and 〈T ,AU 〉 �|= β for each

β ∈ A−
U .

The above update semantics is syntax-independent, consequence conserva-
tive, and the ABox resulting from the update operation is, up to logical equiva-
lence, unique [7].

An ontology-level update over a write-also OBDA system (〈T ,M,S〉,D)
is an update over the ontology 〈T , ret(M,D)〉. To realize the update, we first
compute the ABox facts that should be inserted-to/deleted-from the retrieved
ABox ret(M,D), according to Definition 1. Then, we specify the changes to be
performed on the ins/del tables from these ABox facts.

For the first task, we make use of a non-recursive Datalog program able to
manage updates over DL-LiteA ontologies, which has been presented in [7]. This
program derives the insertions/deletions for a concept/role N as derived literals
of the form ins N’(x ) and del N’(x ). To do so, the program uses as base facts
the current contents of the database D, together with the requested ontology
update. That is, the program has a fact ins N ol( t) for each N(t) ∈ A+

U , and
del N ol( t) for each N(t) ∈ A−

U . Since the Datalog derivation rules are fully
determined by T and M, we refer to it as Datalog(T ,M), and denote the base
facts as D+U .

Basically, Datalog(T ,M) derives insertions/deletions from the requested
update, and computes some extra deletions to avoid violating dis-
joint/functionality axioms in T , and some extra insertions to preserve infor-
mation, according to the update semantics of Definition 1. We illustrate these
ideas by showing some of the rules for our example:

del Movie’(x) :- T Movie(x), del Item ol(x)

del Movie’(x) :- T Movie(x), ins Book ol(x)

ins Item’(x) :- del Movie’(x), ¬del Item ol(x)

The first rule states that a movie should be deleted if it is deleted as an item.
This is required to fully accomplish the deletion since, otherwise, the item would
still be implied because of Movie � Item. The second rule implies the deletion
of a movie because of the insertion of a book when the movie is in the database,
to avoid violating Book � ¬Movie. This reflects the principle that information
in the update has to be preferred to the old one, in case of contradiction. The
third one entails the insertion of an item when it is deleted as a movie for
preserving this entailed belief. This reflects the consequence conservative nature
of our update semantics (cf. Definition 1).
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Algorithm 1. ontology-level-Update(T , M, U , D)
1 D′ ← D
2 foreach fact ins N’(t) derived by Datalog(T , M) from D+U do
3 if del N(t) ∈ D then remove del N(t) from D′ else insert ins N(t) into D′

4 foreach fact del N’(t) derived by Datalog(T , M) from D+U do
5 if ins N(t) ∈ D then remove ins N(t) from D′ else insert del N(t) into D′

6 return D′

Datalog(T ,M) is sound and complete to compute the ABox modifications
required to accomplish an update [7].

Then, we realize these derived insertions/deletions using the ins/del database
tables by means of Algorithm 1. Intuitively, the algorithm tries to insert a fact
by first removing its deletion from D′ (if any). Indeed, this means that the fact
is implied by π(M) (i.e., the read-only version of the mapping) and D. If there
is no deletion of this fact in D, then, it is recorded as an insertion. The case of
deletions is analogous. The following result is a consequence of the correctness
of Datalog(T , M) and Algorithm 1.

Theorem 1. Let (〈T ,M,S〉,D) be a consistent write-also OBDA system, and
U be an update coherent with T . Algorithm 1 computes D′ s.t. 〈T , ret(M,D)〉•U
= ret(M,D′).

The above theorem says that Algorithm 1 correctly realizes an ontology-level
update. Considering the data complexity of non-recursive Datalog, Theorem 1
immediately implies that computing ontology-level updates is in AC0 in data
complexity, i.e., in the size of D+U .

5 Source-Level Update

A source level update is a set of update operations, both insertions and deletions,
over the source database. We denote it by Usl. The basic idea is to first use the
event rules in [20] to compute the changes over the ABox that are induced by Usl.

ABox changes induced by Usl are of two kinds: insertion and deletion. More
formally, let (〈T ,S,M〉,D) be a write-also OBDA system, Usl a source-level
update, and D′ the database obtained by applying Usl to D. The retrieved ABox
changes derived by D, M and Usl are represented as a pair (A+,A−), where
A+ = ret(π(M),D′) \ ret(π(M),D), and A− = ret(π(M),D) \ ret(π(M),D′).
A+ and A− are called the retrieved ABox insertions and deletions, respectively.

The deletion of ABox facts cannot make the ontology inconsistent. So, when
a new ABox deletion is retrieved, we simply check if such deletion was present
in the corresponding del table, and if so, we remove it. In this way, we ensure
that del tables only contains deletions of facts currently retrieved by π(M). The
case of retrieved ABox insertions is more complicated, since adding new ABox
facts might make the ontology inconsistent. Hence, besides removing from the
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ins tables the facts corresponding to the new retrieved insertions (if any), we
need to deal with possible inconsistencies. This is similar to what happens for
ontology-level updates. However, in this case, retrieved ABox insertions might
not be coherent with the TBox (i.e. the newly inserted ABox facts alone might
directly contradict the TBox). Thus, we need some further machinery to deal
with incoherency.

For ease of exposition, in the following we first discuss the simplified setting in
which we assume that the retrieved ABox insertions are coherent with the TBox
(although not necessarily consistent with the TBox and the virtual retrieved
ABox). Then we tackle the full setting, providing a solution for the case in
which retrieved ABox insertions may be incoherent (and inconsistent).

5.1 Coherent Source-Level Updates

Let J = 〈T ,M,S〉 be a write-also OBDA specification, D a database for S,
and Usl a source-level update (thus, involving source predicates but no auxiliary
ins/del predicates in S). We proceed as follows: (1) obtain the retrieved ABox
changes (A+,A−) derived by D, M, and Usl; (2) for that part of (A+,A−) that
is already realized through facts in the ins/del tables (due to previous updates)
remove the corresponding ins/del facts that become redundant, (3) for the non-
redundant part of A+ proceed as for ontology-level updates to compute the
necessary deletions from the current retrieved ABox for preserving the ontology
consistency.

The first step can be performed by exploiting a view change computation
technique. Indeed, each mapping rule can be seen as a relational view by consid-
ering the head of the rule as a relational query. Specifically, we use the technique
described in [20], which has been shown to be sound and complete for comput-
ing insertions and deletions of view contents in the view change computation
problem for general first-order queries.

The idea of this technique is to materialize the insertion/deletion
operations in an update Usl over the source database in some ad-hoc
ins T Table/del T Table, and compute the resulting retrieved ABox change
(A+,A−) through a Datalog program: for each N(t) fact in A+/A− the program
generates a ins N sl(t)/del N sl(t) fact.

For instance, in our running example, we can detect that an item is inserted
as available through the following rules:2

ins Avail sl(x):- ins T Copy(x,y), del T Borrow(y,z),

¬ins T Borrow(y,w), ¬T Borrowed pre(y), ¬T Avail(x)

ins Avail sl(x):- ins T Copy(x,y), ¬T Borrow(y,w),

¬ins T Borrow(y,z), ¬T Avail(x)

ins Avail sl(x):- T Copy(x,y), ¬del T Copy(x,y), del T Borrow(y,z),

¬ins T Borrow(y,w), ¬T Borrowed pre(y), ¬T Avail(x)

T Borrowed pre(y):- T Borrow(y,z),¬del T Borrow(y,z)

T Avail(x):- T Copy(x,y),¬T Borrow(y,z)

2 Unsafe rules in the example can be made easily safe using auxiliary predicates.
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The first two rules detect that x is newly available when we insert a new copy
of it which is not borrowed anymore, or has never been borrowed, respectively
(provided that x was not available according to the original mapping M before
the update). The third rule corresponds to the case that a preexisting copy of
the item is no longer borrowed. Deletions are computed using similar rules:

del Avail sl(x):- del T Copy(x,y), ¬T Borrow(y,z),

¬T Avail pre(x), ¬ins Avail sl(x)

del Avail sl(x):- T Copy(x,y), ¬T Borrow(y,w), ins T Borrow(y, z),

¬T Avail pre(x), ¬ins Avail sl(x)

T Avail pre(x):- T Copy(x,y), ¬del T Copy(x,y), ¬T Borrowed pre(y),

¬ins T Borrow(y, w)

The first rule detects that x is no longer available because we have deleted a
copy of it that was not borrowed, being this copy the unique one still available,
and without adding any other copy nor deleting a borrowing from another one.
Similarly, the second detects that x is no longer available because of borrow-
ing the last available copy without inserting new copies nor deleting previous
borrowings.

The computed ins N sl/del N sl facts are directly derived from the update
over the source database and the mapping M. Therefore, if the corresponding
ins N /del N facts were already present in the OBDA system due to some pre-
vious updates, now there is no need to still keep them. Hence, for the sake of
non-redundancy, they must be deleted from D if they were part of it. We notice
that in this case, we do not have to take care of inconsistencies that may arise
due to the update. Indeed, inconsistencies, if any, have been already solved by
the accomplishment of previous updates, which required the insertions of the
same facts that now are entailed by the source-level update.

However, ins N sl facts that do not already have a corresponding ins N
(due to previous updates), may lead to inconsistencies when combined with the
current retrieved ABox. Indeed, consider the case that our current retrieved
ABox contains Book(Eat), and because of a source-level update we have
ins Movie sl(Eat). Note that Book(Eat) is not violating any TBox constraint,
neither applying ins Movie sl(Eat) violates any TBox constraint per se, but the
combination of both violates the TBox disjunction assertion between Book and
Movie.

To solve this situation, we have to delete some ABox facts. This deletion is
exactly the same we do in the case of ontology-level insertions. Thus, we can com-
pute these extra deletions by directly invoking the ontology-level update algo-
rithm given in Sect. 4 (Algorithm 1: ontology-level-Update). Note that del N sl
updates cannot lead to inconsistencies, therefore, they can be omitted when
invoking the ontology-level-Update.

All this behavior is formally shown in Algorithm 2. Given a write-also OBDA
system (〈T ,M,S〉,D), the algorithm takes as input T , M, the requested source-
level update Usl (expressed as ins T Table/del T Table facts3) and D. Also,
it makes use of Datalogsl, the Datalog program encoding the rules discussed
3 These rules can be transparently captured through database triggers.
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Algorithm 2. source-level-Update(T , M, Usl, D)
1 A+ ← ∅
2 foreach fact ins N sl(t) derived by Datalogsl(T , M) from Usl + D do
3 if ins N(t) ∈ D then remove ins N(t) from D else include N(t) in A+

4 foreach fact del N sl(t) derived by Datalogsl(T , M) from Usl + D do
5 if del N(t) ∈ D then remove del N(t) from D
6 D′ = apply(Usl,D)
7 return ontology-level-Update(T , M, (A+, {}), D′)

above. In the algorithm, apply(Usl,D) indicates the application Usl to the source
database D.

5.2 Incoherent Source-Level Update

When the retrieved ABox insertions are not necessarily coherent with the ontol-
ogy (i.e., they might violate, by themselves, the TBox), we can no longer proceed
as done in Sect. 5.1. In particular, we cannot simply invoke, as in Algorithm 2, the
algorithm ontology-level-Update, since this algorithm requires the input update
to be coherent.

To cope with the above problem, in the following we consider a new kind of
ontology-level update, which we call weakly-coherent, and study it. Intuitively,
a weakly-coherent update is an ABox update whose insertions might directly
contradict the TBox, but that cannot contradict its own deletions. More formally,
given a consistent ontology O = 〈T ,A〉 and an update U = (A+

U ,A−
U ), we

say that U is weakly-coherent with T if A−
U ∩ clT (A+

U ) = ∅. In other terms,
differently from coherent updates, in weakly-coherent ones we do not require
that Mod(〈T ,A+

U 〉) �= ∅. Note that all updates of the form (A+, ∅), like the
ontology-level updates inferred by source-level ones, which we are analyzing in
this section, are always trivially weakly-coherent.

Then, our idea is to introduce a new operator for ontology-level weakly-
coherent updates, and show that the result of applying such operator can be
easily computed by adapting the previous algorithms and Datalog programs for
coherent updates.

To this aim, in the following we in fact present and discuss two new seman-
tics for updating a consistent ontology with a weakly-coherent update. Similar
to the update semantics given in Definition 1, these new semantics are conse-
quence conservative, that is, they allow to preserve both coherent consequences
of incoherent updates, as well as consistent knowledge inferred by the ontology
before an inconsistent update is performed. We will show that the result of the
update obtained according to the first semantics that we present always con-
tains the result that we obtain with the second semantics, that is, the former is
more conservative than the latter. Thus, we will base our algorithmic solution
for incoherent source-level updates on the second semantics.



Practical Update Management in Ontology-Based Data Access 237

Before proceeding further we need to give some notions. Given an ontology
O = 〈T ,A〉 we denote with HB(O) the Herbrand Base of O, i.e. the set of ABox
facts that can be built over the ontology alphabet NO. Moreover, we introduce
the notion of consistent logical consequences [12] of A with respect to T as the
set clcT (A) = {α | α ∈ HB(O) and there exists A′ ⊆ A such that A′ is T -
consistent, and 〈T ,A′〉 |= α}. Note that, if the ontology A is T -consistent, then
clcT (A) = clT (A).

The new update semantics we are presenting refer to the notion of closed
ABox repair [12] of an inconsistent ontology.

Definition 2. Let T be a TBox and A be an ABox. A closed ABox repair (CA-
repair) of A with respect to T is a T -consistent ABox A′ such that clT (A′) is a
maximal subset of clcT (A) that is T -consistent.

The set of all CA-repairs of an ABox A with respect to T is denoted by
carSetT (A).

Example 1. Consider the TBox T of our running example and the following
ABox:

Ainc = {Movie(Moon), ApprovedBy(Moon,Pit)}.

It is easy to see that the ABox Ainc is not T -consistent, since both Movie(Moon)

and Book(Moon) follows from T and Ainc. The set carSetT (Ainc) contains the
following T -consistent ABoxes:

Ar1 = {Movie(Moon), Reviewer(Pit), Item(Moon)};
Ar2 = {Book(Moon), ApprovedBy(Moon,Pit), Reviewer(Pit), Item(Moon)}. �

Intuitively, our first solution for updating an ontology with a weakly-coherent
update consists in first restoring the consistency of the update with respect to
the TBox, and then proceeding as in the case of coherent update. Since, given
an update U and an ontology O = 〈T ,A〉, there may exist more then one repair
of A+

U with respect to T , we compute a single update by taking the intersection
of all the CA-repairs of A+

U with respect to T , thus following the When In Doubt
Throw It Out (WIDTIO) principle [21].

Definition 3. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology, and let U
be a weakly-coherent update. The operator •1 is the update operator such that
O •1 U = O • Urep, where Urep = (

⋂
Ar

i ∈carSetT (A+
U ) clT (Ar

i ),A−
U ).

We note that Urep actually coincides with the repair of A+
U with respect to

T under the ICAR semantics presented in [12].

Example 2. Let O = 〈T ,A〉 be a DL-LiteA ontology where T is the TBox of
our running example and A is the ABox {Movie(Moon)}. Moreover, let U be the
weakly-coherent update (Ainc, {}), where Ainc is as in Example 1. It is easy
to see that Urep = clT (Ar1 ∩ Ar2) = {Reviewer(Pit), Item(Moon)}. Consequently,
O •1 U = O • Urep = {Movie(Moon), Reviewer(Pit), Item(Moon)}. �
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The second update semantics follows a different approach. Instead of com-
puting a coherent update by performing the intersection of all the repairs of the
original weakly-coherent update and then using it for updating the ontology as
described in Sect. 4, we first update the ontology with each repair separately, and
then we apply the WIDTIO principle in order to have a single ABox as result.

Definition 4. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology, and let U
be a weakly-coherent update. The operator •2 is the update operator such that
O •2 U = 〈T ,A∩〉 where A∩ =

⋂
Ar

i ∈carSetT (A+
U ) clT (O • (Ar

i ,A−
U )).

Example 3. Consider the ontology O and the update U of Example 2. The
update semantics given in Definition 4 requires, for each repair Ari of Ainc

with respect to T , to compute O • Ari. Easily, one can see that:

O • Ar1 = {Movie(Moon), Reviewer(Pit), Item(Moon)}
O • Ar2 = {Book(Moon), ApprovedBy(Moon,Pit), Reviewer(Pit), Item(Moon)}.

Hence, we have that 〈T , A〉 •2 U = clT (O • Ar1) ∩ clT (O • Ar2) = {Reviewer(Pit),
Item(Moon)}. �

The following result determines the relation between the above update semantics.

Theorem 2. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology, and U be an
update possibly inconsistent with T . Then clT (O •2 U) ⊆ clT (O •1 U).

Proof. Let A∩ =
⋂

Ar
i ∈carSetT (A+

U ) clT (Ar
i ). Toward a contradiction, assume that

clT (O •2 U) �⊆ clT (O •1 U). This means that there is at least one ABox assertion
α ∈ clT (O •2 U) such that α �∈ clT (O •1 U). Only two cases are conceivable.

First case: O |= α. Since α �∈ clT (O •1 U), then there is an assertion β ∈
clT (A∩) such that 〈T , {β}〉 |= ¬α. Since for each Ar

i ∈ carSetT (A+
U ) we have

that A∩ ⊆ Ar
i , then β ∈ clT (Ar

i ). This means that for each ABox Anew
i =

O • (Ar
i ,A−), β ∈ clT (Anew

i ). Therefore β ∈ clT (O •2 U), and 〈T ,O •2 U〉 |= ¬α
which is a contradiction.

Second case: O �|= α. Since α ∈ clT (O•2U), then for each Ar
i ∈ carSetT (A+

U ),
and for each Anew

i = O • (Ar
i ,A−), α ∈ clT (Anew

i ). Since O �|= α, then for each
Ar

i ∈ carSetT (A+
U ), α ∈ Ar

i . Hence, α ∈ clT (A∩) and so 〈T ,O •1 U〉 |= α which
is a contradiction. �

Interestingly, the converse is not true (cf. Examples 2 and 3). As a conse-
quence, we see that the first semantics is more conservative then the second. For
this reason (and for lack of space), in the rest of this paper we focus on the first
semantics and leave the study of the second for future work.

We now turn back to the management of the case in which the ontology
update implied by a source-level update is incoherent. To this aim, we modify
step (2) described in Sect. 5.1. In particular, in step (2) we now identify the
part of the update that is coherent with the TBox, which has to be realized as
before. Also, we repair the remaining part (i.e., the incoherent one) according to
Definition 3, that is, by deriving the deletion of all incoherent inserted facts and
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the insertion of all their coherent consequences. Again, all these computations
can be done with a non-recursive Datalog program.

We note that retrieved ABox deletions are always coherent since they cannot
contradict the TBox, but an insertion is coherent only if it is not paired to an
insertion in a disjoint predicate, or if there is no other insertion that together with
it violates a functional role. To compute this we make use of suitable Datalog
rules. Namely, for each atomic concept A we pose:

ins A coherent(x) :- ins A sl(x),¬ins A1 sl(x),..,¬ins An sl(x),
¬ins P1 sl(x, y1),..,¬ins Pm sl(x, ym),

¬ins Q1 sl(z1, x),..,¬ins Qk sl(zk, x)

where each Ai is an atomic concept such that T |= A � ¬Ai, each Pi is an
atomic role such that T |= A � ¬∃Pi, and each Qi is an atomic role such
that T |= A � ¬∃Q−

i . We proceed similarly for roles. In this case however,
besides disjointnesses, we have also to consider that a role R can be involved
in functionality axioms or can be asymmetric, i.e., R is such that T |= R �
¬R−. Assuming R functional and not involved in any disjointness (both between
concepts and relations), we write the following rules to deal with insertions in R:

ins R coherent(x, y) :- ins R sl(x, y), ¬clash R(x)
clash R(x):- ins R sl(x, y), ins R sl(x, z), y 
= z

Note that the above rules are similar in spirit to those used in [13] for query
rewriting.

Next, we deal with the rest of ins N sl, i.e., those that directly contradict a
TBox axiom. For each one of them, we obtain the additional insertions/deletions
that must be effectively performed, according to Definition 3, for both solving
incoherency and preserving consistent consequences. In explaining this step we
consider only inclusions and disjointnesses between atomic concepts. Other forms
of axioms are dealt with in a similar way.

We consider two kinds of Datalog rules. The first kind computes the insertions
(coherent or not) entailed by insertions clashing with the TBox. That is, for each
pair of TBox axioms of the form A1 � A2, A1 � ¬A3 entailed by T we have the
rule:

ins A2 closure(x):-ins A1 sl(x), ins A3 sl(x)

The second kind of rules filters these insertions to apply only those not contra-
dicting the TBox. Concretely, for each atomic concept A, we consider a Datalog
rule with the form:

ins A ol(x):-ins A closure(x), ¬ins A1 sl(x),..,¬ins An sl(x)

where each Ai is an atomic concept such that T |= A � ¬Ai.
Note that we derive a new ontology-level insertion. Indeed, we use such new

insertions to invoke the ontology-level-Update algorithm, which will insert these
new facts while deleting those currently retrieved ABox facts that clashes with
it, so, ensuring the consistency of the ontology. This ontology-level update invo-
cation is performed after applying the source-level update in D, that is, after
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Algorithm 3. source-level-Update(T , M, Usl, D)
1 A+ ← ∅
2 foreach fact ins N coherent(t) derived by Datalogsl(T , M) from Usl + D do
3 if ins N(t) ∈ D then remove ins N(t) from D else include N(t) in A+

4 foreach fact del N sl(t) derived by Datalogsl(T , M) from Usl + D do
5 if del N(t) ∈ D then remove del N(t) from D
6 // Dealing with incoherent insertions

7 foreach fact ins N ol derived by Datalogsl(T , M) from Usl + D do
8 include N(t) in A+

9 foreach fact del N’(t) derived by Datalogsl(T , M) from Usl + D do
10 if ins N(t) ∈ D then remove ins N(t) from D
11 else insert del N(t) into D
12 D′ = apply(Usl, D)
13 return ontology-level-Update(T , M, (A+, {}), D′)

inserting/deleting each tuple in the ins T Table/del T Table tables in/from the
corresponding T Table.

Finally, we must avoid entailing a clash because of the insertions in the
database. Thus, for each A1 � ¬A2 assertion entailed by the TBox, where each
Ai is a basic concept/role, we consider the rules:

del A1’(x):-ins A1 sl(x), ins A2 sl(x)
del A2’(x):-ins A1 sl(x), ins A2 sl(x)

Intuitively, these rules are only meant to cancel the insertions that cause the
clash. The entire general procedure is described by Algorithm 3. Notice that by
removing rows 6–11, this algorithm is exactly as Algorithm 2, with the proviso
that in line 2 we are using ins N coherent in place of ins N sl. Indeed, in the gen-
eral setting we have to add the treatment of facts ins N ol, and del N’ produced
by the new version of the program Datalogsl(T , M). We conclude by stating
the correctness of the algorithm.

Theorem 3. Let (〈T ,M,S〉,D) be a consistent write-also OBDA system, Usl

an update over D, and Aret = (A+,A−) be the retrieved ABox change derived
by D, π(M), and Usl. Algorithm 3 returns a D′ such that 〈T , ret(M,D)\A−〉•1
(A+, ∅) = ret(M,D′).

Intuitively, the retrieved ABox computed from D′, in turn obtained by Algo-
rithm 3, is equivalent to realizing the ontology-level update (A+, ∅) over the
ontology 〈T , ret(M,D) \ A−〉, i.e., over the original retrieved ABox after delet-
ing A−.

From this theorem we get that computing the result of a source-level update
is in AC0 in data complexity as for ontology-level update.
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6 Conclusion

In this paper we have studied write-also OBDA Systems under ontology-level
and source-level updates. We have shown how to handle both updates through
non-recursive Datalog programs. Such programs can be easily translated into
first-order query languages, and thus we have shown that update computation
in our framework is first-order rewritable. We stress that the techniques proposed
in this paper are ready-implementable and can be adopted by state-of-the-art
tools for OBDA, such as Mastro [6] and Ontop [3]. This will be the subject of
our future work.
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