
Semantic Rule-Based Equipment Diagnostics

Gulnar Mehdi1,2(B), E. Kharlamov3, Ognjen Savković4, G. Xiao4,
E. Güzel Kalaycı4, S. Brandt1, I. Horrocks3, Mikhail Roshchin1,

and Thomas Runkler1,2

1 Siemens CT, Munich, Germany
gulnar.mehdi@siemens.com

2 Technical University of Munich, Munich, Germany
3 University of Oxford, Oxford, UK

4 Free University of Bozen-Bolzano, Bolzano, Italy

Abstract. Industrial rule-based diagnostic systems are often data-
dependant in the sense that they rely on specific characteristics of indi-
vidual pieces of equipment. This dependence poses significant challenges
in rule authoring, reuse, and maintenance by engineers. In this work we
address these problems by relying on Ontology-Based Data Access: we
use ontologies to mediate the equipment and the rules. We propose a
semantic rule language, sigRL, where sensor signals are first class citi-
zens. Our language offers a balance of expressive power, usability, and
efficiency: it captures most of Siemens data-driven diagnostic rules, sig-
nificantly simplifies authoring of diagnostic tasks, and allows to efficiently
rewrite semantic rules from ontologies to data and execute over data. We
implemented our approach in a semantic diagnostic system, deployed it
in Siemens, and conducted experiments to demonstrate both usability
and efficiency.

1 Introduction

Intelligent diagnostic systems play an important role in industry since they help
to maximise equipment’s up-time and minimise its maintenance and operating
costs [29]. In energy sector companies like Siemens often rely on rule-based diag-
nostics systems to analyse power generating equipment by, e.g., testing newly
deployed electricity generating gas turbines [24], or checking vibration instru-
mentation [26], performance degradation [27], and faults in operating turbines.
For this purpose diagnostic engineers create and use complex diagnostic rule-sets
to detect abnormalities during equipment run time and sophisticated analytical
models to combine these abnormalities with models of physical aspects of equip-
ment such as thermodynamics and energy efficacy.

An important class of rules that are commonly used in Siemens for rule-based
turbines diagnostics are signal processing rules (SPRs). SPRs allow to filter,
aggregate, combine, and compare signals, that are time stamped measurement
values, coming from sensors installed in equipment and trigger error or noti-
fication messages when a certain criterion has been met. Thus, sensors report

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part II, LNCS 10588, pp. 314–333, 2017.
DOI: 10.1007/978-3-319-68204-4_29

Semantic Rule-Based Equipment Diagnostics 315

temperature, pressure, vibration and other relevant parameters of equipment
and SPRs process this data and alert whenever a certain pattern is detected.
Rule-based diagnostics with SPRs can be summarises as in Fig. 1 (left), where
the data consists of signals coming from sensors of turbines, and the diagnostic
layer consists of SPRs and analytical models.

Equipment

Sensors
Installed in
Equipment

Data Signals
from

Sensors

Signal
Processing

Rules

Data Driven Approach

Sensors
Installed in
Equipment

Data Signals
from
Sensors

Virtual
Abstract
Signals

Analytical
Models

Ontologies

Semantic
Signal
Processing
Rules

A
b

st
ra

ct
io

n
L

ay
er

S
ig

R
L

R
u

le

L
an

g
u

ag
e

Equipment

Semantic Approach

D
at

a
L

ay
er

D
ia

g
n

o
st

ic
 L

ay
er Analytical

Models

Fig. 1. General scheme of diagnostics with signal-processing rules. Left: data driven
approach. Right: semantic approach.

SPRs that are currently offered in most of existing diagnostic systems and
used in Siemens are highly data dependent in the sense that specific characteristic
of individual sensors and pieces of equipment are explicitly encoded in SPRs. As
the result for a typical turbine diagnostic task an engineer has to write from
dozens to hundreds of SPRs that involve hundreds of sensor tags, component
codes, sensor and threshold values as well as equipment configuration and design
data. For example, a typical Siemens gas turbine has about 2,000 sensors and a
diagnostic task to detect whether the purging1 in over can be captured with 300
SPRs. We now illustrate diagnostic tasks and corresponding SPRs on a running
example.

Example 1 (Purging Running Example). Consider the purging diagnostic task:

Verify that the purging is over in the main flame component of the turbine
T1.

1 Purging is the process of flushing out liquid fuel nozzles or other parts which may
contain undesirable residues.

316 G. Mehdi et al.

Intuitively this task requires to check in the turbine T1 that: (i) the main flame
was on for at least 10 s and then stopped, (ii) 15 s after this, the purging of
rotors in the starting-component of T1 started, (iii) 20 s after this, the purging
stopped. The fact that the purging of a rotor started or ended can be detected
by analysing its speed, that it, by comparing the average speed of its speed
sensors with purging thresholds that are specific for individual rotors. Let us
assume that the first rotor in the starting-component of T1 has three speed sen-
sors ‘S21R1T1’, ‘S22R1T1’, and ‘S23R1T1’ and that the 1.300 and 800 rotations
respectively indicate that the purging starts and ends. Then, the following data
dependent SPRs written in a syntax similar to the one of Siemens SPRs can be
used to detect that purging has started and ended:

$PurgStartRotor1 : truth(avg(‘S21R1T1’, ‘S22R1T1’, ‘S23R1T1’), > 1.300). (1)
$PurgStopRotor1 : truth(avg(‘S21R1T1’, ‘S22R1T1’, ‘S23R1T1’), < 800). (2)

Here $PurgStartRotor1 and $PurgStopRotor1 are variables that store those aver-
age time stamped values of measurements (from the three speed sensors in the
first rotor of T1) that passed the threshold. Complete encoding of the purging
task for an average Siemens turbine requires to write around 300 SPRs some of
which are as in the running example. Many of these SPRs differ only on spe-
cific sensor identifiers and the number of speed signals to aggregate. Adapting
these SPRs to another turbine will also require to change a lot of identifiers. For
example, in another turbine T2 the rotor may have the purging threshold values
1.000 and 700 and contain four sensors ‘S01R2T2 ’, ‘S02R2T2 ’, ‘S03R2T2 ’, and
‘S04R2T2mrq and thus the corresponding start and stop purging rules will be
as above but with these new sensors ids and threshold values. ��

Data dependence of SPRs poses three significant challenges for diagnostic
engineers in (i) authoring, (ii) reuse, and (iii) maintenance of SPRs. Indeed,
authoring such rules is time consuming and error prone, e.g., while aggregating
the speed signals from a given rotor one has ensure that all the relevant speed
signals are included in the aggregation and that other signals, e.g., temperature
signals, are not included. As the result, in the overall time that a Siemens engi-
neer spends on diagnostics up to 80% is devoted to rule authoring where the
major part of this time is devoted to data access and integration [19]. Reuse of
such rules is limited since they are too specific to concrete equipment and in
many cases it is easier to write a new rule set than to understand and adapt an
existing one. As the result, over the years Siemens has acquired a huge library
of SPRs with more than 200,000 rules and it constantly grows. Maintenance of
such SPRs is also challenging and require significant manual work since there is
limited semantics behind them.

Adding Semantics to SPRs. Semantic technologies can help in addressing
these three challenges. An ontology can be used to abstractly represent sensors
and background knowledge about turbines including locations of sensors, struc-
ture and characteristics of turbines. Then, in the spirit of Ontology Based Data
Access (OBDA) [25], the ontology can be ‘connected’ to the data about the

Semantic Rule-Based Equipment Diagnostics 317

actual turbines, their sensors and signals with the help of declarative mapping
specifications. OBDA has recently attracted a lot of attention by the research
community: a solid theory has been developed, e.g. [7,28], and a number of
mature systems have been implemented, e.g. [5,6]. Moreover, OBDA has been
successfully applied in several industrial applications, e.g. [8,14,15,17].

Adopting OBDA for rule-based diagnostics in Siemens, however, requires a
rule based language for SPRs that enjoys the following features:

(i) Signals orientation: The language should treat signals as first class citizens
and allow for their manipulation: to filter, aggregate, combine, and compare
signals;

(ii) Expressiveness: The language should capture most of the features of the
Siemens rule language used for diagnostics;

(iii) Usability: The language should be simple and concise enough so that the
engineers can significantly save time in specifying diagnostic tasks;

(iv) Efficiency: The language should allow for efficient execution of diagnostic
tasks.

To the best of our knowledge no rule language exists that fulfills all these require-
ments (see related work in Sect. 5 for more details).

Contributions. In this work we propose to extend the traditional data driven
approach to diagnostics with an OBDA layer and a new rule language to what we
call Semantic Rule-based Diagnostics. Our approach is schematically depicted in
Fig. 1 (right). To this end we propose a language sigRL for SPRs that enjoys the
four requirements above. Our language allows to write SPRs and complex diag-
nostic tasks in an abstract fashion and to exploit both ontological vocabulary and
queries over ontologies to identify relevant sensors and data values. We designed
the language in such a way that, on the one hand, it captures the main signal
processing features required by Siemens turbine diagnostic engineers and, on the
other hand, it has good computational properties. In particular, sigRL allows for
rewriting [7] of diagnostic rule-sets written over OWL 2 QL ontologies 2 into mul-
tiple data-dependent rule-sets with the help of ontologies and OBDA mappings.
This rewriting allows to exploit standard infrastructure, including the one used in
Siemens, for processing data-dependent SPRs.

We implemented sigRL and a prototypical Semantic Rule-based Diagnos-
tic system. We deployed our implementation in Siemens over 50 Siemens gas
turbines and evaluated the deployment with encouraging results. We evaluated
usability of our solution with Siemens engineers by checking how fast they are
in formulating diagnostic tasks in sigRL. We also evaluated the efficiency of our
solution in processing diagnostic tasks over turbine signals in a controlled envi-
ronment. Currently, our deployment is not included in the production processes,
it is a prototype that we plan to evaluate and improve further before it can be
used in production.

2 OWL 2 QL is the W3C standardised ontology language that is intended for OBDA.

318 G. Mehdi et al.

2 Signal Processing Language sigRL

In this section we introduce our signal processing language sigRL. It has three
components: (i) Basic signals that come from sensors; (ii) Knowledge Bases
(KBs) that capture background knowledge of equipment and signals as well
as concrete characteristics of the equipment that undergoing diagnostics, and
(iii) Signal processing expressions that manipulate basic signals using mathe-
matical functions and queries over KBs.

Signals. In our setting, a signal is a first-class citizen. A signal s is a pair
(os, fs) where os is sensor id and signal function fs defined on R to R ∪ {⊥},
where ⊥ denotes the absence of a value. A basic signal is a signal which reading
is obtained from a single sensor (e.g., in a turbine) for different time points.
In practice, it may happen that a signal have periods without identified values.
Also, such periods are obtained when combining and manipulating basic signals.
We say that a signal s is defined on a real interval I if it has a value for each
point of the interval, ⊥ �∈ fs(I). For technical reasons we introduce undefined
signal function f⊥ that maps all reals into ⊥. In practice signals are typically
step functions over time intervals since they correspond to sensor values delivered
with some frequency. In our model, we assume that we are given a finite set of
basic signals S = {s1, . . . , sn}.

Knowledge Bases and Queries. A Knowledge Base K is a pair of an ontol-
ogy O and a data set A. An ontology describes background knowledge of an
application domain in a formal language. We refer the reader to [7] for detailed
definitions of ontologies. In our setting we consider ontologies that describe gen-
eral characteristics of power generating equipment which includes partonomy of
its components, characteristics and locations of its sensors, etc. As an example
consider the following ontological expression that says that RotorSensor is a kind
of SpeedSensor:

SubClassOf(RotorSensor SpeedSensor). (3)

Data sets of KBs consist of data assertions enumerating concrete sensors,
turbines, and their components. The following assertions says that sensors
‘S21R1T1’, ‘S22R1T1’ and ‘S23R1T1’ are all rotor sensors:

ClassAssertion(RotorSensor ‘S21R1T1’),ClassAssertion(RotorSensor ‘S22R1T1’),
ClassAssertion(RotorSensor ‘S23R1T1’). (4)

In order to enjoy favorable semantic and computational characteristics of
OBDA, we consider well-studied ontology language OWL 2 QL that allows to
express subclass (resp. sub-property) axioms between classes and projections of
properties (resp. corollary between properties). We refer the reader to [7] for
details on OWL 2 QL.

Semantic Rule-Based Equipment Diagnostics 319

To query KBs we rely on conjunctive queries (CQs) and certain answer
semantics that have been extensively studied for OWL 2 QL KBs and proved
to be tractable [7]. For example, the following CQ returns all rotor sensors from
start component:

rotorStart(x) ← rotorSensor(x) ∧ locatedIn(x, y) ∧ startComponent(y). (5)

Signals Processing Expressions. Now we introduce signal expressions that
filter and manipulate basic signals and create new complex signals. Intuitively,
in our language we group signals into ontological concepts and signal expression
are defined on the level of concepts. Then, a signal processing expression is
recursively defined as follows:

C = Q | C1 : value(
, α) | {s1, . . . , sm} | agg C1 |
α ◦ C | C1 : duration(
, t) | C1 : align C2

where C is a concept, Q is a CQ, ◦ is in {+,−,×, /}, agg is in {min,max,
avg, sum}, α ∈ R,
 ∈ {<,>,≤,≥} and align ∈ {within, after[t], before[t]} where
t is a period.

Table 1. Meaning of signal processing expressions. For the interval I, size(I) is its
size. For intervals I1, I2 the alignment is: “I1 within I2” if I1 ⊆ I2; “I1 after[t] I2” if
all points of I2 are after I1 and the start of I2 is within the end of I1 plus period t;
“I1 before[t] I2” if “I2 start[t] I1”.

C = Concept C contains

Q All signal ids return by Q evaluated over the KB

α ◦ C1 One signal s′ for each signal s in C1 with fs′ = α ◦ fs

C1 : value(�, α) One signal s′ for each signal s in C1 with fs′(t) = α � fs(t) if
fs(t) � α at time point t; otherwise fs′(t) = ⊥

C1 : duration(�, t′) One signal s′ for each signal s in C1 with fs′(t) = fs(t) if
exists an interval I such that: fs is defined I, t ∈ I and
size(I) � t′; otherwise fs′(t) = ⊥

{s1, . . . , sm} All enumerated signal {s1, . . . , sm}
C = agg C1 One signal s′ with fs′(t) = aggs∈C1

fs(t), that is, s′ is
obtained from all signals in C1 by applying the aggregate agg
at each time point t

C1 : align C2 A signal s1 from C1 if: there exists a signal s2 from C2 that is
aligned with s1, i.e., for each time interval I1 where fs1 is
defined there is an interval I2 where fs2 is defined s.t. I1
aligns with I2

The formal meaning of signal processing expressions is defined in Table 1. In
order to make the mathematics right, we assume that c ◦ ⊥ = ⊥ ◦ c = ⊥ and

320 G. Mehdi et al.

c
 ⊥ = ⊥
 c = false for c ∈ R, and analogously we assume for aggregate
functions. If the value of a signal function at a time point is not defined with
these rules, then we define it as ⊥.

Example 2. The start and end of a purging process data-driven rules as in
Eqs. (1) and (2) from the running example can be expressed in sigRL as fol-
lows:

PurgingStart = avg rotorStart : value(>, purgingSpeed), (6)
PurgingStop = avg rotorStart : value(<,nonPurgingSpeed). (7)

Here, rotorStart is the CQ defined in Eq. (5). For brevity we do not introduce a
new concept for each expression but we just join them with symbol “:”. Constants
purgingSpeed and nonPurgingSpeed are parameters of an analysed turbine, and
they are instantiated from the turbine configuration when the expressions are
evaluated. ��

Diagnostic Programs and Messages. We now show how to use signal expres-
sions to compose diagnostic programs and to alert messages. In the following we
will consider well formed sets of signal expressions, that is, sets where each con-
cept is defined at most once and where definitions of new concepts are assumed
to be acyclic: if C1 is used to define C2 (directly or indirectly) then C1 cannot
be defined (directly or indirectly) using C1.

A diagnostic program (or simply program) Π is a tuple (S,K,M) where S
is a set of basic signals, K is a KB, M is a set of well formed signal processing
expressions such that each concept that is defined in M does not appear in K.

Example 3. The running example program Π = (S,K,M) has the following
components: sensors S = {‘S21R1T1’, ‘S22R1T1’, ‘S23R1T1’}, KB K that con-
sists of axioms from Eqs. (3)–(4), and M that consists of expressions from
Eqs. (6)–(7). ��

A message rule is a rule of the form, where C is a concept and m is a (text)
message:

message(m) = C.

Example 4. Using expressions (6) and (7) we define the following message:

message(“Purging over”) = FlameSensor : duration(>, 10s) :
after[15s] PurgingStart : after[20s] PurgingStop (8)

The message intuitively indicates that the purging is over. ��
Now we are ready to define the semantics of the rules, expression and pro-

grams.

Semantic Rule-Based Equipment Diagnostics 321

Semantics of sigRL. We now define how to determine whether a program Π
fires a rule r. To this end, we extend first-order interpretations that are used to
define semantics of OWL 2 KBs. In OWL 2 a first class citizen is an object o
and interpretation is defining whether C(o) is true or not for particular concept
C. In our scenario, domain of objects is a domain of sensor ids (basic or ones
defined by expressions). Thus each object o is also having assigned function fo

that represents the signal value of that object. Obviously, an identifier o can
also be an id of a turbine component that does not have signal function. At the
moment, (since it is not crucial for this study and it simplifies the formalism)
we also assign undefined signal f⊥ to such (non-signal) objects.

Formally, our interpretation I is a pair (IFOL, IS) where IFOL interprets
objects and their relationships (like in OWL 2) and IS interprets signals. First,
we define how I interprets basic signals. Given a set of signals for an interpre-
tation I: SI = {sI

1 , . . . , sI
n} s.t. IFOL ‘returns’ the signal id, sIFOL = os and IS

‘returns’ the signal itself, sIS = s.
Now we can define how I interprets KBs. Interpretation of a KB KI extends

the notion of first-order logics interpretation as follows: KIFOL is a first-order log-
ics interpretation K and KIS is defined for objects, concepts, roles and attributes
following SI . That is, for each object o we define oIS as s if o is the id of s from S;
otherwise (o, f⊥). Then, for a concept A we define AIS = {sIS | oIFOL

s ∈ AIFOL}.
Similarly, we define ·IS for roles and attributes.

Finally, we are ready to define I for signal expressions and we do it recursively
following the definitions in Table 1. We now illustrate some of them. For example,
if C = {s1, . . . , sm}, then CI = {sI

1 , . . . , sI
m}; if C = Q then CIFOL = QIFOL

where QIFOL is the evaluation of Q over IFOL and CIS = {s | oIFOL
s ∈ QIFOL},

provided that IFOL is a model of K. Otherwise we define CI = ∅. Similarly, we
define interpretation of the other expressions.

Firing a Message. Let Π be a program and ‘r : message(m) = C’ a message
rule. We say that Π fires message r if for each interpretation I = (IFOL, IS)
of Π it holds CIFOL �= ∅, that is, the concept that fires r is not empty. Our
programs and rules enjoy the canonical model property, that is, each program
has a unique (Hilbert) interpretation [3] which is minimal and can be constructed
starting from basic signals and ontology by following signal expressions. Thus,
one can verify CIFOL �= ∅ only on the canonical model. This implies that one
can evaluate sigRL programs and expressions in a bottom-up fashion. We now
illustrate this approach on our running example.

Example 5. Consider our running program Π from Example 3 and its canonical
interpretation IΠ . First, for each query Q in M we evaluate Q over KB K by
computing QIΠ . In our case, the only query is rotorStart that collects all sensor
ids for a particular turbine. Then, we evaluate the expressions in M follow-
ing the dependency graph of definitions. We start by evaluation the expression
from Eq. (6), again in a bottom-up fashion. Concept rotorStartIΠ contains sensor
ids: ‘S21R1T1’, ‘S22R1T1’ and ‘S23R1T1’. At the same time, those sensors have
signal functions assigned from SIΠ . Let us call them f1, f2 and f3. Expression

322 G. Mehdi et al.

avg rotorStart computes a new signal, say s4, by taking average of f1, f2 and f3
at each time point. After this, value(>, purgingSpeed) eliminates all values of s4
that are not > purgingSpeed. Similarly, we compute signal transformations for
the expression from Eq. (6). Finally, we use those two expressions to evaluate the
message rule from Eq. (8). If there exists at least one FlameSensor that aligns
with one signal in evaluated expressions corresponding to Eqs. (6) and (7), then
the message is fired. ��

3 System Implementation and Deployment in Siemens

System Implementation. The main functionality of our Semantic Rule-based
Diagnostics system is to author sigRL diagnostic programs, to deploy them in
turbines, to execute the programs, and to visualise the results of execution. We
now give details of our system by following its architecture in Fig. 2. There are
four essential layers in the architecture: application, OBDA, rule execution, and
data. Our system is mostly implemented in Java. We now discuss the system
layer by layer.

semantic error
messages

Calls for ontologies
and mappings

Rule processing

OBDA
Layer

Rewriting of
Rules and Queries

Unfolding: Rules, Queries;
Transformation: Msg, Ans

enriched semantic
rule-sets

service
data

semantic
rule-sets

data level
error mesaages

Application
Layer

Data
Layer

data level rule-sets
and queries

Ontology

System modules

Ontology, mappings
in a triple store

R
ul

e
P

ro
ce

ss
in

g

Mappings:
Data-to-Ontologies

Rule Formulation
Component

Semantic Wiki:
visualisation, tracking

sensor
data

design
data

event
data

Legend

databases

Rule Execution InfrustructureExecution
Layer

Fig. 2. Architecture of our Semantic Rule-based Diagnostics system.

On the application layer, the system offers two user-oriented modules. The
first module allows engineers to author, store, and load diagnostic programs by
formulating sets of SPRs in sigRL and sensor retrieving queries. Such formula-
tion is guided by the domain ontology stored in the system. In Fig. 3 (top) one
can observe a screenshot of the SPR editor which is embedded in the Siemens
analytical toolkit. Another module is the semantic Wiki that allows among other
features to visualize signals and messages (triggered by programs), and to track

Semantic Rule-Based Equipment Diagnostics 323

deployment of SPRs in equipment. In Fig. 3 (center) one can see visualization
of signals from two components of one turbine. Diagnostic programs formulated
in the application layer are converted into XML-based specifications and sent
to the OBDA layer, which returns back the messages and materialized semantic
signals, that is, signals over the ontological terms. In Fig. 3 (bottom) one can
see an excerpt from an XML-based specification. We rely on REST API to com-
municate between the application layer and the OBDA layer of our system and
OWL API to deal with ontologies.

Fig. 3. Screenshots: SPR editor (top), Wiki-based visualisation monitor for semantic
signals (centre), and a fragment of an XML-based specification of an SPR (bottom).

Note that during the course of the project we have developed an extension to
the existing Siemens rule editor and a dedicated wiki-based visualisation monitor
for semantic signals. Note that we use the latter for visualising query answers
and messages formatted according to the Siemens OWL 2 ontology and stored
as RDF.

The OBDA layer takes care of transforming SPRs written in sigRL into either
SPRs written in the Siemens data-driven rule language (in order to support
the existing Siemens IT infrastructure) or SQL. This transformation has two
steps: rewriting of programs and queries with the help of ontologies (at this
step both programs and queries are enriched with the implicit information from
the ontology), and then unfolding them with the help of mappings. For this
purpose we extended the query transformation module of the Optique platform
[11–13,15,19] which we were developing earlier within the Optique project [10].

324 G. Mehdi et al.

The OBDA layer also transforms signals, query answers, and messages from the
data to semantic representation.3

The rule execution layer takes care of planning and executing data-driven
rules and queries received from the OBDA layer. If the received rules are in
the Siemens SPR language then the rule executor instantiates them with con-
crete sensors extracted with queries and passes them to the Drools Fusion
(drools.jboss.org/drools-fusion.html) the engine used by Siemens. If the received
rules are in SQL then it plans the execution order and executes them together
with the other queries. To evaluate the efficiency of our system in Sect. 4 we
assume that the received rules are in SQL. Finally, on the data layer we store
all the relevant data: turbine design specifications, historical information about
services that were performed over the turbines, previously detected events, and
the raw sensor signals.

Deployment at Siemens. We deployed our Semantic Rule-Based Diagnostics
system on the data gathered for 2 years from 50 gas power generating tur-
bines. We rely on Teradata for signals and MS SQL for other information. For
rule processing, we connected our system to the Siemens deployment of Drools
Fusion.

An important aspect of the deployment was the development of a diagnostic
ontology and mappings. Our ontology was inspired by the (i) Siemens Techni-
cal System Ontology (TSO) and Semantic Sensor Network Ontology (SSN) and
(ii) the international standards IEC 81346 and ISO/TS 16952-10. The develop-
ment of the ontology was a joint effort of domain experts from Siemens businesses
units together with the specialist from the Siemens Corporate Technology. Our
ontology consists of four modules and it is expressed in OWL 2 QL. In order to
connect the ontology to the data, we introduced 376 R2RML mappings. Note
that the development of the ontology and mappings is done offline and it does
not affect the time the engineers spend to author rules when they do turbine
diagnostics. We now go through the ontology modules in more detail.

The main module of our ontology in partially depicted in Fig. 4 where in
grey we present SSN and with white TSO terms. This module has 48 classes
and 32 object and data properties. The other three modules are respectively
about equipment, sensing devices, and diagnostic rules. They provide detailed
information about the machines, their deployment profiles, sensor configurations,
component hierarchies, functional profiles and logical bindings to the analytical
rule definitions. More precisely:

– The Equipment module describes the internal structure of an industrial sys-
tem. The main classes of the module are DeploymentSite and Equipment and
they describe the whole facility of system and machines that have been physi-
cally deployed and monitored. It also defines the system boundaries, substan-
tial descriptions of the system environment, set of components it operates

3 In this work we assume that RDF is the semantic data representation.

http://drools.jboss.org/drools-fusion.html

Semantic Rule-Based Equipment Diagnostics 325

tso:Deploy
mentSite

tso:Equipm
ent

tso:Function
alGroup ation

tso:Physical
Component

ssn:Sensing
Device

tso:Diagnos
ticRule

tso:DeploymentSiteOf

tso:operatesOn

tso:hasSensingDevice dul:isPaticipantIn

ssn:Propert
y

ssn:Measur
ementCap

ssn:Sensor
Output

sss:observes ssn:hasMeasurementCap

ssn:isProducedBy

ssn:Observe
dProperty

ssn:hasObservedProperty

ssn:Observa
tionValue

ssn:hasValue
ssn:observationResult ssn:Measur

ementRnge

tso:hasRange
tso:SignalPr
ocessinRule

ISA

tso:creation
Date

tso:RuleDes
cription

tso:RuleCat
egory

tso:Operatio
n

tso:hasFunctionalGroup

tso:hasSensorInput

Fig. 4. A fragment of the Siemens ontology that we developed to support turbine
diagnostic SPRs.

on, part-of relations, system configurations and functional grouping of com-
ponents. For example, it encodes that every Equipment should have an ID,
Configuration and at least one Component to operate on, and an optional
property hasProductLine.

– The Sensing Device module is inspired by the SSN ontology. In particular,
we reuse and extend the class SensingDevice. The module describes sensors,
their properties, outputs, and observations. One of our extensions comparing
to SSN is that the measurement capabilities can now include measurement
property range i.e. maximum and minimum values (which we encode with
annotations in order to keep the ontology in OWL 2 QL). For example, Vibra-
tionSensor is a sensing device that observes Vibration property and measures
e.g. BearingVibrations.

– The Diagnostic Rules module introduces rules and relate them to e.g.,
Description, Category, and Operation classes. For example, using this module
one can say that SignalProcessingRule is of a type DiagnosticRule, that it has
certain Operation and it may have different sensor data input associated with
its operation.

4 Siemens Experiments

In this section, we present two experiments. The first experiment is to verify
whether writing diagnostic programs in sigRL offers a considerable time saving
comparing to writing the programs in the Siemens data dependent rule language.
The second experiment is to evaluate the efficiency of the SQL code generated
by our OBDA component (see Sect. 3 for details on our OBDA component).

326 G. Mehdi et al.

Preliminary User Study. We conducted a preliminary user study in Siemens
with 6 participants, all of them are either engineers or data scientists. In Table 2
we summarise relevant information about the participants. All of them are mid
age, most have at least an M.Sc. degree, and all are familiar with the basic
concepts of the Semantic Web. Their technical skills in the domain of diagnostics
are from 3 to 5. We use a 5-scale range where 1 means ‘no’ and ‘5’ means
‘definitely yes’. Two out of six participants never saw an editor for diagnostic
rules, while the other four are quite familiar with rule editors.

During brainstorming sessions with Siemens power generation analysts and
R&D personnel from Siemens Corporate Technology we selected 10 diagnostic
tasks which can be found in Table 3. The selection criteria were: diversification
on topics and complexity, as well as relevance for Siemens. The tasks have three
complexity levels (Low, Medium, and High) and they are defined as a weighted
sum of the number of sensor tags, event messages, and lines of code in a task.

Table 2. Profile information of participants.

Age Occupation Education Tech. skills Similar tools Sem. web

P1 43 Design Engineer Ph.D. 3 3 Yes

P2 46 Senior Diagnostic Engineer Ph.D. 4 1 Yes

P3 37 Diagnostic Engineer M.Sc. 5 4 Yes

P4 45 R& D Engineer M.Sc. 4 4 Yes

P5 34 Software Engineer B.Sc. 3 3 Yes

P6 33 Data Scientist Ph.D. 3 1 Yes

Before the study we gave the participants a short introduction with exam-
ples about diagnostic programs and message rules in both Siemens and sigRL
languages. We also explained them the constructs of sigRL, presented them our
diagnostic ontology, and explained them the data. The data was from 50 Siemens
gas turbines and included sensor measurement, that is, temperature, pressure,
rotor speed, and positioning, and associated configuration data, that is, types
of turbines and threshold values. During the study participants were authoring
diagnostic programs for the tasks T1 to T10 from Table 3 using both existing
Siemens rule language (as the baseline) and sigRL; while we were recording the
authoring time. Note that all participants managed to write the diagnostic tasks
correctly and the study was conducted on a standard laptop.

Figure 5 summarises the results of the user study. The four left figures present
the average time that the six participants took to formulate the 10 tasks over
respectively 1, 5, 10, and 50 turbines. We now first discuss how the authoring
time changes within each of the four figures, that is, when moving from simple
to complex tasks, and then across the four figures, that is, when moving from 1
to 50 turbines.

Observe that in each figure one can see that in the baseline case the authoring
time is higher than in the semantic case, i.e., when sigRL is used. Moreover, in the

Semantic Rule-Based Equipment Diagnostics 327

Table 3. Diagnostic tasks for Siemens gas turbines that were used in the user study,
where complexity is defined using the number of sensor tags, event messages, and lines
of code.

Complexity # sensor tags # event msg # code lines Monitoring task

T1 Low 4 2 102 Variable guided vanes
analyses

T2 Low 6 5 133 Multiple start attempts

T3 Low 6 3 149 Lube oil system
analyses

T4 Medium 6 2 231 Monitoring turbine
states

T5 Medium 18 0 282 Interduct
thermocouple analyses

T6 Medium 16 2 287 Igniter failure
detection

T7 High 17 3 311 Bearing carbonisation

T8 High 19 2 335 Combustion chamber
dynamics

T9 High 15 4 376 Gearbox Unit
Shutdown

T10 High 12 8 401 Surge detection

Fig. 5. Results of the user study. Left four figures: the average time in second that
the users took to express the tasks T1–T10 for 1, 5, 10, and 50 turbines using existing
Siemens rule language (Baseline or B) and our semantic rule language sigRL (Semantic
or S). Right figure: the total time in seconds the user took to express the tasks grouped
according to their complexity.

semantic case the time only slightly increases when moving from simple (T1–T3)
to complex (T7–T10) tasks, while in the baseline case it increases significantly:
from 2 to 4 times. The reason is that in the baseline case the number of sensor

328 G. Mehdi et al.

tags makes a significant impact on the authoring time: each of this tags has to
be found in the database and included in the rule, while in the semantic case
the number of tags does not make any impact since all relevant tags can be
specified using queries. The number of event messages and the structure of rules
affects both the baseline and the semantic case, and this is the reason why the
authoring time grows in the semantic case when going from rules with low to
high complexity.

Now consider how the authoring time changes for a given tasks when moving
from 1 to 50 turbines. In the baseline case, moving to a higher number of turbines
requires to duplicate and modify the rules by first slightly modifying the rule
structure (to adapt the rules to turbine variations) and then replacing concrete
sensors tags, threshold values, etc. In the semantic case, moving to a higher
number of turbines requires only to modify the rule structure. As the result,
one can see that in the semantic case all four semantic plots are very similar:
the one for 50 turbines is only about twice higher than for 1 turbine. Indeed, to
adapt the semantic diagnostic task T4 from 1 to 50 turbines the participants in
average spent 50 s, while formulating the original task for 1 turbine took them
about 30 s.

Finally, let us consider how the total time for all 10 tasks changes when
moving from 1 to 50 turbines. This information is in Fig. 5 (right). One can see
that in the baseline case the time goes from 400 to 2.100 s, while in the semantic
case it goes from 90 to 240. Thus, for 10 tasks the semantic approach allows to
save about 1.900 s and it is more than 4 times faster than the baseline approach.

Performance Evaluation. In this experiment, we evaluate how well our SQL
translation approach scales. For this we prepared 5 diagnostic task, correspond-
ing data, and verified firing of messages using a standard relational database
engine PostgreSQL. We conducted experiments on an HP Proliant server with 2
Intel Xeon X5690 Processors (each with 12 logical cores at 3.47 GHz), 106 GB of
RAM. We now first describe the diagnostic tasks and the data, and then report
the evaluation results.

In Fig. 6 we present four of our 5 diagnostic tasks, and the task D2 is our
running example. Note that D1–D4 are independent from each other, while D5

combines complex signals defined in the other four tasks. This is a good example
of modularity of sigRL. On the data side, we took measurements from 2 sensors
over 6 days as well as the relevant information about the turbines where the
sensors were installed. Then, we scaled the original data to 2000 sensors; our
scaling respect the structure of the original data. The largest raw data for 2000
sensors took 5.1 GB on disk in a PostgreSQL database engine.

During the experiments our system did two steps: translation of semantic
diagnostic programs into SQL code and then execution of this SQL. During
the first step our system generated SQL code that ranging from 109 to 568
lines depending on the diagnostic task and the code is of a relatively complex
structure, e.g., for each diagnostic task the corresponding SQL contains at least
10 joins. The results of the second step are presented in Fig. 7. We observe that

Semantic Rule-Based Equipment Diagnostics 329

Diagnostics TaskD1: “Is there a ramp change after 6 min in the turbine T100?”:

SlowRotor = minRotorSensor : value(<, slowSpeed) : duration(>, 30s).

FastRotor = maxRotorSensor : value(>, fastSpeed) : duration(>, 30s).

RampChange = FastRotor : after[6m] SlowRotor.

message(“Ramp change”) = RampChange.

Diagnostic TaskD3: “Does the turbine T100 reach purging and ignition speed for 30 sec?”:

Ignition = avg RotorSensor : value(<, ignitionSpeed).

PurgeAndIgnition = PurgingStart : duration(>, 30s) :

after[2m] Ignition : duration(>, 30s).

message(“Purging and Ignition”) = PurgeAndIgnition.

Diagnostics TaskD4: “Does the turbine T100 go from ignition to stand still within 1min and then
stand still for 30 sec?”:

StandStill = avg RotorSensor : value(<, standStillSpeed).

IgnitionToStand = Ignition : duration(>, 1m) :

after[1.5m] StandStill : duration(>, 30s).

message(“Ignition to Stand”) = IgnitionToStand.

Diagnostics TaskD5: “Is the turbine T100 ready to start?”:

message(“Ready to Start”) = RampChange : after[5m] PurgingOver :

after[11m] PurgingAndIgnition :

after[15s] IgnitionToStand.

Fig. 6. Signal processing rules that we used for performance evaluation.

query evaluation scales well. Specifically, the running time grows sublinearly
with respect to the number of sensors. The most challenging query D5 can be
answered in 2 min over 2000 sensors.

5 Related Work

The authors in [19] introduce temporal streaming language STARQL that extends
SPARQL with aim to facilitate data analysis directly in queries. This and other
similar semantic streaming languages, e.g., SPARQLstream [9], are different from
our work, since we propose (i) a rule diagnostic language and (ii) focus on
temporal properties of signals which are not naturally representable in those
languages.

A preliminary idea on how to use semantic technologies in abstracting details
of machines was presented in [21,22] where the authors use KBs to abstract
away details of particular turbines in Siemens. Data about turbines is retrieved

330 G. Mehdi et al.

using OBDA and send to further analytical analysis (e.g., using KNIME system
(www.knime.com)). This line of work does aims at using off-the-shelf analytical
software instead of diagnostic rules.

Recent efforts have been made to extend ontologies with analytical and tem-
poral concepts. Authors in [1,2] allow for temporal operators in queries and
ontologies. Still, such approach use temporal logics (e.g., LTL) which in not
adequate for our case since sensor data are organized based on intervals, e.g.
[0s,10s].

Work in [16,19] introduces analytical operations directly into ontological rules
in such a way that OBDA scenario is preserved. This line of work, we use an
inspiration on how to define analytical functions on concepts, e.g. avg C, in
OBDA setting. However, the authors do not consider temporal dimension of the
rules.

Finally, our work is related to a well-studied Metric Temporal Logic [20].
One can show that sigRL is a non-trivial extension of the non-recursive Dat-
alog language DatalognrMTL that has been introduced in [4]. Our rewriting
techniques from sigRL rules into SQL follow similar principles as the ones for
DatalognrMTL.

Fig. 7. Performance evaluation results for the Siemens use case.

6 Lessons Learned and Future Work

In this paper we showcase an application of semantic technologies for diagnostics
of power generating turbines. We focused on the advantages and feasibility of
the ontology-based solution for diagnostic rule formulation and execution. To
this end we studied and described a Siemens diagnostic use-case. Based on the
insights gained, we reported limitations of existing Siemens and ontology based
solutions to turbine diagnostics. In order to address the limitations we proposed
a signal processing rule language sigRL, studied its formal properties, imple-
mented, and integrated it in an ontology-based system which we deployed at
Siemens.

www.knime.com

Semantic Rule-Based Equipment Diagnostics 331

The main lesson learned is the effectiveness of our semantic rule language
in dealing with the complexity of the rules and the number of turbines and
sensors for rule deployment. The evaluation shows up to 66% of engineers time
saving when employing ontologies. Thus, our semantic solution allows diagnostic
engineers to focus more on analyses the diagnostic output rather than on data
understanding and gathering that they have to do nowadays for authoring data-
driven diagnostic rules. Following these experiments, we are in the process of
setting up a deployment of our system into the Siemens remote diagnostic system
to further evaluate the usability and impact. Second important learned lesson
is that execution of semantic rules is efficient and scales well to thousands of
sensors which corresponds to real-world complex diagnostic tasks.

Finally, note that our system is not included in the production processes.
There are several important steps that we have to do before it can be included.
First, it has to become much more mature and improve from the university-
driven prototype to a stable system. Second, we have to develop an infrastructure
for rule management, in particular, for rule maintenance and reuse—some of this
work has already be done and one can our preliminary ideas in [18,23]. Third,
we need more optimisations and evaluations that will include a performance
comparison of our solution with the Siemens solutions that are based on the
Siemens data-driven rule language. Moreover, we need techniques for abstracting
(at lease some of) the existing 200k SPRs from the data driven rules into a much
smaller number of sigRL. All of these is our future work.

Acknowledgements. This research is supported: EPSRC projects MaSI3, DBOnto,
ED3; and the Free University of Bozen-Bolzano project QUEST.

References

1. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of
clausal fragments of LTL. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR 2013. LNCS, vol. 8312, pp. 35–52. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-45221-5 3

2. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description
logic for ontology-based data access. IJCAI 2013, 711–717 (2013)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

4. Brandt, S., Kalaycı, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev,
M.: Ontology-based data access with a horn fragment of metric temporal logic. In:
AAAI (2017)

5. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational
databases. Semant. Web 8(3), 471–487 (2017)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semant. Web 2(1), 43–53 (2011)

http://dx.doi.org/10.1007/978-3-642-45221-5_3
http://dx.doi.org/10.1007/978-3-642-45221-5_3

332 G. Mehdi et al.

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
JAR 39(3), 385–429 (2007)

8. Charron, B., Hirate, Y., Purcell, D., Rezk, M.: Extracting semantic information for
e-Commerce. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue,
F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 273–290. Springer,
Cham (2016). doi:10.1007/978-3-319-46547-0 27

9. Corcho, O., Calbimonte, J.-P., Jeung, H., Aberer, K.: Enabling query technologies
for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)

10. Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to
tame the data variety challenge. IEEE Internet Comput. 20(6), 62–66 (2016)

11. Jiménez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I., Pinkel, C.,
Skjæveland, M.G., Thorstensen, E., Mora, J.: BootOX: practical mapping of RDBs
to OWL 2. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 113–132.
Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 7

12. Kharlamov, E., Brandt, S., Giese, M., Jiménez-Ruiz, E., Kotidis, Y., Lamparter,
S., Mailis, T., Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Soylu, A., Svingos, C.,
Zheleznyakov, D., Horrocks, I., Ioannidis, Y.E., Möller, R., Waaler, A.: Enabling
semantic access to static and streaming distributed data with optique: demo. In:
DEBS (2016)

13. Kharlamov, E., Brandt, S., Jiménez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T.,
Neuenstadt, C., Özçep, Ö.L., Pinkel, C., Svingos, C., Zheleznyakov, D., Horrocks,
I., Ioannidis, Y.E., Möller, R.: Ontology-based integration of streaming and static
relational data with optique. In: SIGMOD (2016)

14. Kharlamov, E., et al.: Capturing industrial information models with ontologies and
constraints. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue,
F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 325–343. Springer,
Cham (2016). doi:10.1007/978-3-319-46547-0 30

15. Kharlamov, E., et al.: Ontology based access to exploration data at statoil. In:
Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 93–112. Springer, Cham
(2015). doi:10.1007/978-3-319-25010-6 6

16. Kharlamov, E., et al.: Optique: towards OBDA systems for industry. In: Cimi-
ano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC
2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41242-4 11

17. Kharlamov, E., et al.: Towards analytics aware ontology based access to static and
streaming data. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M.,
Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 344–362.
Springer, Cham (2016). doi:10.1007/978-3-319-46547-0 31

18. Kharlamov, E., Savković, O., Xiao, G., Mehdi, G., Penaloza, R., Roshchin, M.,
Horrocks, I.: Semantic rules for machine diagnostics: execution and management.
In: CIKM (2017)

19. Kharlamov, E., et al.: How semantic technologies can enhance data access at
siemens energy. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 601–619.
Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 38

20. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

21. Mehdi, G., Brandt, S., Roshchin, M., Runkler, T.A.: Semantic framework for indus-
trial analytics and diagnostics. In: IJCAI, pp. 4016–4017 (2016)

http://dx.doi.org/10.1007/978-3-319-46547-0_27
http://dx.doi.org/10.1007/978-3-319-25010-6_7
http://dx.doi.org/10.1007/978-3-319-46547-0_30
http://dx.doi.org/10.1007/978-3-319-25010-6_6
http://dx.doi.org/10.1007/978-3-642-41242-4_11
http://dx.doi.org/10.1007/978-3-642-41242-4_11
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-319-11964-9_38

Semantic Rule-Based Equipment Diagnostics 333

22. Mehdi, G., Brandt, S., Roshchin, M., Runkler, T.A.: Towards semantic reasoning
in knowledge management systems. In: AI for Knowledge Management Workshop
at IJCAI (2016)

23. Mehdi, G., Kharlamov, E., Savković, O., Xiao, G., Kalaycı, E.G., Brandt, S.,
Horrocks, I., Roshchin, M., Runkler, T.: SemDia: semantic rule-based equipment
diagnostics tool. In: CIKM (demo) (2017)

24. Mitchell, J.S.: An Introduction to Machinery Analysis and Monitoring. Pennwell
Books, Tulsa (1993)

25. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

26. Randall, R.B.: Vibration-Based Condition Monitoring: Industrial, Aerospace and
Automotive Applications. Wiley, Hoboken (2011)

27. Rao, B.K.N.: Handbook of Condition Monitoring. Elsevier, Amsterdam (1996)
28. Savković, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: ECAI (2012)
29. Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., Wu, B.: Intelligent Fault

Diagnosis and Prognosis for Engineering Systems. Wiley, Hoboken (2006)

	Semantic Rule-Based Equipment Diagnostics
	1 Introduction
	2 Signal Processing Language sigRL
	3 System Implementation and Deployment in Siemens
	4 Siemens Experiments
	5 Related Work
	6 Lessons Learned and Future Work
	References

