
Context-Aware Automated Workflow
Composition for Interactive Data Exploration

Diego Serrano(B)

University of Alberta, Alberta, Canada
serranos@ualberta.ca

Abstract. Nowadays, the Web of Data contains a myriad of structured
information sources on a large number of domains. Nevertheless, most
of the information is available through Web APIs that act as isolated
silos of data that cannot interoperate automatically with other resources
and services on the Web. My dissertation aims at synthesizing seman-
tic web technologies over Web APIs, in order to combine the easy data
integration techniques offered by semantic web, with the flexibility and
availability of web services. This paper discusses the two main aspects
of the envisioned thesis: (a) a description language to semantically
describe functional and non-functional components of web services, and
the relationships among those components, and (b) a middleware that
plans composition chains, based on user’s specifications, optimizing their
trade-offs.

Keywords: Semantic web · Web services · Data integration · Linked
data

1 Introduction

In the early 2000s, Berners-Lee et al. [2] envisioned a transition from an Internet
of loosely interlinked text documents, designed for human consumption, to the
Semantic Web, a thoroughly described and tightly interlinked “Web of Data”,
intended for automatic machine processing. The most pragmatic effort to real-
ize the Semantic Web vision has focused on publishing interlinked datasets, in
what is called the Linking Open Data (LOD) project. The project integrates
multiple databases that have been translated into RDF, using a mixture of com-
mon vocabularies and terms specific to the data sources; these datasets are
interconnected through the use of URIs and equivalence relations to external
databases. Those datasets are typically available through SPARQL endpoints,
but, in general, cross-database SPARQL queries tend to be of high complexity,
since their formalization strongly depend on the ontological structure of the RDF
store model and the relationships among entities, which usually has considerable
variations among datasets. Therefore, the complexity and poor performance of
accessing LOD datasets has limited their usage in real-time scenarios.

c© Springer International Publishing AG 2017
K. Drira et al. (Eds.): ICSOC 2016 Workshops, LNCS 10380, pp. 152–157, 2017.
https://doi.org/10.1007/978-3-319-68136-8_16



Context-Aware Automated Workflow Composition 153

Although, the LOD project has proven that, in principle, the linked-data
approach is effective for integrating data from a large number of sources, nowa-
days, a substantial amount of Web data is exchanged through web services that
expose data in formats such as JSON or XML. Those structured responses offer
a common syntactic format, but they lack necessary semantics to interpret and
interlink the content of the documents. In order to address this problem, the
services have to include semantic annotations, as prescribed by the so-called
Semantic Web Services (SWS).

The SWS approach attempts to describe services using domain ontologies,
in order to enable automatic discovery, execution, and composition. Many SWS
definitions have been proposed, such as WSMO [4], and SAWSDL [6], but few
implementations of real semantic services have been produced, and the adoption
of SWS in practice has fallen short. The main reason, suggested by Tosi et al. [8],
is the focus of the research community in the definition of new ontologies and
tools, disregarding real implementations of SWS, which has kept the discussion
at an abstract level.

The objective of this thesis is to define a formalism that allows the creation
and context-aware automatic exploration of semantically connected Web APIs,
for different domains, taking into consideration functional and non-functional
specifications of the resources, such as trustworthiness, authentication mecha-
nisms and availability. Then, the middleware can specify execution plans for
queries, that link and compose responses from independently deployed services,
and optimize the trade-offs of data quality and performance. Additionally, this
thesis will address service engineering approaches, supported by specific tools,
to simplify the creation of SWS and interactive exploration of their data sets.

2 Composing and Integrating Web Services

In this section, we motivate our formalism in the context of related approaches,
and we illustrate the functionalities of our middleware through an example.

2.1 Specification of Services and Their Implementation Contexts

Most of the current SWS formalizations follow a bottom-up approach, for exam-
ple SAWSDL and WSMO-Lite [10]. In bottom-up approaches, Web services stan-
dards, such as WSDL, are extended by adding light-weight semantic annotations,
which means that service providers need to produce the semantic and syntac-
tic definitions. On the other hand, top-down approaches decouple the semantic
description of the service from its syntactic description, on the principle that
the semantics should not be influenced by implementation details. This app-
roach was explored in classical approaches, such as WSMO, which provided a
fully-fledged framework to define ontologies, goals, mediators and web services.

In our approach, we aim to combine the best of both approaches: the simplic-
ity of the descriptions in the bottom-up approaches, to encourage its adoption,
and the low coupling of top-down approaches to gain independence from the



154 D. Serrano

service providers, that allows us to reach a critical mass of service descriptions
through crowdsourcing. In addition, one of the main guidelines in our design was
to reuse and integrate existing formalisms into a simple common model, that sup-
ports publication and discovery. We introduce an RDF(S) integration ontology
based on the Minimal Service Model (MSM) [5], that captures the maximum
common denominator between existing conceptual models for services, enabling
the representation of the semantics of services, including authentication mech-
anisms, provenance, quality of service metrics, and relationships among inputs
and outputs.

The ontology defines a set of Service elements, which have a number of
associated Operation elements. Operations, in turn, have a Graph, which is a
collection of Resource triples that represent the underlying data schema of the
service. The Operations also have links to input and output elements within
such graph. The input elements may be defined as required or optional, and
full or partial, for the cases when the input is used in partial match services,
such as search functionalities. The outputs define a relation responsePath, that
represents an XPath-like expression that is used in the lifting process, and avoids
the use of other transformation technologies, such as XSLT, creating a self-
contained semantic service description.

The ontology builds upon existing vocabularies. hRESTS [5], which is also
used in MSM, is used to provide basic support for capturing grounding infor-
mation necessary for Web APIs. Web Api Authentication [7] is used to annotate
information about authentication information on top of Web API descriptions.
The Dataset Quality Vocabulary [3] provides a lightweight vocabulary to describe
functional and non-functional aspects of the service. And finally, RDF Graph
Patterns and Templates [1] defines the terms used to describe the data schema
graph patterns. The resources in the graph may contain other domain-specific
ontologies and vocabularies to associate their classes and properties.

We illustrate our service modelling approach with an example based on com-
plementary services. We consider two operations: search actors, and get movie
credits. The former, searches for actors by name, and the latter, gets the list of
movies where an actor, specified by his id, played a role. To keep the example
concise, we only consider the graphs shown in Fig. 1 to represent the services,
which were annotated using the Linked Movie Database Ontology. Traditionally,
semantic descriptions consider ontological annotations on inputs and outputs
to carry reference annotations between the service description and the domain
ontology, for example, stating that the input of get movie credits is a person
(or an attribute of it), and its output is a list of movies (or attributes of it).
However, those annotations do not capture the specific relation between the two
entities, leaving the description open to different interpretations, for instance,
with other relations such as produced or directed.

In order to overcome the aforementioned limitation, we define a service oper-
ation as a 6-tuple (E,Gs, IGs

, OGs
, A,Q) where E denotes the endpoint and

other grounding parameters of the service, such as the URL and the HTTP
method. Gs defines a graph representation of the service, as a finite collection of



Context-Aware Automated Workflow Composition 155

(a) Search actors (b) Get movie credits

Fig. 1. Graph representations of the data in the example services. The green box
denotes the attribute used as input. (Color figure online)

triple patterns. A triple pattern ts = (s, p, o) is a tuple composed of a subject, a
predicate and an object, where ts ∈ (U ∪V ) ×U × (U ∪L∪V ), being U , L, and
V disjoint infinite sets of URIs, literals and variables. IGs

and OGs
define the

inputs and outputs of the service, respectively, pointing to subjects or objects in
graph Gs. Finally, A denotes the authentication mechanism used by the opera-
tion, and Q defines the quality of service attributes associated to the particular
operation or to the service in general.

2.2 Context-Aware Discovery and Composition

In order to query the services, we represent the queries as a conjunctive SPARQL
query. More formally, a query consists of a triple (Gq, IGq

, OGq
), where Gq

denotes a graph composed of triples, where each triple tq = (s, p, o) and
tq ∈ (U ∪ V ) × U × (U ∪ L ∪ V ). In turn, IGq

and OGq
represent the inputs

and outputs, respectively. In our example, if we want to know the name of the
characters that the actor Brad Pitt has played, we would write the following
SPARQL query:

SELECT ?character
WHERE {

?person a movie:actor ;
movie:actorname"Brad Pitt" ;
movie:performance ?performance .

?performance movie:performance_character ?character
}

From the query, we can extract inputs and outputs. Outputs are simply the
projected variables of the data query, ?character in our example; and inputs
are the bound values that appear in the triples of the query, in the WHERE clause,
like the name "Brad Pitt" and the type movie:actor in the example. Then, the
query answering problem is transformed into a subgraph isomorphism problem,
in which the query graph Gq and the graph formed by all the service graphs GS

are given as input, and we must determine, first, whether GS contains a sub-
graph that is isomorphic to Gq, and then extract the individual service graphs
in the isomorphic graph. However, at the size of the Web, and even with a mod-
erate load, this problem can be untractable for ad-hoc queries. In our approach,
in order to discover services dynamically, we start by extracting elements from
Gq that can be used as input parameters of a service request. Then, we use the
input elements and authentication credentials as a filter, to consider only the



156 D. Serrano

services that can be invoked with the current input parameters and authenti-
cation credentials. In our example, the only service in consideration is search
persons, since it only needs a name as an input, represented by "Brad Pitt" in
the query.

When a query is submitted to the system, the query processor has to find a
isomorphic subgraph from the set of service graphs. If such graph is not found,
then it has to search a sequence of service graphs that can be composed together
to fulfill the goal represented by the query. In our iterative approach, if a graph
Gs can be invoked and matches partially with graph Gq, then we use the outputs
of Gs as inputs of Gq in the next iteration. The algorithm stops when a sequence
of service graphs {Gs1 , ..., Gsn} has completely covered the graph Gq, or when
we reach a fixed number of iterations. In our example, the graph for search
persons only covers the triples for the name and type of the person, leaving the
performance triples uncovered. Then, in the next iteration, we can use the actor
identifiers, and webpage produced as outputs from search persons. In this second
iteration, we can use the identifier of the person to invoke the service get movie
credits, and cover the remaining triples of the query.

The algorithm for subgraph isomorphism used in our approach, is adapted
from Ullman’s algorithm [9], checking recursively that the adjacent nodes and
edges are equivalent. The equivalence relation considers ontological equiva-
lence (through relations such as owl:sameAs), and subsumption relationships
of resources and properties in the ontology.

After all the possible composition chains have been discovered, the system
ranks them, according to user’s preferences and non-functional properties criteria
like response time, and availability. In this process, the non-functional proper-
ties values can be obtained by statistics collected during service invocations, or
gathered from service descriptions.

In our system, we provide a web-based data analysis tool that empowers
regular web users to explore and analyze the Linked Data produced by our inte-
gration endpoint. Currently, the system supports three different types of visual-
izations: (a) a tabular view, provides a familiar visualization style to read and
interpret complex JSON files; (b) a force-directed graph, that provides a natural
and interactive visualization, where the user can follow how the graph evolves
and how clusters are formed, and (c) a JSON document, that provides sup-
port for machine-to-machine communication for third-party applications. Users
can interact with the graph by expanding nodes. When the user request the
expansion of the node, a SPARQL is created using the URIs and literals directly
attached to the node as input graph patterns, and using the syntax SELECT *,
which in our system is an abbreviation that selects all of the variables that are
declared in the service definition.

3 Research Plan Overview

In the future, we plan to support semi-automatic description of services, based
on a collection of sample invocation URLs provided by users. The system is able



Context-Aware Automated Workflow Composition 157

to extract input and output parameters from the example service invocations,
and then, use the datatypes, names of the parameters, and popular ontologies to
suggest mappings between a mediated schema and the service. In addition, we
intend to provide different kinds of visualizations, depending on the nature of the
data returned, such as maps, temporal charts, and different layouts for graphs
and tables. In the long term, we envision a middleware that will enable system
developers and end-users to transparently and efficiently access heterogeneous
resources, supported through our middleware.

The evaluation strategy is divided in two phases, that involve controlled
empirical studies with developers using the tools we plan to develop. First, we
will demonstrate how effectively the proposed approach can be integrated into
current Web APIs, including metrics of the cognitive difficulty faced by develop-
ers, and performance exhibited by the mediator system. Second, we will evaluate
the exploration and visualization tools through usability assessments involving
the presentation of the data, interaction with the data, the perceived cognitive
offload, and the usability of the data itself.

Acknowledgement. I would like to thank my supervisor, Prof. Eleni Stroulia for her
helpful suggestions. This work was supported by the KMTI NSERC Strategic project.

References

1. RDF graph patterns and templates. http://vocab.org/riro/gpt. Accessed 18 July
2016

2. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5),
28–37 (2001)

3. Debattista, J., Lange, C., Auer, S.: daQ, an ontology for dataset quality informa-
tion. In: LDOW (2014)

4. Feier, C., Polleres, A., Dumitru, R., Domingue, J., Stollberg, M., Fensel, D.:
Towards intelligent web services: the web service modeling ontology (WSMO)
(2005)

5. Kopeckỳ, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML microformat for
describing Restful web services. In: IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2008), vol. 1, pp. 619–625. IEEE (2008)

6. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: semantic annotations
for WSDL and XML schema. Internet Comput. 60–67 (2007). IEEE

7. Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., Martinez, I.: Using
semantics for automating the authentication of web APIs. In: Patel-Schneider,
P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 534–549. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17746-0 34

8. Tosi, D., Morasca, S.: Supporting the semi-automatic semantic annotation of web
services: a systematic literature review. Inf. Softw. Technol. 61, 16–32 (2015)

9. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM (JACM) 23(1),
31–42 (1976)

10. Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-lite annotations for web
services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68234-9 49

http://vocab.org/riro/gpt
http://dx.doi.org/10.1007/978-3-642-17746-0_34
http://dx.doi.org/10.1007/978-3-540-68234-9_49
http://dx.doi.org/10.1007/978-3-540-68234-9_49

	Context-Aware Automated Workflow Composition for Interactive Data Exploration
	1 Introduction
	2 Composing and Integrating Web Services
	2.1 Specification of Services and Their Implementation Contexts
	2.2 Context-Aware Discovery and Composition

	3 Research Plan Overview
	References


