
Enhancing UML Class Diagram Abstraction
with Page Rank Algorithm and Relationship

Abstraction Rules

Liang Huang1, Yucong Duan1(&), Zhangbing Zhou2, Lixu Shao1,
Xiaobing Sun3, and Patrick C.K. Hung4

1 State Key Laboratory of Marine Resource Utilization in the South China Sea,
College of Information Science and Technology,

Hainan University, Haikou, China
1512460987@qq.com, 751486692@qq.com,

duanyucong@hotmail.com
2 China University of Geosciences, Beijing, China

zhangbing.zhou@gmail.com
3 School of Information Engineering, Yangzhou University, Yangzhou, China

xbsun@yzu.edu.cn
4 Institute of Technology, University of Ontario, Oshawa, Canada

patrick.hung@uoit.ca

Abstract. Model-Driven Engineering (MDE) alleviates the cognitive com-
plexity and effort through the refinement and abstraction of consecutive models.
In MDE, models should accurately and completely accommodate the expected
data, information and knowledge in requirement specification following a series
of refinement and abstraction. Proper abstraction starting from Class Diagrams
lays the foundation for effective reuse and efficient manipulation of contained
data, information and knowledge. Most current model abstraction approaches
assume the scenarios with interaction of stakeholders for providing the key
entities and thereafter focus on the relationship abstraction. However few work
is done on unguided abstraction where stakeholders don’t know the key entities.
Towards resolving the abstraction covering both automatic locating of repre-
sentative entities and abstracting of link among these entities in Class Diagrams,
we proposed a combination of class rank algorithm which prioritizes classes and
relationship abstraction rules which heuristically determine the representative
semantics of relationships towards improving the efficiency and effectiveness of
class abstraction.

Keywords: Correlations � UML � Relationships � Page rank algorithm

1 Introduction

Models and modeling are essential parts of every engineering endeavors [1]. Unified
Modeling Language (UML) is a nonindustrial standard for object-oriented modeling [2].
UML Class Diagram is used to describe the static structure of a system. A Class Dia-
gram could be very large if a system is huge and complex. Designers easily become

© Springer International Publishing AG 2017
K. Drira et al. (Eds.): ICSOC 2016 Workshops, LNCS 10380, pp. 103–116, 2017.
https://doi.org/10.1007/978-3-319-68136-8_10

overwhelmed with details when dealing with large Class Diagrams. Model transfor-
mation is an essential part of MDE [15]. UML Class Diagram abstraction transforms a
low-level class diagram to a high-level Class Diagram [3]. Well-designed Class Dia-
grams can lead to an eased development process towards a more ensured result system
since they can be understood by stakeholders easily. Most existing model abstraction
approaches fit for the scenario that stakeholders decide a few key entities usually
according to their understanding of the significance of the entities. These key entities are
used to represent the other entities. Then the main task of the abstraction is to expose the
direct relationships among the key entities through mostly relationship abstraction.
However this scenario is not always true especially when stakeholders are not familiar
with the modeling techniques and the global perspective of a project. Then abstract need
to be done without input of key entities. We can this scenario as unguided abstraction.
Towards resolving the abstraction covering both automatic locating of representative
entities and abstracting of link among these entities in Class Diagrams, we proposed a
combination of class rank algorithm which prioritizes classes similar to page rank
algorithm [14]. Page rank algorithm works by counting the number and quality of links
to a page to determine a rough estimate of how important the website is. The underlying
assumption is that more important websites are likely to receive more links from other
websites. We regard classes as pages, relationships between classes as hyperlinks
between pages, so we can apply page rank algorithm to compute the importance of a
class in a Class Diagram. After the locating of the key entities, we introduce the heuristic
relationship abstraction rules from Dr. Egyed [4] which heuristically determine the
representative semantics of relationships towards improving the efficiency and effec-
tiveness of class abstraction. We validate our approach with case studies.

In the rest of this paper, we give an overview of this paper in Sect. 2 firstly. Then
we elaborate class rank algorithm to compute class ranks in Sect. 3 and a method to
compute correlations between classes in Sect. 4. Approaches to compute relationships
between classes are represented in Sect. 5. The related works are elaborated in Sect. 6.
We give our conclusions in Sect. 7.

2 Overview

We propose a method to abstract class diagrams based on a class rank algorithm and
relationship abstraction rules as Fig. 1 shows. We map a Class Diagram to a graph with
nodes and edges. Nodes in a graph stand for classes in a Class Diagram and edges stand
for relationships. On a mapped graph we implement abstraction through following
operations.

(1) Compute ranks of classes: A rank of a class represents the importance of the class in
a Class Diagram. Class with a high rank is important in a Class Diagram. We use
class rank algorithm to calculate ranks of classes in a Class Diagram. Thenwe obtain
a one-dimensional class rank vector R. We suppose that classes ranked in the top
thirty percent are important classes and abstracted Class Diagram should only
contain important classes. We need to get relationships between important classes
and decide which relationships should be presented in the abstracted Class Diagram.

104 L. Huang et al.

(2) Compute correlations between classes: Correlation between two nodes is used to
judge whether a strong association exists between them. If there is a strong
association between two nodes, they can be connected through a line. We calculate
correlations of two nodes based on the distance and relationships between them.
Then we get a weighted graph G(V,E1). V is a node set and E1 is an edge set with
weighted correlations. Relationship between two classes can be presented in an
abstracted Class Diagram if the correlation between two classes is bigger than 0.4.

(3) Compute the direct relationship between two classes: If there is a path between
two classes, a direct relationship may exist between them. We use relationship
abstraction rules to get the direct relationship. Then we can obtain a weighted
graph G(V,E2). E2 is an edge set with weighted relationships.

(4) Generate the abstracted graph: According to G(V,E1), G(V,E2) and R, we abstract
G(V,E) and get the abstracted graph G1(V,E) which is the abstraction of original
graph G(V,E). G1(V,E) only contains nodes that represent important classes and
relationships between them.

Input a class
diagram

Map to graph
G(V,E)

Compute
rela onships

G(V,E1)

Calculate
correla ons

G(V,E2)

Calculate class
rank R

Extract
important

classes

Form the
node of the
new graph

Find
correla ons of
two important

classes

Correla on>0.4

Form the edge
of the new

graph

Find rela on
of two

important
classes

Rela on exist

Form the new
graph

Form a new
abstracted

class diagram

Output the
class diagram

Yes
Yes

No No

Fig. 1. Process of Class Diagram abstraction

Enhancing UML Class Diagram Abstraction 105

(5) Generate abstracted Class Diagram: We generate an abstracted Class Dia-
gram based on graph G1(V,E). We generate classes and relationships of the
abstracted Class Diagram according to nodes and edges in G1(V,E). The abstracted
Class Diagram is the abstraction of original Class Diagram.

3 Calculate Ranks of Classes

We locate key entities in a Class Diagram by calculating ranks of classes. The concept
of rank is firstly used in Google’s page rank algorithm to describe the importance of a
page and rank pages [14]. We adopt the idea of page rank algorithm to calculate ranks
of classes in a Class Diagram and name it class rank algorithm. Class rank algorithm
works by counting the number and semantic influence of relationships of classes. We
regard classes as pages and relationships between classes as links between pages. But
there are some differences between links and relationships. Different relationships have
different ranks and different semantic influence.

3.1 Definitions

Table 1 shows logograms of relevant relationships. For example, AG is an abbreviation
for aggregation. An expression such as “A � AG � B” stands for “A aggregate B”.
Class rank (Rc) is represented with a float value between [0, 1000]. The value of Rc
stands for the importance of a class in a Class Diagram. A class is deemed as more
important if the class is labeled with a greater value. Relationship rank (Rr) is repre-
sented with an integer value between [0, 10]. The value of Rr stands for the semantic
influence of a relationship in a Class Diagram. For example, if the rank of GL is larger
than that of AS, it indicates that GL is of higher semantic influence than AS. We set
ranks for different relationships as Table 2 shows.

Transition probability (TP) represents the probability of a rank transition from one
class to another. Transition probability between class i and class j is defined according
to Eq. 1. Rr(i,j) is the relationship rank of edge (i,j). For example, Rr(i,j) is equal to 7 if
the relationship of edge (i,j) is AG. Transition probability matrix represents all tran-
sition probabilities of class ranks from one class to another in a Class Diagram.

TPði; jÞ ¼ Rrði; jÞP
ði;kÞ2E

Rrði; kÞ : ð1Þ

Table 1. Logograms of relationships

AG Aggregation AGr Aggregation reverse
DP Dependency DPr Dependency reverse
GL Generalization GLr Generalization reverse
AS Association

106 L. Huang et al.

3.2 Calculate Class Ranks

We calculate the rank of a class based on its adjacent classes’ ranks and transition
probabilities from the class to its adjacent classes. We calculate a class rank according
to Eq. 2:

RcðiÞ ¼
X
ði;jÞ2E

RcðjÞ � TPðj; iÞ ¼
X
ði;jÞ2E

RcðjÞ � Rrðj; iÞP
ðj;kÞ2E

Rrðj; kÞ ð2Þ

where Rc(i) is the class rank of class i. (i,j) is the edge from class i to class j. Rr(j,i) is
the relationship rank of edge (j,i). The formulated rules of this article will be evaluated
using class diagram of a shopping management system shown in Fig. 2 at the analysis
phase. Process of computing class ranks is as following shows:

(1) Set an initial vector of class ranks: There are 11 classes in the Class Diagram of
shopping management system. Class rank is initialized to the same value for all
classes. We suppose that the initial rank of each class is equal to 1000/11.

(2) Calculate transition probability matrix (M): We construct transition probability
matrix based on rank transition probabilities of any two different classes having
relationship with each other.

(3) Iteration: We use the last class rank vector to multiply the transition probability
matrix and obtain a new class rank vector which is represented as Eq. 3:

Ri ¼ Ri�1 �M: ð3Þ

where Ri is the class rank vector after iterating i − 1 times. M is a constant transition
probability matrix. In each iteration, a class will transfer its value of rank to its adjacent
classes. After iterating i times, rank of a class tends to be stable. Ri approximates Ri−1.
We skip out of the iteration and get the final class rank Ri. A class is deemed as more
important if the class is labeled with a greater value of rank. We suppose that classes
ranked in the top 30% are important classes. After computing, rank values of the 11
classes in Fig. 2 are shown in Table 3. So important classes in the Class Diagram of
shopping management system are Order, Payment and Customer.

Table 2. Ranks of relationships

Relationship type AG DP GL AS AGr DPr GLr

Rank 7 8 10 5 7 8 10

Enhancing UML Class Diagram Abstraction 107

4 Compute Correlations Between Classes

In order to compute correlations between classes, we assume that two classes could be
connected if the correlation between them is of high semantic influence. Correlation
between two classes is related to the distance and relationships between them.

4.1 Definition

Correlation between two classes depends on paths between them. Paths between two
classes contain intermediate classes and relationships between them. We use a line to
connect two classes if the correlation between them is of high semantic influence. We
suppose that correlation between classes is of high semantic influence if value of the
correlation is bigger than 0.4. Strength of a relationship is similar to a relationship rank.
We use strength of relationship to calculate the correlation of two classes. We give the
strength of each relationship in Table 4. For example, correlation between class Cus-
tomer and class Order is 0.5 because the relationship between them is AS.

Customer

name : String

adress : String

newOperation()

Order

data : String

status : String

calcTax()

calcWeight()

calcTotal()

Payment

amount : Integer

newOperation()

Credit

number : Integer

type

expDate

authorized()

Cash

cashTendered : Integer

newOperation()

Check

name : String

bankId : Integer

authorized()

OrderDetail

quantity : Integer

taxStatus : Integer

calcSubTotal()

calcWeight()

Item

shippingWeight : Integer

description : String

getPrice()

getWeight()

CommonVip DelieveryOrder

Fig. 2. A low-level Class Diagram of shopping management system

Table 3. Ranks values of classes in Fig. 2

Class Customer Order Credit Item Payment DeliveryOrder Check OrderDetail Common Cash Vip

Rank 194 124 42 26 270 75 42 97 43 43 43

Table 4. Strength of relationships

Relationship type AG DP GL AS AGr DPr GLr

Strength 0.7 0.8 1.0 0.5 0.7 0.8 1.0

108 L. Huang et al.

4.2 Calculate the Correlation Between Two Classes

We need to compute the correlation if two classes are not directly connected with each
other. In Fig. 3, class A and class D are not directly connected with each other. There
are two intermediate classes that are class B and class C between them. Steps of
computing correlation between class A and class D are as follows:

(1) Find strength of intermediate relationships in the path: Correlation between class
A and class B is 0.5 because the relationship between them is AS and strength of
AS is 0.5. Correlation between class B and class C is 0.7 because the relationship
between class B and class C is AG and strength of AG is 0.7. Correlation between
class C and class D is 1.0 because the relationship between class C and D is GL
and strength of GL is 1.0.

(2) Multiply the strengths: We multiply strengths of AS, AG and GL. Then we get the
correlation between class A and class D which is C(A,D). C(A,D) is equal to 0.35.
We need to compute correlation of two classes in each path if there are multiple
paths between them according to Eq. 5:

Cði; jÞ ¼ Max
PathðnÞ2ði;jÞ

Y
k2PathðnÞ

SðkÞ
8<
:

9=
; ð5Þ

where Path(n) is a path between class i and j. K is a relationship in Path(n) such as
AG. S(k) is the strength of relationship k. In Fig. 4, there are two paths between
class A and class D. For Path 1, correlation between class A and class D is C1(A,
D) which is equal to 0.5(1.0 * 0.5). For Path 2, correlation between class A and
class D is C2(A,D) which is equal to 0.56(0.8 * 0.7). We choose C2(A,D) as the
correlation between class A and class D because C2(A,D) is bigger than C1(A,D).

A B C D

Fig. 3. Different relationships in a path between two classes

A

C

D

B

Fig. 4. Multiple paths between two classes.

Enhancing UML Class Diagram Abstraction 109

(3) Calculate the correlation matrix of a Class Diagram: For any two classes in a Class
Diagram, we compute the correlation between them and get a correlation matrix
of the Class Diagram. Then we obtain graph G(V,E1) of the Class Diagram based
on the correlation matrix. E1 is an edge set with weighted correlations. In this
way, we get correlations between classes in Fig. 2 as Table 5 shows. Correlation
between classes is of high semantic influence if value of the correlation is bigger
than 0.4 for instance correlation between class Customer and Order.

5 Compute Relationships Between Classes

Getting the direct relationship between two classes can ease the cognitive load of
checking the consistency in a Class Diagram. If all intermediate relationships in the
path between two classes are the same, it is easy to know the direct relationship
between the two classes. On the left side of Fig. 5, class A inherits class C if class
A inherits class B and class B inherits class C. Class A depends on class C if class
A depends on class B and class B depends on class C. Class A aggregates class C if
class A aggregates class B and class B aggregates class C. Class A associates with class
C if class A associates with class B and class B associates with class C. However, it is
not easy to obtain the direct relationship between class A and class C if different
relationships are grouped together as shown on the right side of Fig. 5.

Table 5. Correlations between classes

Customer Order Credit Item Payment DeliveryOrder Check OrderDetail Common Cash Vip

Customer 0.0 0.5 0.25 0.175 0.25 0.5 0.25 0.35 1 0.25 1

Order 0.5 0.0 0.5 0.35 0.5 1.0 0.5 0.7 0.5 0.5 0.5

Credit 0.25 0.175 0.0 0.175 1.0 0.5 1.0 0.35 0.25 1.0 0.25

Item 0.175 1.0 0.175 0.0 0.175 0.35 0.175 0.5 0.175 0.175 0.175

Payment 0.25 0.5 1.0 0.175 0.0 0.5 1.0 0.35 0.25 1.0 0.25

DeliveryOrder 0.5 1.0 0.5 0.35 0.5 0.0 0.5 0.7 0.5 0.5 0.5

Check 0.25 0.5 1.0 0.175 1.0 0.5 0.0 0.35 0.25 1.0 0.25

OrderDetail 0.35 0.7 0.35 0.5 0.35 0.7 0.35 0.0 0.35 0.35 0.35

Common 1.0 0.5 0.25 0.175 0.25 0.5 0.25 0.35 0.0 0.25 1.0

Cash 0.25 0.5 1.0 0.175 1.0 0.5 1.0 0.35 0.25 0.0 0.25

Vip 1.0 0.5 0.25 0.175 0.25 0.5 0.25 0.35 1.0 0.25 0.0

A B C

A B C

A B C

A B C

A B C

A B C

A B C

A B C

Fig. 5. Combination of relationships

110 L. Huang et al.

5.1 Abstraction Rules

Dr. Egyed proposed a series of abstraction rules for automatically getting direct rela-
tionships from relationship combinations as Fig. 6 shows. The left side depicts the class
input patterns and the right side (after “equals”) depicts the class output patterns. Input
and output patterns are allowed to be more complex as long as the output pattern is
simpler than the input pattern. If not, the abstraction algorithm could be
non-deterministic. We also analyzed the semantic dependencies between other classes
and their relationships. Note that the direction of relations is indicated through their
name. If the relation name is used with no add-on, then a forward relation (a relation
from left to right) is meant. If the string “r” is added then a backward relation (a relation
from right to left) is meant. The number following each rule indicates the reliability of
result obtained from the implementation of this rule. For example, rule(30){AS �
Class � DP equals DP 50} indicates that class A depends on class C if class A asso-
ciates with class B and class B depends on class C. Value of the reliability of the result
obtained from implementing rule(30) is equal to 0.5(50/100). According to rule(15),
class A associates with class C if class A inherits class B and class B associates with
class C. Value of the reliability of the result obtained from implementing rule(15) is 1.

5.2 Compute the Relationship Between Classes

(1) Compute direct relationship between two classes in a path: We can get all inter-
mediate relationships in the path between two classes and form a one-dimensional
array of relationships. For any two adjacent relationships in a relationship array, we
can abstract them if they satisfy a rule as shown in Fig. 6. In Fig. 3, relationship
array that we got from the path is equal toArr = [AS, AG, GL]. For any two adjacent
relationships in Arr, we judge whether they satisfy a rule. For example, AS and AG
meets rule(2). AG and GL meets rule(27). Then we need to consider which rule
should be executed firstly andwhether different execution orders of rules will lead to
different results. We get the final relationship between class A and class D which is

GL :generaliza on GLr :generaliza on reverse DP :dependency AS :Associa on
DPr :dependency reverse AG :aggrega on AGr : aggrega on reverse

(1)AS x Class x AS equals AS 100
(2)AS x Class x AG equals AS 100
(3)AS x Class x GLr equals AS 100
(4)AG x Class x AG equals AG 100
(5)AG x Class x GLr equals AG 100
(6)AGr x Class x AS equals AS 100
(7)AGr x Class x DP equals DP 100
(8)AGr x Class x AGr equals AGr 100
(9)AGr x Class x GLr equals AGr 100
(10) DP x Class x DP equals DP 100
(11)DPr x Class x AG equals DPr 100
(12)DP x Class x GLr equals DP 100
(13)DPr x Class x DPr equals DPr 100
(14)DPr x Class x GLr equals DPr 100

(29)AS x Class x AGr equals AS 70
(30)AS x Class x DP equals DP 50
(31)AS x Class x DPr equals DPr 50
(32) DP x Class x AG equals DP 70
(33) DP x Class x AS equals AS 50
(34) DP x Class x GL equals DP 50
(35)DPr x Class x AS equals DPr 50
(36)DPr x Class x GL equals DPr 50
(37)DPr x Class x AGr equals DPr 50
(38)GLr x Class x AG equals AG 80
(39)GLr x Class x AS equals AS 70
(40)GLr x Class x AGr equals AGr 50
(41)GLr x Class x DP equals DP 50
(42)GLr x Class x DPr equals DPr 50

(15) GL x Class x AS equals AS 100
(16) GL x Class x DP equals DP 100
(17) GL x Class x AG equals AG 100
(18) GL x Class x GL equals GL 100
(19)GL x Class x AGr equals AGr 100
(20)GL x Class x DPr equals DPr100
(21)GLr x Class x GLr equals GLr100
(22)AG x Class x AS equals AS 90
(23)AG x Class x DPr equals DPr 80
(24)AGr x Class x GL equals AGr 80
(25)AGr x Class x DPr equals DPr 70
(26)AG x Class x DP equals DP 50
(27)AG x Class x GL equals AG 50
(28) AS x Class x GL equals AS 70

Fig. 6. Rules for abstraction

Enhancing UML Class Diagram Abstraction 111

AS if we execute rule(2) firstly following the first order shown in Fig. 7. Rela-
tionship array A = [AS, AG, GL] changes to A1 = [AS, GL] and relationship array
A1 = [AS, GL] changes to A2 = [AS] if we execute rule(28) secondly. The final
relationship between class A and class D is also equal to AS if we execute the rule
(27) firstly following the second order shown in Fig. 7. Relationship array A = [AS,
AG, GL] changes to A3 = [AS, AG] and relationship array A3 = [AS, AG] changes
to A4 = [AS] if we execute rule(2) secondly.

In Fig. 7, result of execution following the first order is A2 = [AS] and result of
execution following the second order is A4 = [AS]. Value of the reliability of
A2 = [AS] is equal to 0.7. Value of the reliability of A4 = [AS] is equal to 0.5. We
choose the relationship with a higher reliability. We need to consider whether different
execution orders will lead to different relationship results and find a way to get a
relationship result with the highest reliability. For a relationship array A = [X, Y, Z]
which contains only 3 relationships, there are 343(7 * 7 * 7) types of A (e.g. [AS, AG,
AS]). For each type of A, we analyzed two execution orders of A like Fig. 7 shows. We
found that results of two execution orders are the same regardless of the type. Table 6
gives the analysis results of 343 relationship array types.

Invalid result means that combination of the latter two relationships in array A does
not conform to any of the abstraction rules. For relationship array A[AS, GL, GLr]
shown in Fig. 8, there is no rule that meets the two adjacent relationships GL and GLr.
Thus, there is only one order for A to choose which leads to a unique result. We will get

A B C D

A C D

A D

B DA

DA

The first
order

The
second
order

Rule(2):{AS x AG equals AS 100}

Rule(28):{AS x GL equals AS 70}

Rule(27):{AG x GL equals AG 50}

Rule(2):{AS x AG equals AS 100}

Fig. 7. Execution orders of abstraction rules

Table 6. Analysis results of 343 types

Comparison of two results Number Percentage

Unequal 0 0%
Invalid 88 26%
Total 343 100%

112 L. Huang et al.

only one relationship result for the invalid type. We can conclude that there is only one
relationship result no matter in which array type that contains 3 relationships. We apply
heuristic abstraction rules to abstract relationships between two classes as algorithm 1
shows.

Algorithm 1 Applying heuristic abstraction rules to abstract relationships
between two classes

Require: A path between class A and class B

Ensure: Relationships between intermediate classes in the path and values of the
reliability

While The final relationship between class A and class B is not found. do

1:Find all relationship abstraction rules which are applicable for the path.

2:Rank rules according to the descending order of their reliability.

3: Choose the rule with the highest reliability and abstract the path.

end while
Output the relationship between class A and class B and the value of reliability

Compute direct relationship between two classes if there are two or more paths: We
will get more than one relationship result if there are multiple paths between two
classes. We should consider which result to choose. Our approach is to choose result
with the highest reliability. We choose result with the highest relationship rank if
reliabilities of two different results are equal.

(2) Calculate the relationship matrix of a Class Diagram: After computing direct
relationship between any two classes in a Class Diagram, we create a relationship
matrix of the Class Diagram and form graph G(V,E2). We obtain relationships
between classes in Fig. 2 as Table 7 shows.

We set the level of abstraction by controlling requirements for the number of
important classes and strength of relationships. We get four important classes if we
suppose that classes ranked in the top 40% are important. They are Payment, Customer,
Order and OrderDetail. We reduce the number of important classes to three if the

A B C D

Rule(28):{AS x Class x GL equals AS 70}

No rule for it

DCA

Rule(3):{AS x Class x GLr equals AS 100}

DA

The first
order

Fig. 8. Execution orders of relationship array A[AS, GL, GLr]

Enhancing UML Class Diagram Abstraction 113

standard that is set for the important classes is ranked in top 30%. We locate key
entities by using class rank algorithm. From Tables 5 and 7 we can know the corre-
lations and relationships between important classes. Therefore, we can get abstracted
Class Diagrams of different levels of shopping management system as Fig. 9 shows
which only contains important classes and relationships between them. The Class
Diagram on the right side has a higher abstraction than the one on the left.

6 Related Work

It is more and more difficult for people to program, understand, and modify software
with the increasingly complexity of a software system [13]. Dr. Eyged proposed a
series of abstraction rules for Class Diagram which contain class abstraction rules and
relationship abstraction rules. Direct relationship between any two classes in a Class
Diagram can be calculated by using heuristic abstraction rules [4]. His abstraction

Table 7. Relationship between classes in Fig. 2

Customer Order Credit Item Payment DeliveryOrder Check OrderDetail Common Cash Vip

Customer None 0.5 0.25 0.175 0.25 0.5 0.25 0.35 1 0.25 1

Order 0.5 None 0.5 0.35 0.5 1.0 0.5 0.7 0.5 0.5 0.5

Credit 0.25 0.175 None 0.175 1.0 0.5 1.0 0.35 0.25 1.0 0.25

Item 0.175 1.0 0.175 None 0.175 0.35 0.175 0.5 0.175 0.175 0.175

Payment 0.25 0.5 1.0 0.175 None 0.5 1.0 0.35 0.25 1.0 0.25

DeliveryOrder 0.5 1.0 0.5 0.35 0.5 None 0.5 0.7 0.5 0.5 0.5

Check 0.25 0.5 1.0 0.175 1.0 0.5 None 0.35 0.25 1.0 0.25

OrderDetail 0.35 0.7 0.35 0.5 0.35 0.7 0.35 None 0.35 0.35 0.35

Common 1.0 0.5 0.25 0.175 0.25 0.5 0.25 0.35 None 0.25 1.0

Cash 0.25 0.5 1.0 0.175 1.0 0.5 1.0 0.35 0.25 None 0.25

Vip 1.0 0.5 0.25 0.175 0.25 0.5 0.25 0.35 1.0 0.25 None

Fig. 9. Abstracted Class Diagram of different levels

114 L. Huang et al.

method supports the scenario when key entities such as classes or instances are
identified by stakeholders before an abstraction process or during interactions of a
process. The pattern matching not only is costly [5] but also depends on the experience
or project knowledge of the stakeholders in identifying the key entities/relationships.
The scenario of abstraction without relying on the experience of stakeholders is a more
challenging situation which need to be explored but not well addressed in existing
literature. The first obstacle for unguided abstraction is to create or find the represen-
tative entities which can represent the trivial data, information and knowledge which
are distributed in the mess of the trivial elements in model diagrams. Based on our
hypothesis that some existing classes can represent the others properly, we uses class
rank algorithm to calculate ranks of classes in a Class Diagram and use the ranks to
represent the importance of the entities. During the implementation of the visualization
[12], we adopted the hierarchical layout by Sugiyama to display our layered abstraction
of UML Class Diagrams [6, 8] and also referred to the rank-direct layout method [9]
which centers on higher ranked classes and clusters lower ranked classed to higher
ranked classes. Harald found that various factors like layout quality, modeler experi-
ence, and diagram type led to significant differences in diagram reading strategies [10,
11]. Helen investigated the preference of UML modelers and found that joined
inheritance arcs and directional indicators were preferred for Class Diagrams [7].

7 Conclusion

Well designed hierarchical abstraction can provide an effective means to efficiently
understand and maintain complex models. Most existing model abstraction approaches
assume that target classes are provided ahead. Thereafter the abstraction focuses on the
abstraction at relationship level. Dr. Egyed had proposed a series of heuristic rules
which are capable to efficiently fulfill the relationship abstraction. However unguided
abstraction which doesn’t come with guided information such as predetermined target
classes is not fully studied in existing literature. We analyzed that unguided abstraction
requires automated recognition of target classes which represent important entity
concepts of abstracted models. Then based on the hypothesis that some existing classes
fit well to represent other classes, we proposed a class prioritizing algorithm to rec-
ognize these representative classes through ranking them with different values. We
further integrate the entity abstraction with the heuristic relationship abstraction to form
an approach of unguided automatic abstraction of models. In the future, we propose to
explore the entity abstraction scenario where no existing classes fit as the representative
entity for other classes through the data, information and knowledge recreation of
existing classes and relationships with the introduction of knowledge graphs.

Acknowledgments. The authors acknowledge the support of NSFC of China (No. 61363007,
61662021 and 61661019) and Hainan NSF Key project (No. 2017xxxx).

Enhancing UML Class Diagram Abstraction 115

References

1. Blossfeld, H.P., Rohwer, G.: Techniques of event history modeling: new approaches to
causal analysis. In: Techniques of event history modeling, pp. 236–238. Lawrence Erlbaum
Associates (2002)

2. France, R.B., Kim, D.K., Ghosh, S., et al.: A UML-based pattern specification technique.
IEEE Trans. Softw. Eng. 30, 193–206 (2004)

3. Egyed, A.: Automated abstraction of class diagrams. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 11, 449–491 (2002)

4. Egyed, A.: Semantic abstraction rules for class diagrams. In: Proceedings of the
Fifteenth IEEE International Conference on Automated Software Engineering, ASE,
pp. 301–304. IEEE Xplore (2000)

5. Fahmy, H., Holt, R.C.: Software architecture transformations. In: International Conference
on IEEE Proceedings of the Software Maintenance, pp. 88–96. IEEE (2000)

6. Seemann, J.: Extending the Sugiyama algorithm for drawing UML class diagrams: Towards
automatic layout of object-oriented software diagrams. In: DiBattista, G. (ed.) GD 1997.
LNCS, vol. 1353, pp. 415–424. Springer, Heidelberg (1997). doi:10.1007/3-540-63938-1_86

7. Purchase, H.C., Allder, J.A., Carrington, D.: Graph layout aesthetics in UML diagrams: user
preferences. J. Graph Algorithms Appl. 6, 255–279 (2002)

8. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical
system structures. IEEE Trans. Syst. Man Cybern. 11, 109–125 (1981)

9. Hu, H., Fang, J., Lu, Z., et al.: Rank-directed layout of UML class diagrams. In: Proceedings
of of the First International Workshop on Software Mining. ACM (2012)

10. Maier, A.M., Stoerrle, H., Baltsen, N., et al.: On the impact of diagram layout: how are
models actually read? In: Proceedings of the Joint Proceedings of MODELS 2014 Poster
Session and the ACM Student Research Competition. ACM(2014)

11. Storrle, H.: On the impact of layout quality to understanding UML diagrams. In: Proceedings
of the Visual Languages and Human-Centric Computing, pp. 135–142. IEEE (2011)

12. Ball, T., Eick, S.G.: Software visualization in the large. Computer 29, 33–43 (1996)
13. Bassi, S., Keller, R.K.: Software visualization tools: survey and analysis. In: Proceedings of

International Workshop on Program Comprehension, vol. 2, pp. 7–17 (2001)
14. Page, L., Brin, S., Motwani, R., et al.: The PageRank Citation Ranking: Bringing Order to

the Web. Stanford InfoLab (1999)
15. Duan, Y., Cheung, S.C., Fu, X.: A metamodel based model transformation approach. In:

Proceedings of the Acis International Conference on Software Engineering Research,
Management and Applications, pp. 184–191. IEEE (2005)

116 L. Huang et al.

http://dx.doi.org/10.1007/3-540-63938-1_86

	Enhancing UML Class Diagram Abstraction with Page Rank Algorithm and Relationship Abstraction Rules
	Abstract
	1 Introduction
	2 Overview
	3 Calculate Ranks of Classes
	3.1 Definitions
	3.2 Calculate Class Ranks

	4 Compute Correlations Between Classes
	4.1 Definition
	4.2 Calculate the Correlation Between Two Classes

	5 Compute Relationships Between Classes
	5.1 Abstraction Rules
	5.2 Compute the Relationship Between Classes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

