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Abstract. An improved method for vehicle tracking in UAV-captured video is
introduced in this paper, this method based on GPU (Graphics Processing Units)
acceleration which have efficient parallel computing powers. Today, vehicle
tracking in UAV videos has many meaningful applications in computer vision,
such as traffic management and illegal vehicle tracking. However, the increased
computational complexity makes it difficult to be used in real-time tracking
system. To overcome the limitation of tracking speed and meet the highly
intensive calculation required, we perform image processing with GPUs and
adopt an optimized structured output support vector machine (SVM) to online
learning. The proposed approach is evaluated in UAV videos taken from DJI
Matrice 100 drone and the corresponding conclusions are received.
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1 Introduction

With the rapid development of unmanned aerial vehicle technology (UAV), the
detection and tracking of moving vehicles in UAV videos has been paid more attention.
In military, UAV can be used in casualty rescue, battlefield investigation and
surveillance, medicine material transport, damage assessment and so on [1, 2], etc.
UAV object tracking has also been applied to many civilian areas. Traffic police
department can conduct the identification of illegal vehicle behavior in a remote dis-
tance which greatly saves money and material resources [3]. Including Forest fire,
marine pollution monitoring and other highly destructive events can also be prevented
by UAV detection. The most widespread use of agricultural UAV is medicine spraying
[4]. Drone object tracking is a significant research which involves many disciplines
such as artificial intelligence, image processing, machine learning.

However, target tracking of UAV remains as a challenge because of the relatively
lower video resolution, non-uniform illumination, object occlusion, shape deformation,
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irregular rotation, small-sized target, drone vibration and so on [5]. In order to track a
moving vehicle with a UAV, the following points should be implemented in the
tracking algorithm. Firstly, the accuracy of the result should be guaranteed in object
tracking. Algorithm should have the ability to identify the tracking target from a
complex, noise-filled background. Secondly, the tracking algorithm is supposed to keep
a certain degree of robustness when the moving target is partially or completely
obscured. It means that an automatic re-detection process platform should be estab-
lished to keep tracking the object. Lastly, the most important thing one has to take into
consideration is the processing speed. Videos transferred from a real UAV camera
ought to be processed at high speed. Many works have been done to reduce the
processing time, but the processing consumption increases exponentially with a sig-
nificant improvement in UAV video resolution. A single CPU processing has been
unable to meet the requirements for speed. With the rapid development of GPU
hardware and its programming model, using the GPU’s massive high-speed parallel
processing mechanism to accelerate the machine vision algorithm has become an
inevitable trend. This paper strives to improve the processing speed under the premise
of high precision on an improved tracking algorithm [6] based on Struck [7] by GPU
acceleration.

2 Related Works

Large quantities of algorithms have been proposed in recent years, but they all have
significant limitations. G. Mattyus pointed out that the rapid movement of the UAV
camera which resulting in the distribution of samples can be used to express charac-
teristics are too little, so by normalizing the European distance to separate the front and
back points, and then get the moving target binary image [8]. But the calculations is too
complex to lead to a slow tracking process. This problem can be solved by CUDA
Parallel operation as described in this paper. Based on background difference, an
improved method of moving object detection and tracking is proposed, and the target is
identified with the background model to construct the deviation among different image
frames [9]. Considering the relationship between the target height and the shadow
scale, GV.Reilly performed shadow removal and target tracking by combining wavelet
features with SVM features in 2013 [10]. The background subtraction was used to
overcome the difficulties of scene constantly shifts [11, 12], etc. In order to achieve
higher accuracy and get a relatively good tracking performance, many algorithms
involve large feature vectors which bring a significant impact on the speed of the
tracker.

The purpose of this paper is to accelerate the tracking process By CUDA com-
putation. CUDA is a general purpose parallel computing platform and programming
model that it leverages the parallel compute engine in NVIDIA GPUs to solve many
complex computational problems in a more efficient way. Using a machine learning
method to choose the best sparse matrix representation model on GPU [13], the target
tracking algorithm was implemented on the CUDA platform with the GPU’s ability of
parallel computing [14, 15], etc. Pei [6] proposed an improved tracking method based
on Struck [7], the extended affine transformation motion estimation method had been
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adopted to automatically adjust the tracking window’s scale and rotation. Compared
with the original Struck, the tracking accuracy has been enhanced, however, the
number of frames processed per second have been dropped. The meaningful contri-
bution in this paper is that all those tracking models are ported to the GPU and keep
detection and tracking via CUDA parallel calculations.

3 System Achievement

In this paper, GPU’s powerful parallel computing capabilities are exploited to accel-
erate the speed of improved tracking algorithm. We use Gaussian/Haar-like combi-
nation to reach an acceptable compromise between processing speed and tracking
accuracy. An online structured output SVM learning framework has been used to
incorporate multiple types of image features and kernels. In this section, some key
points will be introduced briefly.

3.1 CUDA Programming Model

According to CUDA’s model architecture, the task of the CPU is to perform serial
operation such as data transmission and logic operations. Originally graphics data
processing consumed lots of resources now is handled by GPU parallel computing.
CUDA not only completes the traditional image rendering work, but also achieves
good performance of complex operation. A complete CUDA program includes the
serial processing program in host (CPU) and the device’s (GPU) parallel processing
code. Code which runs on the GPU is called the CUDA kernel function. To complete
respective subtasks of each model, the CUDA threads run on a physically separate
device (GPU) which plays as a medium to the host running the C code. The host code
will calls the parallel code running on the device side when needed [16].

3.2 Haar-Like Feature Extraction

Papageorgiou first proposed Haar-like features and applied it to face description [19].
Pixel-based face detection algorithm has a high computational cost, but the Haar-Like
feature based on block reduces processing costs. This paper uses six kinds of Haar-like
features (feature template), as shown in Fig. 1. The reason why we choose this six
features is it basically cover all the features. The feature value is that the sum of black
pixels gray value subtracts the sum of white pixels gray value.

The main idea of integral images is to form a rectangular region from the starting
point to each point and let the sum of pixels value in each rectangular region as an
element of an array stored in memory. When you need to calculate the pixels value of a
region, you can index the array elements, Instead of recalculating the pixels of this
region, thus the computation will be speeded up. Integral image algorithm is a matrix
representation method which can describe the global image information. The principle
is that the element value ii x; yð Þ at location x; yð Þ in integral image is the sum of all
pixels above from the upper left corner to x; yð Þ direction in original image f. The
recurrence formulae are as follows.
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s x; yð Þ ¼ s x; y� 1ð Þþ i x; yð Þ: ð1Þ
ii x; yð Þ ¼ ii x� 1; yð Þþ s x; yð Þ: ð2Þ

Where s x; yð Þ is the cumulative row sum with the initialization of s x;�1ð Þ ¼ 0.
ii �1; yð Þ ¼ 0 and ii x; yð Þ is an integral image. Scanning the image and when the image
reaches the lower right corner of the pixel, the integral image is over.

3.3 Structured Output SVM Optimization

Support vector machine (SVM) is a statistical learning theory based on Structural Risk
Minimization Principle (SRM). The goal of SVM is to determine the optimal hyper-
plane of feature space partition and the core idea of SVM is to maximize the classi-
fication of marginal. Structured output SVM tracking is used to directly estimate the
change in target position between frames by learning a predictive function f : X ! Y ,
so the output space is a combination of the deformation of Y, instead of traditional
binary labels −1 and +1. In this method, the sample x; yð Þ as a whole, y is the change
function of target optimal position, the target position at the time of t is Pt ¼ P�

t�1yt. So
the framework used to learn a predictive function f can be obtained by introducing the
discriminant function F : X� Y ! R. The result can be predicted according to (3).

yt ¼ f xpt�1
t

� � ¼ argmax
y2Y

F xpt�1
t ; y

� �
: ð3Þ

In order to update the predictive function online, we mark every new tracking
position xptt ; y0ð Þ. The discriminant function F measures the compatibility between
x; yð Þ samples and chooses the best score in all samples. Equation (3) can be further
expressed as F x; yð Þ ¼ w;U x; yð Þh i where h x; yð Þ is a joint kernel projection. By
minimizing the convex objective function (4), it can be learned in a new framework
from a set of pairs x1; y1ð Þ; . . .; xn; ynð Þf g.

Fig. 1. Six box features template for extracting Haar-like feature.
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min
w

1
2

wj jj j2 þC
Xn

i¼1

ni: ð4Þ

s:t: 8i : ni � 08i; 8y 6¼ yi : w; dUi yð Þh i�D yi; yð Þ � ni

dUi yð Þ ¼ U xi; yið Þ � U xi; yð Þ:

The original Struck algorithm contains two sets of data in the support vectors
machine (vector x). One is the features of the previous frame reserved support vectors,
the other is the parameters that record the current support vector and their corre-
sponding coefficients b. In the analysis of SVM algorithm, matrix M is calculated from
vector x, matrix y and coefficient b.

M ¼
Xm

i¼1

Xn

j¼1

xixjK yi; yj; b
� �

k: ð5Þ

Where xi;j 2 R2, i; j ¼ 1; 2; . . .;m; n. k is the adjustment parameter and K is kernel
function. The calculation of matrix M occupies a large amount of computation time in
CPU. To accelerate execution speed, the algorithm is computed in parallel, and each
kernel thread in block (in GPU) only computes the row of matrix M, which means the
calculation of initial matrix M is split into n subtasks and each subtask is executed
asynchronously. The formula of each subtask is defined as follows.

M ¼
Xm

i¼1

x2i K yi; yi; bð Þ: ð6Þ

This computational framework design is based on CUDA programming model and
every kernel function runs a number of threads which are executed in parallel. In kernel
programming, kernel thread only executes a simple cycle to improve the parallel
procession of the algorithm.

4 Experimental Results

Hardware Environment: a standard PC equipped with 4G Memory, Dual-core Intel(R)
Core(TM) i3-3220, 3.3 GHz, GTX 750 TI graphics card with 640 CUDA cores, DJI
Matrice 100. Software Environment: Windows 7, Microsoft Visual Studio 2010,
CUDA 6.5, OpenCV2.4.10.

It is important to collect a representative dataset for a comprehensive and impartial
performance evaluation of the tracking algorithm. The groundbreaking in this work is
the VTB dataset presented in which contains 100 sequences from recent literatures, and
it is the most influential visual target tracking dataset. Another influential visual target
tracking dataset is the VOT dataset. In this section we will use the VTB dataset with
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different frame sizes and video captured with UAV flying over traffic intersections to
perform the tracking test. This part outlines the results of experiments which carried out
during this research.

4.1 Evaluation of VTB Test Set

Object tracking experiments can be divided into two parts. In this part, five VTB image
sequences are selected at random and manually marked for the ground truth which
contains 2926 image frames. This experiment provides a comparison between the
processing speed on GPU with CUDA and CPU for object tracking, and the resolution
of picked image is identified below the figure. The record is measured once every
10 frames, 20 frames or 50 frames according to different sequence. Take the limitation
of the length into consideration, we demonstrated the detailed results of the RedTeam
public dataset to test the improved tracking algorithm, the other datasets only give the
final statistical results.

We compare the processing speed of original CPU-only algorithm with the speed of
GPU-accelerated code. The GPU-accelerated algorithm contains the image features
calculation, dual SVM, learning/adaptation and multiple-kernel learning. As shown in
Fig. 2, it provides details about the timing of processing the frames (the frame interval
is 50 every record) of the proposed approach run on the video such as Fig. 3. The
overall runtime of processing in VTB dataset are observed between the CPU and GPU
versions. The results show that the speed of algorithm processes a video stream in GPU
platform achieves a great effect than running on original CPU-only algorithm which is
running about 2500–3000 ms every 10 frames, and the speed running on CPU platform
is unstable which changes intensely.

Figure 4 and Table 1 show the results of performance comparison of tracking
algorithm execution on CPU and GPU platform. In CarDark dataset, the speed boost
obtained due to using a massive parallel CUDA programming model changes from
3.04 fps to 33.99 fps which achieved nearly 11 times speedup per second in com-
parison with CPU implementation. From the Fig. 4 we can see that the average FPS
from the CPU implementation is below four frames per second which means the overall
execution time will become greater as time goes on.
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Fig. 2. Comparison of calculation performance on CPU and GPU in RedTeam dataset at
352 � 340 resolution.
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Next, the tracking performance will be valued on RedTeam dataset (as shown in
Fig. 3) using two popular evaluation criteria: center location error (CLE) and overlap
ratio (VOR). In order to reduce the accident, each video sequence is processed twice
and picked the RedTeam sequence to show the performance in Figs. 5 and 6. The
improved ratio between the original algorithm on CPU and improved algorithm on
GPU in terms of center location error and overlap rate can be seen from the figure. In
Fig. 5, the average CLE of original code is about 8.5 but the average CLE on GPU is
only 2.4 which means the better capability of vehicle tracking in our method. In Fig. 6,
the improved Struck algorithm is 31.63% higher than original Struck algorithm in
average tracking overlap ratio, and the average high score of VOR shows a good
adaptability to complex environment.

Fig. 3. RedTeam dataset tracking.
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Fig. 4. FPS test of RedTeam.

Table 1. The statistics table for acceleration factor.

Dataset FPS in CPU FPS in GPU Acceleration factor

Bike 3.09 21.26 5.88
CarDark 3.04 33.99 10.18
Couple 3.39 33.41 8.86
RedTeam 3.33 35.1 9.54
Surfer 3.22 31.03 8.64
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4.2 Evaluation of UAV Test Set

In this section, three scenes are captured by the DJI X3 camera with UAV in Dalian,
Chinese and handled as follows: scene one contains the UAV shooting multi-targets.
Scene two consists of the UAV overlooking a white car on a campus road and scene
three includes the UAV overlooking a truck from a moving perspective. The purpose of
the experiments was to compare the performance of the improved algorithm on CPU
and GPU platforms on the same PC. The precision rate is not considered in this
experiment, the time to process the video is what we care about.

In order to get a reasonable comparison, images with different resolutions are used
to test. Figure 8 shows the comparison of FPS (frames per second) running on CPU
and GPU with different resolutions. From Fig. 8 we can see that the implementation of
GPU algorithm has achieved a very significant acceleration effect, lower resolution of
image means faster processing speed on GPU. The FPS of original algorithm on CPU
platforms improves little despite the resolution of image varies greatly. The average
speed of tracker using CUDA parallel optimization is about 4.5–5 times FPS in
comparison with CPU implementation. Figure 7 is the tracking performance in dif-
ferent UAV testing sequences.
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Fig. 5. Quantitative comparison of CPU and GPU versions in CLE on the RedTeam video.
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5 Conclusions

In this paper, structured output support vectormachine and haar-like features has been used
to improve the original Struck tracking method and accelerate the overall runtime with the
implementation of improved algorithm on CUDA. The algorithm processes a video
sequence with a frame rate close to 31 frames per second, and it is significant excellent than
CPU. This method has been tested on UAV videos captured by DJI M100 UAV, and the
experimental results show that the proposed algorithm is feasible to track and identify
moving vehicles. In the future, the program should be optimized to better integrate into the
CUDA programming architecture to achieve a better performance.
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