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Abstract. In this paper, we present a deep learning based approach to per-
forming the whole-day prediction of the traffic speed for the elevated highway.
In order to learn the temporal features of traffic speed data in a hierarchical way,
an improved convolutional neural network (CNN) with asymmetric kernels is
proposed. Speed data are collected from loop detectors of Yan’an elevated
highway of Shanghai. To test the performance of the presented method, we
compare it with some conventional approaches of traffic speed estimation.
Experimental results demonstrate that our method outperforms all of them.
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1 Introduction

It is an attractive topic for human beings to have the ability to foresee the future, and it
is the same in transportation management. It is of great importance for traffic man-
agement department to learn the traffic evolution to provide a guide of tomorrow’s
traffic for people to select an unobstructed route. It is also of value for traffic man-
agement department to adjust the traffic strategy in advance [1, 2].

However, it is challenging to define a high-performance prediction model, because
the utilization of spatiotemporal relationship was not high, we did not have the ability to
form a more efficient prediction model to deal with the spatiotemporal correlation of
traffic flow in roads expanding on a two-dimensional field, we were not able to forecast
long-term future. Conventional traffic data prediction models usually treat the traffic data
as sequential data, so these models usually cannot have a good performance, because of
the limitations in implementation, assumptions and hypotheses, noisy or missing data,
ineptness to deal with outliers and incapability to determine dimensions [3].
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In the existing models, there are two main research methods which dominate the
study in traffic forecasting: methods based on statistic and methods based on neural
networks [3].

In traffic prediction, statistical methods are widely used. The classic method is
autoregressive integrated moving average (ARIMA) model. It is a time-series prediction
model which considers the correlations in successive time sequences of traffic variables.
Seasonal ARIMA model [4], KARIMA model [5] and ARIMAX model [6] which are
the extensions of basic ARIMA model are widely researched and applied. In [7],
k-nearest neighbors (KNN) has been used to forecast traffic flow. In [8], support vector
machines (SVM) were employed in traffic prediction. Online-SVM and Seasonal SVM
were used in [9] and [10] to improve the prediction accuracy. Methods based on
statistics have been widely applied in traffic prediction because of their easy imple-
mentation and promising results. However, these models did not consider the significant
spatiotemporal feature of traffic data, so these models cannot achieve a higher accuracy
than models based on neural networks. Besides, some statistical methods are powerless
because the model takes a very long time and consumes copious computer memory
when it deals with big data.

Neural network based methods, such as artificial neural network (ANN) are usually
applied to solve traffic prediction problems. ANN is able to deal with multi-dimensional
traffic data. Because of its easy and flexible implementation, strong generalization ability
and high performance in traffic prediction, ANN model is favored in recent research in
traffic prediction. In [11], ANN was used to predict traffic speed with consideration of
weather conditions. In [12], a real-time traffic speed prediction algorithm based on ANN
was proposed by Park et al. A model based on ANN combined with conventional Bayes
theorem to predict short-term freeway traffic flow was proposed in [13]. Moretti et al.
[14] used statistical and ANN bagging ensemble model to predict city traffic flow.

ANN can make use of large amounts of data, but it cannot take advantages of
spatiotemporal correlations from large amounts of traffic data. ANN are not able to
achieve a better performance than methods based on deep learning. Recently, more and
more deep learning models are applied to predict traffic flow because deep learning
models are able to learn the deeper level features from the given data. Nowadays, Deep
Belief Networks (DBNs) are widely used in traffic volume prediction. The model [15]
used the method of heterogeneous multitask learning and K-means clustering to
improve the prediction accuracy. Ridha et al. [16] combined DBN with weather con-
dition to predict traffic flow using streams of data. Ma et al. [17] proposed a new model
combined Restricted Boltzmann Machine (RBM) and Recurrent Neural Network
(RNN) forming a RBM-RNNmodel, it achieves the advantages of both RNN and RBM.
In [18], a Stacked Autoencoder based model was proposed to forecast traffic flow. Based
on [18], Duan et al. [19] further improved the SAE model by choosing different
appropriate hyperparameters at different times. Tian and Pan [20] first introduce Long
Short-termMemory (LSTM) into traffic prediction. The LSTMmodel outperforms other
neural networks in both stability and accuracy. In [21], a deep spatio-temporal residual
network was applied in crowd flows prediction. Ma et al. [22] proposed a Convolutional
Neural Network (CNN) based model which learns traffic data as image, the model
achieves a good result in Beijing road network speed prediction. However, the CNN
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model in [22] treats the traffic dynamic in time series and space equally, and cannot work
with the whole-day traffic data.

To solve the problems in [22], this paper introduces asymmetrical kernels to CNN,
which can treat the spatial features and temporal features of traffic data differently.
Because of different treatment between spatial features and temporal features, our model
gets lower mean squared error (MSE) and mean related error (MRE) than common
CNN. In addition, the improved model is applied to predict the whole-day traffic speed
of the next day with the help of whole-day traffic speed data of the previous day.

2 Proposed Approach

In this section, we will introduce the method of transforming the loop detectors’ data to
matrix and the basic theory of our CNN model.

2.1 Loop Detector Data Transformation

The traffic speed of elevated highway can be provided by the loop detectors deployed
on the highway. In the time dimension, the loop detectors’ data range from 0:00 am to
12:00 pm. The time intervals are usually 5 min. On the elevated highway, each two
loop detectors are deployed between 400 m. The loop detector data of elevated
highway also can be converted to matrices by a similar method. We let x-axes rep-
resents time, and y-axes represents space. We arrange the loop detector data of elevated
highway in the order of loop detectors’ position and time series to form a 2D matrix.
Each row in the matrix denotes speed data in different time periods recorded from a
same loop detector in the elevated highway. Each column in the matrix denotes speed
data from different loop detectors at a same time period. The time-space traffic speed
matrix can be represented as follow:

S ¼
s11 s12
s21 s22

� � � s1n
s2n

..

. . .
. ..

.

sm1 sm2 � � � smn

2
6664

3
7775 ð1Þ

In the matrix, m denotes the amount of loop detectors, n denotes the length of time
intervals and sij denotes the average speed on the loop detector i at time period j. We
also can represent the matrix as a heat map. Figure 1 is the illustration of a heat map
transformed from the matrix.

2.2 The Architecture of the Improved CNN

CNN has been widely used in the research of image understanding, because of its
strong ability in extracting critical features from images. In the field of image classi-
fication, CNN performs better than other deep learning models, even surpasses human
beings. As shown in Fig. 2, the Input of our model are matrices of spatiotemporal
traffic data. In our model, there are 3 convolution layers and 2 pooling layers. The input
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matrix goes through two convolution layers, one pooling layer, one convolution layers,
one pooling layer and one fully-connected layer in turn. The output of the model is a
vector which can be reshaped to a matrix with the same size of the input matrix.

2.2.1 The Model’s Input and Output
Like common CNNs, our improved CNN accepts matrices (images) as input. However,
in this paper, instead of being used to solve classification problems, we use CNN to
finish regressive task. Thus, the output of our model is a vector that can be reshaped to
a matrix just the same size as the input matrix which is the prediction of the next day.

2.2.2 Convolution Layers
The previous layer’s feature maps or the input matrices are convolved with trainable
kernels and then the feature maps are put through the activation function to make up the
output feature maps. Each output feature map combines convolutions with multiple
input feature maps. In common, the relationship between input and output maps of
convolution layers is as follow:

xlj ¼ f
X

xl�1
i � klij þ blj

� �
ð2Þ

Fig. 1. The visualization of whole-day traffic speed of Shanghai Yan’an elevated highway.

Fig. 2. The architecture of our improved CNN model.
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where xl−1 denotes the input of the convolution layer, kl means the convolution layer’s
kernels, b denotes an additive bias, f is the activation function. We usually use sigmoid
(3) function or ReLu (4) function as the activation function.

f xð Þ ¼ 1
1þ e�x

ð3Þ

f xð Þ ¼ 0; x� 0
x; x[ 0

�
ð4Þ

2.2.3 Asymmetrical Kernels
In common CNN models, the convolution layers’ kernels are square, however, in our
model, kernels in convolution layers are asymmetrical rectangle matrices, because we
consider spatial dynamics and temporal dynamics differently. A traffic congestion event
can impact for a long time, sometimes for several hours, while the time intervals in
matrices are too small. To solve the problem demonstrated before, we use asymmetrical
rectangle kernels, which can capture more temporal dynamics of traffic data. In the
models, we use asymmetrical rectangle kernels with 3 � 13 size, 3 � 5 size and 3 � 5
size in different convolution layers.

2.2.4 Pooling Layers
The output of a pooling layer are down-sampled versions of input maps. If there are N
input maps, then the number of output maps will be exactly N, but the size of output
maps will be smaller. More formally,

xlj ¼ f
X

bljdown xl�1
i

� �þ blj
� �

ð5Þ

where the function down() denotes a sub-sampling (pooling) function, usually we use
max pooling function or average pooling function. Generally, the pooling function will
transform each distinct n-by-n block into one pixel of the output map. Then the output
maps will be multiplied by a multiplicative bias b and add a bias b.

Although the pooling layer can reduce the amount of model’s trainable parameters,
it also brings some information loss. In order to reduce the information loss, in our
model, we cancel the pooling layer after the first convolution layer. This operation can
achieve a bit performance improvement.

2.2.5 Fully Connected Layer
The fully connected layer is similar to the artificial neural network, if we use x to
denote the input of fully connected layer, y to represent the output of the layer, the
corresponding relation between x and y is as follow:

ylj ¼ f
X

wl
jx
l�1
i Þþ blj

� �
ð6Þ

In the formula (6), w denotes the trainable weights between the input and output,
f represents the activation function described before.
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2.2.6 Model Optimization
To get an optimized model, we use stochastic gradient decent method to minimize the
model’s mean squared error (presented in formula 7) with the batch size is one.

MSE ¼ 1
n

Xn
i¼1

yi � ŷið Þ2 ð7Þ

In formula (7), y denotes the model output, and ŷ represents the model’s expected
value.

3 Experimental Results

The model is evaluated using loop detectors data of Yan’an elevated highway for the
year of 2011. In the experiments, we use a whole day’s speed data, to predict the next
day’s whole-day speed data. The first 320 days of data are selected for training and the
left days of data are used for testing. We use the matrix of previous day as the input of
the model, the reshaped output vector is applied as the predicted value.

3.1 Handle the Data

We handle the data in the way which is similar to the method used in [22]. There are 35
loop detectors deployed on the Shanghai Yan’an elevated highway. In addition, the
observed data is recorded every 5 min. Because of some limitation of loop detectors,
we did some work in data cleaning. First, we reset the abnormal data, for example,
some elements in the speed matrix are larger than 200 km/h, we set these data to be
100, because there are few cars can run at this speed which is also against Chinese law.
According to Chinese law, the max speed on the elevated highway is 80 km/s, we take
the slight overspeed into account, thus, we choose 100 km/s as the max speed in the
matrix. Second, sometimes, the loop detectors employed on the Yan’an elevated
highway do not work during 0:00 am to 4:00 am, in addition, we think that most people
do not travel from 0:00 am to 6:00 am so we take no account of the data from 0:00 am
to 6:00 am. Third, there are 3 loop detectors often cannot work, thus, 3 rows in the
matrix are deleted. Last, in order to reduce the impact of abnormal elements in the
matrix, we aggregate the data in time-dimension to obtain a 20-min interval. Eventu-
ally, the size of matrix is 32 � 54.

3.2 Experimental Settings

There are three convolution layers and two pooling layers. There 16 kernels with the
size of 3 � 13 in the first convolution layer, 512 kernels with 3 � 11 size in the second
convolution layer and 1024 kernels with 3 � 5 size in the last convolution layer. In the
pooling layers, we do max pooling on the input. The experiments are conducted on a
sever with i7-5820 K CPU, 48 GB memory and NVIDIA GeForce GTX1080 GPU.
We implement these models on TensorFlow framework of deep learning. The con-
figurations of our CNN model are listed as follow (Table 1):
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3.3 Evaluation Metrics

The accuracy of traffic speed prediction is mainly assessed by two performance metrics
which are Mean Relative error (MRE) and Mean Squared Error (MSE). MSE evaluate
the model’s absolute error while MRE shows the relative error of the model. MSE is
demonstrated before and MRE is presented as the following:

MRE ¼ 1
n

Xn
i¼1

yi � ŷij j
yi

ð8Þ

where y denotes model’s predicted value using the data of the previous day as the
model’s input, ŷ denotes the observed traffic speed value of the next day and n denotes
the number of samples.

3.4 Experiment Result

As shown in Figs. 3, 4 and 5, we visualize some kernels in different convolution layers,
different feature maps and the output matrix during the experiment. In Fig. 3, The three
images in the first row are kernels we choose from the first convolution layers, then the
images in the next row are kernels selected from the second convolution layers, the last
images are kernels chosen from the third convolution layers. In Fig. 4, The images in

Table 1. The configurations of our CNN model

Layer Name Description

Input – A matrix with 32 � 54 size
Layer1 Convolution 16 kernels with 3 � 13 size
Layer2 Convolution 512 kernels with 3 � 11 size
Layer3 Pooling 2 � 2 max pooling
Layer4 Convolution 1024 kernels with 3 � 5 size
Layer5 Pooling 2 � 2 max pooling
Layer6 Fully-connected
Output – A vector with 1728 elements

Fig. 3. Kernels’ visualization from different
convolution layers. The images in the first line
are asymmetrical kernels of the first convolu-
tion layer and so forth.

Fig. 4. Feature maps extracted from differ-
ent convolution layers. The images in the first
line are feature maps of the first convolution
layer and so forth.
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the first row are feature maps extracted from the first convolution layers, then second
and third. The left image in Fig. 5 is the model’s reshaped output which is used as
prediction and the right is the visualized speed data in reality. In Fig. 6 the real data of
the next day and the prediction of our model are represented as polylines.

We compare our CNN model with the most widely used methods of traffic flow
prediction, such as ARIMA, KNN, ANN and common CNN. The performance of these
models mentioned before is listed below (Table 2):

Fig. 5. The left image is the output of the model, which is transformed to heat map and the right
image is the visualized real traffic speed of the next day. We can see that the output of our model
is very similar to the real data.

Fig. 6. The blue polyline is the model’s prediction, and the red polyline represents the reality of
the next day. The blue polyline can reflect the trend of the reality, and fit the reality well. (Color
figure online)
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As is shown in the list, neural network based models get lower MSE and MRE than
KNN and ARIMA who are not based on neural networks. In addition, our model
achieves the lowest MSE and MRE. The MRE of our model is less than the rest
models’ over 3%. And for MSE, the MRE of our model is less than the second-best
model about 30%.

4 Conclusion

In this paper, we proposed an CNN based deep learning model to predict whole-day
traffic speed of elevated highway. In our model, we use asymmetrical kernels in the
convolution layer. Our model focuses more on temporal dynamics which solve the
problem that common methods cannot treat the special features and the temporal
features differently. The experimental result proved that our model can achieve a good
performance when comparing with other conventional method.
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