
A Fast Granular Method for Classifying
Incomplete Inconsistent Data

Zuqiang Meng(&) and Hongli Li

College of Computer, Electronics and Information, Guangxi University,
Nanning 530004, People’s Republic of China

zqmeng@126.com

Abstract. Today extracting knowledge from “inferior quality” data that is
characterized by incompleteness and inconsistency is an unavoidable and
challenging topic in the field of data mining. In this paper, we propose a fast
granular method to classify incomplete inconsistent data using attribute-value
block technique. Firstly, a granulation model is constructed to provide a foun-
dation for efficient computation. Secondly, an algorithm of acquiring classifi-
cation rules is proposed and then an algorithm of minimizing rule sets is
proposed, and with these proposed algorithms, a classification algorithm is
designed to construct a rule-based classifier. Finally, we use the experiment
results to illustrate the effectiveness of the proposed algorithms.

Keywords: Attribute-value blocks � Data classification � Classifier �
Incomplete inconsistent data � Granulation model

1 Introduction

Data classification is an important task in the field of data mining. Related classification
methods and techniques are increasingly extensively studied and some of them have been
successfully used to solve practical problems [1–3]. In the era of big data, the volume and
variety of data is growing and growing. Big data shows features of not only large volume
but also “inferior quality”. “Inferior quality” of data embodies in many aspects, two of
which are incompleteness and inconsistency. Data’s incompleteness means that there are
missing values in data while the inconsistency refers to that data contains conflicting
descriptions. There are many reasons that cause the incompleteness and inconsistency,
such as objective and subjective factors, noisy data, variety of data. In fact, problems
caused by the incompleteness and inconsistency are unavoidable when extracting
knowledge from big data [4]. The incompleteness usually enhances the degree of
inconsistency. Actually the problems of incompleteness and inconsistency are interwo-
ven and can not totally separated, which makes the problem of knowledge extraction
more complicated. Therefore, it is difficult and meaningful to solve classification prob-
lems oriented to “inferior quality” data that is characterized mainly by incompleteness
and inconsistency.

This work is supported by the National Natural Science Foundation of China (No. 61363027,
61762009), the Guangxi Natural Science Foundation (No. 2015GXNSFAA139292).

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
Z. Shi et al. (Eds.): ICIS 2017, IFIP AICT 510, pp. 153–163, 2017.
DOI: 10.1007/978-3-319-68121-4_16

There are many ways to handle missing values. Stefanowski [5]. distinguished two
different semantics for missing values: the ‘‘absent value’’ semantics and the ‘‘missing
value’’ semantics. Grzymala-Busse [6]. further divided such missing values into three
categories according to their comparison range: ‘‘do not care’’ conditions, restricted
‘‘do not care’’ conditions, and attribute-concept values. In 2009 we utilized sorting
technique to design a fast approach to compute tolerance classes [7]. But this approach
has the problem of data fragmentation when the degree of missing values increases to a
certain level. Recently, we presented a new method called index method to quickly
compute attribute-value blocks [8], which can completely eliminate data fragmenta-
tions. In this paper, we studied on a fast classification problem of incomplete incon-
sistent data by using and improving such index methods.

2 Preliminaries

2.1 Incomplete Decision Systems (IDSs) and Attribute-Value Blocks

A decision system that contains missing values is called an incomplete decision system
(IDS), which can be described as 4-tuple: IDS ¼ ðU; A ¼ C [D; V ¼ S

a2A
Va;

faf gÞa2A, where U is a finite nonempty set of objects, indicating a given universe; both
C and D are finite nonempty set of attributes (features), called condition attribute set
and decision attribute set, respectively, where C \D ¼ /; Va is the domain of attribute
a 2 A, and |Va| denotes the number of elements in Va, i.e., the cardinality of Va;
fa: U ! V is an information function from U to V, which maps an object in U to a value in
Va. Sometimes ðU; A ¼ C [D; V ¼ S

a2A
Va; faf gÞa2A is expressed as (U, C [D) for

simplicity if V and fa are understood. Without loss of generality, we suppose D = {d}
in this paper; that is, D is supposed to be composed of only one attribute. A missing
value is usually denoted as “*”. That is, if there exists a 2 C such that * 2 Va, then the
decision system (U, C [D) is an incomplete decision system.

For an incomplete decision system IDS ¼ ðU;C [DÞ, we define the concept of
missing value degree (the degree of missing values) [8], denoted asMD(IDS), for IDS:

MDðIDSÞ ¼ the number of missing attribute values
jUjjCj :

Obviously, missing value degrees have great effects on classification performance,
but related studies on this problem are little reported.

Attribute-value blocks were presented by Grzymala-Busse to analyze incomplete
data [8]. Here we first introduce some concepts related to attribute-value blocks.

In an incomplete system (U, C [D), for any a 2 C and v 2 Va, (a, v) is said to be
an attribute-value pair, which is an atomic formula of decision logic [9]. Let [(a, v)]
denote all the objects from U which can be matched with (a, v), and [(a, v)] is the
so-called attribute-value (pair) block [10]. According to the semantics of ‘‘do not
care’’ conditions, we have:

154 Z. Meng and H. Li

½ða; vÞ� ¼ fy 2 UjfaðyÞ ¼ v or faðyÞ ¼ �g; if v 6¼ �;
U; else:

�

Actually, v = fa(x) for some x 2 U, and therefore block [(a, v)] is usually denoted
by Ka(x) or Sa(x) in many studies, i.e., Ka xð Þ ¼ Sa xð Þ ¼ a; fa xð Þð Þ½ �. For B � C, the
attribute-value block with respect to B, KB(x), is defined as follows:

KBðxÞ ¼
\
a2B

½ða; faðxÞÞ� ¼
\
a2B

KaðxÞ:

Property 1. For B′, B′′ � C, if B0 � B00;KB00 xð Þ � KB00 xð Þ.

2.2 Incomplete Inconsistent Decision Systems (IIDSs)

In an incomplete system (U, C [D), since VD does not contain missing values, D can
partition U into a family of equivalence classes, which are called decision classes. In
this paper, we let Dx denote the decision class that contain object x, where x 2 U.

Definition 1. For an object x 2 U, let mB xð Þ ¼ jKBðxÞ \Dxj
jKBðxÞj , denoting the degree to which

object x belongs to decision class Dx with respect to B, and then lB(x) is called the
consistency degree of object x with respect to B.

Obviously, 0 < lB(x) � 1. If lC(x) = 1, object x is said to be a consistent object,
otherwise an inconsistent object. It is not difficult to find that an inconsistent object
xmeans that blockKC(x) intersects at least two different decision classes, i.e.,KC(x) 6�Dx.

For an incomplete decision system (U, C [D), if U contains inconsistent objects,
i.e., there exists y 2 U such that lC(y) < 1, then the decision system is said to be an
incomplete inconsistent decision system (IIDS), denoted as IIDS = (U, C [D).

Definition 2. Let id(IIDS) denote the ratio of the number of inconsistent objects to the
number of all objects in U, i.e., id(IIDS) = |{x 2 U | lC(x) < 1}| / |U|, and then id(IIDS)
is called inconsistency degree of the decision system IIDS.

Obviously, 0 � id(IIDS) � 1. In order to judge if an object x is consistent, we
need to compute its consistency degree lB(x), which is possibly a time-consuming
computational process because it involves set operations. The following property can
make preparation for efficiently computing lB(x).

Property 2. For incomplete inconsistent decision system (U, C [D) and any
x 2 U, KB xð Þ \Dx ¼ fy 2 Ujy 2 KB xð Þ and fd yð Þ ¼ fd xð Þg, and therefore lB xð Þ ¼
fy2Ujy2KBðxÞ^fdðyÞ¼fdðxÞgj j

jKBðxÞj , where B � C and D = {d}.

3 A Granulation Model Based on IIDSs

In order to compute KB(x), we generally need to traverse all objects in U, and therefore it
takes the computation time of O(|U|2|B|) to compute KB(x) for all x 2 U, which is a
time-consuming computation process. However, we notice that when considering only
one attribute, we can derive some useful properties to accelerate the computation process.

A Fast Granular Method for Classifying Incomplete Inconsistent Data 155

Definition 3. In an IIDS (U, C [D), for a given attribute a 2 C, let U�
a denote the set

of all objects that fa(x) = *, i.e., U�
a ¼ fx 2 Ujfa xð Þ ¼ �g; attribute a can partition

U −U�
a into a family of equivalence classes, which are pairwise disjoint, and let [x]a

denote an equivalence class containing x, i.e., x½ �a¼ fy 2 U � U�
a jfa yð Þ ¼ fa xð Þg,

where x 2 U, and let Ca denote such a family, i.e., Ca ¼ f x½ �ajx 2 U � U�
ag.

Each element in Ca is an equivalence class. Those objects are drawn together in an
equivalence class due to that they have the same attribute value on corresponding
attribute. Sometimes, in order to emphasize the attribute value, we let Ca(v) denote an
equivalence class in Ca where all objects have attribute value v, i.e.,
Ca vð Þ ¼ fy 2 U � U�

a jfa yð Þ ¼ vg.
It is not difficult to find that Ca [fU�

ag is a coverage of U; each element in
Ca [fU�

ag is a subset of U, and they are also pairwise disjoint.

Property 3. Given Ca and U�
a , for any B � C and x 2 U, we have

Ka xð Þ ¼ ½x�a [U�
a if faðxÞ 6¼ �

U else

�

where [x]a 2 Ca.
Property 3 provides a method for us to use Ca and U�

a to compute Ka(x). We notice
that |Va| almost does not increase with |U|, with which we can design an efficient
algorithm to compute Ca and U�

a for all a 2 C. The algorithm is described as follows.

Algorithm 1: compute Γa and *
aU for all a ∈ C

Input: (U, C D), where U = {x1, x2,..., xn}
Output: Γa and *

aU for all a ∈ C
Begin
(1) For each a ∈ C do
(2) {
(3) Let *

aU = ∅ and Γa = ∅;
(4) For i = 1 to n do // n = |U|
(5) {
(6) If fa(xi) = * then {let *

aU = *
aU {xi}; continue;}

//Suppose Γa = {Γa(v1),…,Γa(vt)} at this moment, where t = |Γa| ≤ |Va|
(7) Let flag = 0;
(8) For j = 1 to t do
(9) If fa(xi) = vj then { Γa(vj) = Γa(vj) {xi}; let flag = 1; break;}
(10) If flag = 0 then { let Γa(vt+1) = {xi}; Γa = Γa {Γa(vt+1)} };
(11) }
(12) }
(13) Return Γa and *

aU ;
End.

156 Z. Meng and H. Li

From Algorithm 1, we can find that its time complexity is O(|C||U|t) � O(|C||U||
Va|). As mentioned above, |Va| almost does not increase with |U|, so |Va| can be regard
as a constant generally. Therefore, the time complexity of this algorithm almost
approaches linear complexity O(|C||U|).

In fact, Algorithm1 is to granulate each “column” for an IIDS and therefore to
construct a granulation model for the IIDS. Let C�

a ¼ Ca [fU�
ag, and such a granu-

lation model is denoted as ℜ = (U, { C�
a}a2C, D) in this paper.

With the granulation model, we can compute any block KB(x) by using formula
KB xð Þ ¼ T

a2B
KaðxÞ. In order to quickly compute KB(x), we should know “where

Ka(x) is”. So we construct an index structure to store the addresses of Ka(x) for all
a2C and x2U. Such an index structure is expressed as a matrix w = U 	 C =
[m(x, a)]x2U,a2C, where m(x, a) is the index or address of Ca(v) and v = fa(x). The
algorithm of constructing matrix w is described as follows.

Actually, Algorithm 2 is to traverse all objects in C�
a for all a2C. We notice that [

C�
a ¼ U and the elements (subset) in C�

a are pairwise disjoint, therefore the complexity
of this algorithm is exactly equal to O(|U||C|), which is linear complexity.

Both granulation modelℜ and index matrix w are denoted as ordered pair [ℜ, w]. If
there is no confusion, [ℜ, w] is also called a granulation model. The purpose of
constructing [ℜ, w] is to provide a way to quickly compute block KB(x) for any x2U,
with complexity of about O(|KB(x)||B|).

Algorithm 2: construct matrix ψ for granulation model ℜ
Input: ℜ = (U, { *

aΓ }a∈C, D)
Output: ψ = U×C = [m(x,a)]x∈U, a∈C,
Begin
(1) For each a∈C do
(2) {
(3) For each θ∈ *

aΓ do
(4) {
(5) For each x∈θ do
(6) {
(7) If fa(x) = * then let m(x,a) = null;// in this case, θ = *

aU
(8) Else let m(x,a) = loc(Γa(v)); // the index or address of Γa(v)
(9) }
(10) }
(11) }
End.

A Fast Granular Method for Classifying Incomplete Inconsistent Data 157

4 A Granulation-Model-Based Method for Constructing
Classifier

4.1 An Attribute-Value Block Based Method of Acquiring Classification
Rules

A classification rule can viewed as an implication relation between different granular
worlds, and each object x can derive a classification rule, which is a “bridge” between
such two worlds. Firstly, let’s consider the following inclusion relation: KB(x) � Dx.
KB(x) and Dx has their own descriptions, which are formulae of decision logic [9].
Suppose their descriptions are q and u, respectively. Then, object x can derive rule
q ! u. According to Property 1, when removing attribute from B, KB(x) would
enlarge, and therefore the generalization ability of rule q ! u would be strengthened.
But its consistency degree lB(x) may decrease and then increase its uncertainty.
Therefore the operation of removing attributes from B must be done under a certain
limited condition. Now we give the concept of object reduction, which is used to
acquire classification rules.

Definition 4. In an IIDS = (U, C [D), for any object x 2 U, B � C is said to be a
reduct of object x, if the following conditions can be satisfied: (a) lB(x)
 lC(x), and
(b) for any B′ � B, lB′(x) < lC(x).

Actually, it is time-consuming to find a reduce for an object, because it needs take
too much time to search each subset of B so as to satisfy condition (b). A usual method
is to select some attribute from C to constitute B such that lB(x)
 lC(x). Such a
method is known as feature selection, with which we can easily obtain corresponding
classification rule. In the following, we give an algorithm to perform feature selection
for all objects x 2 U and derive corresponding classification rules.

Algorithm 3: construct a classification rule set
Input: [ℜ, ψ] and (U, C D) // suppose U = {x1, x2, …, xn} and C = {a1, a2, …,

am}
Output: S // a rule classification set
Begin
(1) Let S = ∅;
(2) For i = 1 to n do //n = |U|
(3) {
(4) Let B = C;
(5) For j = 1 to m do //m = |C| if)(}{ iaB x

j−μ ≥ μC(xi) then let B = B-{aj};

(6) Use B to construct ρ → ϕ;
(7) Let S = S {ρ → ϕ};
(8) }
(9) Return S;
End.

In Algorithm 3, step (5) is to remove redundant attributes in C, which is actually to
perform feature selection. Let Bj = B−{aj}. According to Property 2, with [ℜ, w],

158 Z. Meng and H. Li

lBj
ðxiÞ can be computed in the complexity of O

Pm
j¼1

jKBjðxiÞjjBjj
 !

. Therefore, the

complexity of Algorithm 3 is O
Pn
i¼1

Pm
j¼1

jKBjðxiÞjjBjj
 !

. Suppose t is the average size of

blocks KB�fajgðxiÞ for all aj 2 C and xi 2 U and h is the average length of Bj, then

O
Pn
i¼1

Pm
j¼1

jKBjðxiÞjjBjj
 !

¼ O Uj j Cj j � t � hð Þ. Generally, t << |U| and h << |C|, so

O(|U||C|�t�h) << O(|U|2|C|2).
It should be pointed that Algorithm 3 can not guarantee each generated attribute

subset is a reduct, but it does remove some redundant attributes from C and therefore
can finish the task of feature selection.

4.2 Rule Set Minimum

Since each rule in S is induced by an object in U, these rules and objects are one to one
correspondence. Usually, we let ri denote the rule that is induced by object xi, i.e., ri
corresponds to xi. We notice that |S| = |U| and there are many redundant rules in it.
Therefore we need to further remove those redundant rules, and this process is so-called
rule set minimum.

Definition 5. For rule r: q ! u, let coverage(r) denote all objects which can match
rule r, i.e., coverage(r) = {x2U | x| = r}.

For two rules rx: qx ! ux and ry: qy ! uy, if coverage(rx) � coverage(ry), then rule
rx is redundant and should be removed. Based on this consideration, we design the
following algorithm to minimize the rule set S.

Algorithm 4: minimize a rule set
Input: [ℜ, ψ] and S // S is a rule set which is generated by Algorithm 3
Output: MS // MS is a minimized rule set
Begin
(1) Compute |coverage(r)| for all r ∈ S;
(2) Sort all rules from S in a descending order by |coverage(r)| and suppose S =

{r1, r2, …, rn} after sorting;
(3) Let MS = {r1};
(4) For i = 2 to n do //n = |U|
(5) {
(6) If xi ∉ coverage(ri-1) then let MS = MS {ri}; // ri is induced by xi
(7) }
(8) Return MS;
End.

In Algorithm 4, the key operation is to compute coverage(ri-1). Suppose Bi-1 is a set
of all attributes which are contained in rule ri-1, and then computing coverage(ri-1) is
equivalent to computing block KBi�1ðxi�1Þ, whose complexity is OðjKBi�1ðxi�1Þj Bi�1j jÞ
by using [ℜ, w]. Suppose the average size of blocks KBi�1ðxi�1Þ is p and the average

A Fast Granular Method for Classifying Incomplete Inconsistent Data 159

length of Bi-1 is o, then the complexity is Oð KB1ðx1Þj j B1j j þ KB2ðx2Þj j B2j j þ . . .þ
KBnðxnÞj j Bnj jÞ ¼ Oð Uj j � p � oÞ. Generally, p << |U| and o << |C|. Therefore O(|U|�
p�o) << O(|U|2|C|).

4.3 A Classification Algorithm for Constructing Rule-Based Classifier

Using the above four provided algorithms, we here give a complete algorithm to
acquire a rule set, which is used as a classifier to classify incomplete inconsistent data.
The complete algorithm is described as follows.

As analyzed above, the complexities of Algorithms 1 and 2 are all O(|C||U|), and
those of Algorithms 3 and 4 are O(|U||C|�t�h) and O(|U|�p�o), respectively, which are
much less than O(|U|2|C|2) and O(|U|2|C|), respectively. Therefore, it can be seen that
the time-consuming step is step (3), and then the complexity of Algorithm 5 is O(|U||C|�
t�h), which is much less than O(|U|2|C|2).

5 Experimental Analysis

In order to verify the effectiveness of the proposed methods, we conduct several exper-
iments using UCI data sets (http://archive.ics.uci.edu/ml/datasets.html). These experi-
ments ran on a PC equipped with a Windows 7, Intel(R) Xeon(R), CPU E5-1620v3,and
8 GBmemory. The data sets are outlined in Table 1, where |U|, |C| and |Vd| stand for the
numbers of samples, condition attributes, and decision classes, respectively.

For there exist missing values in incomplete decision system and the relation between
objects are tolerance relation, instead of equivalence relation, we can not use sorting
technique to accelerate the process of computing blocks and therefore need to compare

Table 1. Description of the four data sets.

No. Data sets |U| |C| |Vd| MD(IIDS) id(IIDS)

1 Voting-records 435 17 2 0.0563 0.6736
2 Tic-Tac-Toe 958 9 2 0 0
3 Mushroom 8124 22 2 0.0139 0
4 Nursery 12960 8 5 0 0

Algorithm 5: construct a rule-based classifier
Input: (U, C D)
Output: MS // MS is a rule-based classifier
Begin
(1) Use Algorithms 1 and 2 to construct granulation model [ℜ, ψ];
(2) Use Algorithm 3 to construct rule set S by using [ℜ, ψ];
(3) Use Algorithm 4 to minimize rule set S to be MS by using [ℜ, ψ] and S;
(4) Return MS;
End.

160 Z. Meng and H. Li

http://archive.ics.uci.edu/ml/datasets.html

x with all other objects in U when computing block KB(x), where x 2 U. Replace the
method of computing attribute-value blocks in Algorithm 5, which is based on the
granulation model, with such a method of computing blocks and keep other parts
uncharged. Thus we would obtain another algorithm, denoted as Algorithm 5′. To
compare the running times for a varying number of data records, we execute Algorithm 5
and Algorithm 5′ on two data sets,Mushroom andNursery, for four times, with randomly
extracting different objects at each time, and the results are shown in Fig. 1.

Form Fig. 1 we can find that the running times of Algorithm 5′ increase much more
rapidly than that of Algorithm 5. Therefore, the constructed granulation model can
greatly improve computational efficiency for Algorithm 5.

Algorithm 5 consists of Algorithms 1, 2, 3 and 4. We count the time for each
algorithm when they are executed on Mushroom and Nursery, and the results are
shown in Table 2.

It can be seen from Table 2 that, comparing with Algorithms 3 and 4, it only takes a
little time for Algorithms 1 and 2 to construct granulation model. This means that
constructing granulation model cost very little but it forms the foundation for fast
feature selection and building classifiers. Additionally, Table 2 also shows that
Algorithm 3 is the most time-consuming algorithm.

To verify the classification performances of Algorithm 5, we utilize Voting-records,
Tic-Tac-Toe, and Nursery to test Algorithm 5 using 10-fold cross-validation. The
results are shown in Table 3.

(a) Mushroom (b) Nursery

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6
x 10

4

Size of data set

R
un

ni
ng

 ti
m

e
(S

ec
.)

Algorithm 5
Algorithm 5′

1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

Size of data set

R
un

ni
ng

 ti
m

e
(S

ec
.)

Algorithm 5
Algorithm 5′

Fig. 1. Running times of Algorithm 5 and Algorithm 5′ for mushroom and nursery

Table 2. Running times of Algorithms 1–4 for mushroom and nursery

Data sets and the used
algorithms

Size of data set
1000 3000 5000 7000

Mushroom Algo. 1 + Algo. 2 0.062 0.109 0.548 0.710
Algo. 3 20.524 293.039 1148.922 2748.864
Algo. 4 1.602 49.749 233.802 545.356

Nursery Algo. 1 + Algo. 2 0.042 0.058 0.164 0.358
Algo. 3 1.955 28.818 119.987 278.489
Algo. 4 1.382 53.047 287.059 771.875

A Fast Granular Method for Classifying Incomplete Inconsistent Data 161

From Table 3, we can find that Algorithm 5 can have relatively high precision and
recall on these data sets. This shows that the proposed algorithm has better application
values. Additionally, Table 3 also shows that Algorithm 5 is suitable not only for
incomplete inconsistent data but also for complete consistent data. Of course, it has
better classification performances on complete consistent data than on incomplete
inconsistent data.

6 Conclusion

Extracting rules from data sets and then using a rule set as a classifier to classify data is
one of our purposes recent years. In this paper, oriented to incomplete inconsistent data,
we first used attribute-value block technique to construct a granulation model, which
actually consists of a block-based model and a index matrix; secondly, based on the
constructed granulation model, an algorithm of acquiring classification rules is pre-
sented and then an algorithm of minimizing rule sets is proposed; with the proposed
algorithms, we designed a classification algorithm for constructing a rule-based clas-
sifier; finally, we conducted some experiments to verify the effectiveness of the pro-
posed algorithm. The experiment results are consistent with our theoretical analysis.
Therefore, the work in this paper has a certain theoretical value and application value,
and provides a new idea to classify incomplete inconsistent data.

References

1. Liu, Y., Bi, J.W., Fan, Z.P.: A method for multi-class sentiment classification based on an
improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Inf.
Sci. 394, 38–52 (2017)

2. Nakashima, T., Schaefer, G., Yokota, Y., et al.: A weighted fuzzy classifier and its
application to image processing tasks. Fuzzy Sets Syst. 158, 284–294 (2007)

3. Stimpfling, T., Bélanger, N., Cherkaoui, O., et al.: Extensions to decision-tree based packet
classification algorithms to address new classification paradigms. Comput. Netw. 122, 83–95
(2017)

4. Conde-Clemente, P., Trivino, G., Alonso, J.M.: Generating automatic linguistic descriptions
with big data. Inf. Sci. 380, 12–30 (2017)

5. Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification.
Comput. Intell. 17, 545–566 (2001)

6. Grzymala-Busse, J.W.: A rough set approach to data with missing attribute values. In: Wang,
G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS, vol. 4062, pp. 58–67.
Springer, Heidelberg (2006). doi:10.1007/11795131_10

Table 3. Precision and recall of Algorithm 5

Data set Precision Recall

Voting-records 0.9103 0.8950
Tic-Tac-Toe 0.9958 0.9969
Nursery 0.9850 0.7634

162 Z. Meng and H. Li

http://dx.doi.org/10.1007/11795131_10

7. Meng, Z.Q., Shi, Z.Z.: A fast approach to attribute reduction in incomplete decision systems
with tolerance relation-based rough sets. Inf. Sci. 179, 2774–2793 (2009)

8. Meng, Z.Q., Gan, Q.L., Shi, Z.Z.: On efficient methods of computing attribute-value blocks
in incomplete decision systems. Knowl.-Based Syst. 113, 171–185 (2016)

9. Meng, Z., Gan, Q.: An attribute-value block based method of acquiring minimum rule sets: a
granulation method to construct classifier. In: Shi, Z., Vadera, S., Li, G. (eds.) IIP 2016.
IAICT, vol. 486, pp. 3–11. Springer, Cham (2016). doi:10.1007/978-3-319-48390-0_1

10. Grzymala-Busse, J.W., Clarka, P.G., Kuehnhausen, M.: Generalized probabilistic approx-
imations of incomplete data. Int. J. Approx. Reas. 55, 180–196 (2014)

A Fast Granular Method for Classifying Incomplete Inconsistent Data 163

http://dx.doi.org/10.1007/978-3-319-48390-0_1

	A Fast Granular Method for Classifying Incomplete Inconsistent Data
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Incomplete Decision Systems (IDSs) and Attribute-Value Blocks
	2.2 Incomplete Inconsistent Decision Systems (IIDSs)

	3 A Granulation Model Based on IIDSs
	4 A Granulation-Model-Based Method for Constructing Classifier
	4.1 An Attribute-Value Block Based Method of Acquiring Classification Rules
	4.2 Rule Set Minimum
	4.3 A Classification Algorithm for Constructing Rule-Based Classifier

	5 Experimental Analysis
	6 Conclusion
	References

