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Abstract. This paper considers power control problem based on Nash equi-
librium (NE) to eliminate interference in multi-cell device-to-device (D2D)
network. The power control problem is modeled as a non-cooperative game
model, and a user residual energy factor is introduced in the formulation. Based
on the proof of the existence and uniqueness of Nash equilibrium, a distributed
iterative game algorithm is proposed to realize power control. Simulation results
show that the proposed algorithm can converge to Nash equilibrium quickly,
and obtain a better equilibrium income by adjusting the residual energy factor.
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1 Introduction

With the requirement for high speed and efficiency of data transmission, the limited
spectrum resource brings great challenges for mobile network communication. D2D
communication is a new wireless technology, where two devices can communicate
with each other without exchanging information from base station, so that it cannot
only reduce the burden of base station, but also improve communication quality of
cellular users [1]. However, the D2D users will be suffered from interference of other
users in cellular system. Therefore, the interference elimination has been investigated in
recent years [2].

In [3], the authors studied that the D2D users and the cellular users use the same
channel resources by multiplexed mode. Although it can improve spectrum utilization,
it will introduce a new kind of interference. The authors in [4] investigated a power
control method for single cellular system containing one cellular link and one D2D
link. The algorithm can reduce the interference significantly between D2D users and
cellular users. In [5], the authors studied the interference elimination problem of
multi-cell D2D network, where the cellular users are communicated by base station
schedule and the D2D link communication is guaranteed by power control.

The previous work mainly focused on the centralized power control method for
D2D network, while the distributed implementation is less concerned. Therefore, we
studied distributed power control method in this paper by use of game theory. We first
establish a static game model in hybrid multi-cell D2D network, and then prove the
existence and uniqueness of the Nash equilibrium. Finally, the distributed power

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
Z. Shi et al. (Eds.): ICIS 2017, IFIP AICT 510, pp. 104–112, 2017.
DOI: 10.1007/978-3-319-68121-4_11



control method is iteratively implemented to obtain the optimal state of Nash equi-
librium. Simulation results show that the game model designed in this paper can
converge quickly to Nash equilibrium, and the system can get better balance by
adjusting the residual energy factor.

2 System Model

The system model of D2D network is shown in Fig. 1. We consider a multi-cell system
containing D2D links, and the adjacent cells use the same frequency band for multi-
plexing communication. Assume there are N cellular and D2D links in the system to
use the same frequency resource. To eliminate the co-channel interference among the
different cellular links and the interference between the cellular links and the D2D
links, we propose a power control method based on game theory with pricing
mechanism.

According to game theory, there are three elements should be considered, which
include the player, the strategy and the utility function. We define the power control
model as G ¼ ½N;P;U� in multi-cell D2D network, and introduce the three elements:

(1) Player: Assume each cellular link and D2D link are the participants making
decision of the game. We denote N ¼ f1; 2; . . .; Ng to be the participant set and
each element represents one communication link.

(2) Strategy: Assume one communication link is denoted by j 2 N, where the
transmit power is pj 2 Pj. Here Pj is the available transmit power region of the
link j, i.e. the strategy space of the game player. All the strategies constitute
P ¼ p1; p2; . . .; pNð Þ, and all the strategy space combinations can be expressed by
P ¼ �i2NPi. Besides, P�j 2 �i2N; i 6¼jPi represents all the left users’ strategy space
combination except the link j. Let Pj ¼ 0; pmax½ � and pmax is the maximum
available transmit power for the user.

Fig. 1. D2D network system model
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(3) Utility function: Define uj pj; p�j
� � ¼ log j1þ ejhjpj

r2 þ
PN

k¼1; k 6¼j

hkpk

j � ejhjp2j , where uj is

the utility function of user j and it represents the payoff obtained by the game
players after making decision. hj is the channel gain of the link j and r2 is the
variance of the additive white Gaussian noise. Unlike [6], we introduce a user
residual energy factor e in the utility function, which is defined as

e ¼ Emax
j =DEj ð1Þ

where DEj is the residual energy transmitted by link j, and its maximum valve is Emax
j .

The energy factor e describes a price law. On one hand, when the supply exceeds the
demand, the payment for the price of energy consumption is low and the user can
consume more energy to obtain better performance. On the other hand, when the
demand exceeds supply, the energy consumption should pay more prices. Therefore,
adjusting e can make the performance and energy consumption in a reasonable trade-off
state. Note that e is regarded as a control factor in the simulation.

Here we formulate the problem to establish a non-cooperative power control game
model with pricing mechanism, which is

max
pj 2Pj

uj pj; p�j
� �

; j 2 N ð2Þ

In this paper, we use Nash equilibrium to solve the problem. We define the policy
combination p� ¼ p�1; p

�
2; . . .; p

�
N

� � 2 p as a Nash equilibrium, and establish the below
expression

ujðp�j ; p��jÞ� ujðpj; p��jÞ; 8pj 2 Pj; j 2 N ð3Þ

If the game players adopt the strategy combination p�, they cannot leave and change
the strategy combination, so that the Nash equilibrium will be the optimal solution.

3 Non-cooperative Power Control Game Analysis

According to the model in Eq. (2), we prove the existence and uniqueness of Nash
equilibrium in this section. After that, we use a distributed iterative power algorithm to
solve the Nash equilibrium point.

3.1 Existence

Theorem 1: Nash equilibrium exists in the power control game model G ¼ ½N;P;U�.
Proof: Power strategy space is a non-empty, closed, and bounded convex set in
Euclidean space. The utility function uj is continuous for the strategy combination p, so
that we obtain
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@2ujðpj; p�jÞ
@p2j

¼ �e2j h
2
j

r2 þ PN
k¼1; k 6¼j

hkpk þ ejhjpj

 !2 � 2ejhj\0 ð4Þ

Therefore, ujðpj; p�jÞ is quasi-concave for pj of the j th player [7]. According to the
game existence theorem in [8], the game G has Nash equilibrium.

3.2 Uniqueness

Theorem 2: The iterative game algorithm can converge to the unique equilibrium
point.

Proof: If we want to prove there is Nash equilibrium point in the game, the iterative
function should meet the positive r pð Þ� 0, monotonic r pð Þ� r p0ð Þ, and expandability
r Tpð Þ[ 1

T r pð Þ, where r pð Þ is the optimal response strategy set.
Given the strategies p�j, the optimal response strategy set of game players is

rj p�j
� � ¼ p�j jp�j ¼ argmax

pj
uj pj; p�j
� �� �

ð5Þ

All the players rj p�j
� �

form the vector as

r pð Þ ¼ r1 p�1ð Þ; r2 p�2ð Þ; � � � ; rj p�j
� �

; � � � ; rN p�Nð Þ� � ð6Þ

According to the concave of utility function, we have argmax
pj

ujuj pj; p�j
� � ¼

min ~pj; pmax
� �

.
Let

@uj pj; p�j
� �
@pj

¼ ejhj

r2 þ PN
k¼1; k 6¼j

hkpk þ ejhjpj

� 2ejpjhj ¼ 0 ð7Þ

and we obtain

~pj ¼ ~pj p�j
� � ¼ � r2 þ

PN
k¼1; k 6¼j

hkpk

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ

PN
k¼1; k 6¼j

hkpk

� �2

þ 2ejhj

s
2ejhj

Negative solutionð Þ
ð8Þ
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Therefore, the optimal response strategy is

p�j ¼ p�j p�j
� � ¼ min ~pj; pmax

� � ð9Þ

The optimal response strategy vector is

r pð Þ ¼ p�1 p�1ð Þ; p�2 p�2ð Þ; � � � ; p�N p�Nð Þ� � ð10Þ

(1) Positive: If p� 0, then r pð Þ� 0. If all the elements of a vector are not less than the
corresponding elements of another vector, the former one will be greater than or
equal to the latter vector.

(2) Monotonicity: If p� p0, then r pð Þ� r p0ð Þ.

Proof: If p� p0, then

r2 þ
XN

k¼1; k 6¼j

hkpk � r2 þ
XN

k¼1; k 6¼j

hkp
0
k ð11Þ

Let x ¼ r2 þ PN
k¼1; k 6¼j

hkpk , we have

f ðxÞ ¼ �xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2ejhj

p
2ejhj

ð12Þ

and obtain

df ðxÞ
dx

¼ � 1
2ejhj

þ 1
2ejhj

xffiffiffiffiffi
x2

p
þ 2ejhj

\0 ð13Þ

The function is a monotonically decreasing function, i.e. r pð Þ� r p0ð Þ, so that the
optimal response strategy vector satisfies the monotonicity.

(3) Extensibility: If 8T [ 1, then r Tpð Þ[ 1
T r pð Þ.

Proof: We have

pj ~Tp�j
� � ¼

� r2 þ T
PN

k¼1; k 6¼j
hkpk

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ T

PN
k¼1; k 6¼j

hkpk

 !2

þ 2ejhj

vuut
2ejhj

ð14Þ
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1
T
~pj p�j
� � ¼ 1

T

� r2 þ PN
k¼1; k 6¼j

hkpk

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ PN

k¼1; k 6¼j
hkpk

 !2

þ 2ejhj

vuut
2ejhj

ð15Þ

so that

~pj Tp�j
� �

1
T ~p�j p�j

� � ¼ T

� r2 þ T
PN

k¼1; k 6¼j
hkpk

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ T

PN
k¼1; k 6¼j

hkpk

 !2

þ 2ejhj

vuut

� r2 þ PN
k¼1; k 6¼j

hkpk

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ PN

k¼1; k 6¼j
hkpk

 !2

þ 2ejhj

vuut

¼ T

r2 þ PN
k¼1; k 6¼j

hkpk

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ PN

k¼1; k 6¼j
hkpk

 !2

þ 2ejhj

vuut

r2 þ T
PN

k¼1; k 6¼j
hkpk

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ T

PN
k¼1; k 6¼j

hkpk

 !2

þ 2ejhj

vuut
[ 1

ð16Þ

and we obtain

r Tpð Þ[ 1
T
r pð Þ ð17Þ

It means that the optimal response strategy vector can be extended.
According to the Ref. [9], we can conclude that the non-cooperative power control

game has a unique Nash equilibrium point, which can be simply expressed by

p ¼ p�1 p�1ð Þ; p�2 p�2ð Þ; � � � ; p�N p�Nð Þ� � ð18Þ

3.3 Distributed Iterative Game Algorithm

Based on the proofs in Sect. 3.2, we present a distributed iterative algorithm to solve
the Nash equilibrium. The realization is summarized below.

Step 1: Define the number of iteration M, and the stop criteria U.
Set m ¼ 0.
Set the initial value of the strategy combination pð0Þ ¼ 0;

Step 2: Set m ¼ mþ 1.
Update the strategy via Eq. (9) to obtain new strategy pðmÞ by use of pðm�1Þ.

Step 3: Repeat step 2 until pðmÞ � pðm�1Þ �U, and the algorithm ends. The output of
Nash equilibrium point strategy is pðmÞ.
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Note that the players only know their own channel gain hj and the corresponding
energy factor ej when the Nash equilibrium point is calculated, so that the algorithm is
implemented by distributed way.

4 Simulation Results

In this section, we perform the proposed non-cooperative power control game algo-
rithm in D2D network by matlab simulation. The wireless system in simulation
composes four cells c1–c4, and each cell has single cellular link and single D2D link, so
that N ¼ 8. The game player set is expressed as N ¼ f1; 2; . . .; 8g. Assume all the
links use the same frequency band. The link gains hj of the four cellular links are
assumed to be 0.5, 0.7, 0.9, 1.1, and the other four D2D links gains are 1.2, 1.6, 2.0, 2.
The variance of additive white Gaussian noise is unit. The maximum transmit power
pmax of the D2D link and the cellular link is also unit. The compared algorithm comes
from Ref. [9].

Figure 2 shows the valves of utility function varied with the iteration number. The
control factor is set to be 2. Note the control factor in Ref. [9] represents power coef-
ficient. From the simulation, it can be seen that our algorithm converges to the stable
state within six times, while the compared algorithm in Ref. [9] needs eight times.
Therefore, our method can converge more quickly than the compared one. Besides, we
find that the valve of utility function of our method is bigger than the compared method,
which means our method is more stable.

Figure 3 gives the bar chart of the iteration number varied with the control factor. It
shows that our algorithm has smaller iteration number when the control factor is bigger
than 1, which means the algorithm is more efficient.
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Figure 4 gives the transmit power results for all of users in Nash equilibrium state.
It observed that all of transmit power of users tend to be stable. Hence the proposed
price function can make the system achieve the equilibrium stable state.

From the simulations, we conclude that the power control algorithm based on
pricing mechanism can effectively improve the performance of the system if pricing
factor is adjusted reasonably.
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5 Conclusion

In this paper, we investigate the power control problem in D2D network. A non-
cooperative game model based on pricing mechanism is established to eliminate the
interference in complex environment. We design a price function and prove its exis-
tence and uniqueness, and then propose a distributed iterative algorithm which can
converge to Nash Equilibrium point. From the simulation, it can be observed that our
algorithm improve the system performance compared with the conventional method.
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