Skip to main content

Properties of High-Energy-Density Plasmas

  • Chapter
  • First Online:
High-Energy-Density Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2760 Accesses

Abstract

This chapter is concerned with the properties of high-energy-density matter, and with how it differs from ideal plasma s and solids. It introduces the concept of equations of state that relate various thermodynamic variables. After reviewing some simple equations of state and some aspects of ideal plasma s, the chapter proceeds to build up an understanding of high-energy-density matter. It discusses the behavior of the electrons, the degree of ionization, continuum lowering, and Coulomb interactions. This enables the generation of a very simple model for the equations of state of these systems. Some additional features are revealed by a more complex model based on statistical mechanics. The chapter then discusses generalized polytropic indices, the degenerate and strongly coupled regime, tabular equations of state, and equations of state in some physical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atzeni S, Meyer-Ter-Vehn J (2004) The physics of inertial fusion. Oxford, New York

    Book  Google Scholar 

  • Avrorin E, Vodolaga BK, Voloshin NP, Kovalenko GV, Kuropantenko VF, Simonenko VA, Chernovolyuk BT (1987) Experimental study of the influence of electron shell structure on shock adiabats of condensed materials. Sov Phys JETP 66:347–354

    Google Scholar 

  • Ecker G, Kroll W (1963) Lowering of the ionization energy for a plasma in thermodynamic equilibrium. Phys Fluids 6(1):62–69

    Article  ADS  MATH  Google Scholar 

  • Eliezer S, Ghatak, Hora H (1986) An introduction to equations of state: theory and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Griem H (1997) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hicks DG, Boehly TR, Celliers PM, Eggert JH, Moon SJ, Meyerhofer DD, Collins GW (2009) Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa. Phys Rev B 79(1), times Cited: 2

    Google Scholar 

  • Hubbard WB, Guillot T, Lunine JI, Burrows A, Saumon D, Marley MS, Freedman RS (1997) Liquid metallic hydrogen and the structure of brown dwarfs and giant planets. Phys Plasmas 4:2011–2015

    Article  ADS  Google Scholar 

  • Krall NA, Trivelpiece AW (1986) Principles of plasma physics. San Francisco Press, San Francisco

    Google Scholar 

  • Landau LD, Lifshitz EM (1987) Statistical physics, course in theoretical physics, vol 5, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Martinez-Canales M, Pickard CJ, Needs RJ (2012) Thermodynamically stable phases of carbon at multiterapascal pressures. Phys Rev Lett 108(4):045704

    Article  ADS  Google Scholar 

  • More RM, Warren KH, Young DA, Zimmerman GB (1988) A new quotidian equation of state (qeos) for hot dense matter. Phys Fluids 31(10):3059–3078

    Article  ADS  MATH  Google Scholar 

  • Nellis WJ (2006) Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep Prog Phys 69(5):1479–1580

    Article  ADS  Google Scholar 

  • Reif F (1965) Fundamentals of statistical and thermal physics, 56946th edn. Waveland Pr, Long Grove, IL

    Google Scholar 

  • Salzman D (1998) Atomic physics in hot plasmas. Oxford University Press, New York

    Google Scholar 

  • Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys J 609(2, Pt 1):1170–1180

    Google Scholar 

  • Saumon D, Chabrier G, Van Horn HM (1995) An equation of state for low-mass stars and giant planets. Astrophys J Suppl 99:713–741

    Article  ADS  Google Scholar 

  • Smith RF, Eggert JH, Jeanloz R, Duffy TS, Braun DG, Patterson JR, Rudd RE, Biener J, Lazicki AE, Hamza AV, Wang J, Braun T, Benedict LX, Celliers PM, Collins GW (2014) Ramp compression of diamond to five terapascals. Nature 511(7509):330–333

    Article  ADS  Google Scholar 

  • Stewart JC, Pyatt KD (1966) Lowering of ionization potentials in plasmas. Astrophys J 144(3):1203–1211

    Article  ADS  Google Scholar 

  • Zel’dovich YB, Razier YP (1966) Physics of shock waves and high-temperature hydrodynamic phenomena, vol 1, 2002nd edn. Dover, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drake, R.P. (2018). Properties of High-Energy-Density Plasmas. In: High-Energy-Density Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-67711-8_3

Download citation

Publish with us

Policies and ethics