
Grab ‘n’ Drop: User Configurable Toolglasses

James R. Eagan(B)

LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
james.eagan@telecom-paristech.fr

Abstract. We introduce the grab ‘n’ drop toolglass, an extension of the
toolglass bi-manual interaction technique. It enables users to create and
configure their own toolglasses from existing user interfaces that were
not designed for toolglasses. Users compose their own toolglass interac-
tions at runtime from an application’s user interface elements, bringing
interaction closer to the objects of interest in a workspace. Through a
proof-of-concept implementation for Mac OS X, we show how grab ‘n’
drop capabilities could be added to existing applications at the toolkit
level, without modifying application source code or UI design. Finally,
we evaluate the power and flexibility of this approach by applying it to
a variety of applications. We further identify limitations and risks asso-
ciated with this approach and propose changes to existing toolkits to
foster such user-reconfigurable interaction.

Keywords: User interfaces · Toolglasses · Instrumental interaction ·
Polymorphism

1 Introduction

Toolglasses [4] are a bi-manual interaction technique in which users click through
movable controls to apply their operations to the target below. They have been
shown to be useful in a variety of contexts, from drawing applications [4] to
debugging tools [13] to editing colored Petri nets [2].

In the nearly 25 years since toolglasses were initially proposed, multiple point-
ing devices have become increasingly common. While still not the norm, many
laptop users, for example, work with an external mouse, effectively providing a
second pointing device in addition to the laptop’s integrated pointer.

Despite their utility, few applications provide support for toolglasses. In this
article, we show how existing user interface (UI) toolkits could be updated to
provide support for user-configurable toolglasses, without requiring application
programmers to update their code. Users can then assemble and configure their
own toolglasses from existing applications. We introduce the grab ‘n’ drop tool-
glass, a proof-of-concept implementation for Mac OS to explore what existing
toolkit features help make this kind reconfiguration feasible, where they are
insufficient, and how toolkits could be modified to better support such recon-
figuration. The running toolglass prototype probes where, in real applications,

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
R. Bernhaupt et al. (Eds.): INTERACT 2017, Part III, LNCS 10515, pp. 315–334, 2017.
DOI: 10.1007/978-3-319-67687-6 21



316 J.R. Eagan

this approach breaks down. While this implementation is in the context of Mac
OS, it uses principles that are generalizable across most common UI toolkits.
We further explore several ways that users might be able to extend such recon-
figurable interfaces and discuss design limitations in current toolkits that limit
the kinds of extension possible.

The contribution of this work is thus (1) an interaction technique for assem-
bling user-created toolglasses from existing interface elements in existing appli-
cations and (2) a technical contribution of how existing toolkits could be updated
to better support such toolglasses. We evaluate the grab ‘n’ drop toolglass not
from a usability point of view but in terms of the technical feasibility of trans-
forming interaction by users.

Fig. 1. The grab ‘n’ drop toolglass in Pages. The toolglass, floating on the top left,
contains three empty buckets on its bottom, right. The remaining buckets contain the
extracted actions from various widgets visible in the toolbar and styles list on the left.
The user has just grabbed the “Heading 1” style.

Initially, a grab ‘n’ drop toolglass provides a collection of empty buckets
(Fig. 1). When the user clicks through an empty bucket onto a widget, the tool-
glass stores the action associated with that widget (grab). When the user sub-
sequently clicks through the toolglass, it applies that action to the object under
the toolglass (drop). As such, a user can add and configure toolglass interactions,
even in applications not designed for such interaction.

Furthermore, these toolglasses can be polymorphic. For example, a user may
reconfigure a grab ‘n’ drop toolglass created in one application to perform anal-
ogous operations in another. A polymorphic operation is a logical operation that
is realized differently depending on some combination of the control, the target
object, and its context. For example, applying a heading style to some text in
a word processor might set a named style to the text; in an HTML or LaTeX
editor, it might wrap it in markup; in an email message it might set it to bold
and change its size. A single logical operation—make this text a header—may
be implemented using different underlying functional operations depending on
the context.



Grab ‘n’ Drop: User Configurable Toolglasses 317

2 Related Work

The grab ‘n’ drop toolglass builds on toolglasses, certainly, but also on work in
runtime, third-party program modification, on end-user customization, and on
user-interface toolkits and interactions.

Toolglasses and magic lenses [4] were first proposed by Bier et al. in 1993 as
a general-purpose interaction technique, a new style of widget that programmers
could add to their toolbox. Various extensions have been proposed, including tool-
glasses for debugging [13] and visualization [11]. Moreover, they act as a strong
complement to other tools, such as floating palettes and marking menus [20].

Perhaps the closest in spirit to our proposed technique is the style toolglass
in Beaudouin-Lafon and Mackay’s CPN2000 [3]. Initially, empty items in the
toolglass act as a style picker, extracting attributes such as color and thickness.
They then become style droppers, applying those attributes to target objects.
We extend CPN2000’s notion of picking (grabbing) and dropping styles beyond
an application’s domain objects to its interface elements.

Other approaches let users modify a program’s interface: Tan et al.’s Win-
Cuts [27] let users trim away irrelevant portions of windows to their context.
Hutchings and Stasko’s window snipping extends this notion to provide for live
interaction with trimmed windows [14]. Pushing the farthest, Stuerzlinger et al.’s
user interface Façades [26] treat the interface itself as a modifiable object, letting
the user recompose those elements to create new palettes or even replace tools
with functional equivalents. While they do enable users to convert entire tool
pallets and toolbars into toolglasses, they does not describe support for more
general composition from more primitive widgets. We generalize this approach
to individual widgets and extend it beyond command-then-object interactions.

Program Modification. Various approaches have been taken to enabling
third-party modifications to software. Cypher et al. edit a good overview of
such modifications for the web [6], where a strong mash-up culture has evolved.
On the desktop, tools such as Dixon and Fogarty’s Prefab [8] offer the possi-
bility to “make every application open source” by identifying the user interface
components in the pixels drawn to the screen. Such approaches are surprisingly
powerful, despite only having access to rendered pixels and user input events.
Other approaches involve varying degrees of access to or integration with source
code. Eagan et al. provide an overview of such techniques [10]. Each of these
approaches aims to provide developers with the means to add new functionality
or behaviors to existing software.

End-User Customization. Non-programmer end-users have a long history of
customizing their software to suit their own particular needs [19]. With sufficient
scaffolding and motivation, they can even go as far as to program [9,22], and even
construct sharing communities [12,17], with different users assuming different
roles to encourage and foster such customization [12].



318 J.R. Eagan

Our work draws inspiration from these approaches. In this context, our goal is
to enable users to compose new interactions from existing program functionality
without requiring them to program or manipulate complex configuration dialogs.
As such, we draw inspiration from programming by demonstration [7]: a user
simply clicks through interface elements to construct a personal toolglass. Grab
‘n’ Drop toolglass do not, however, attempt to infer intent from user’s actions. As
such, they could best be described as employing configuration by demonstration
rather than programming by demonstration.

Finally, Ponsard and McGrenere propose Anchored Customization [23],
which modifies the preferences panels of existing applications to enable users
to access preference settings directly from the user interface elements involved.
This approach is similar in two primary ways: in both cases, the proposed tech-
nique brings the user’s interaction and attention to the relevant widgets; and
both techniques were grafted into existing applications by means of a hack that
is independent of the technique itself.

3 Four Scenarios

The grab ‘n’ drop toolglass is a user-customizable toolglass through which the
user can create a personalized pallet tailored to his or her particular needs.
Through the following scenarios, we show how it is user customizable with-
out programming, how to use it with heterogeneous controls and heterogeneous
content, in heterogeneous applications, and how to support the principles of
reification and reuse behind instrumental interaction [2].

3.1 Aperture

Alice returns from her mountain vacation and imports her photos into Aper-
ture, her photo organizer and editor. She has not used the tool since her last
vacation and cannot remember the keyboard shortcuts when operating in full-
screen mode, so she creates a new grab ‘n’ drop toolglass in standard, windowed
mode. Into four empty buckets, she clicks through the toolbar buttons for the
straighten, crop, redeye, and retouch commands. She then enters full-screen
mode, which hides all controls but the cursor and her toolglass, and expands
the photo to fit to the undecorated screen. She clicks through the crop toolglass
to re-compose the image, perhaps refining the crop by moving the toolglass out
of the way. She then clicks through the red-eye reduction tool to hide the effects
of the flash.

3.2 Styles in Pages

Bernard and Charlie are collaborating on an article for Interact, and Char-
lie has composed an unformatted first-draft of the article. In order to apply
the correct styles to the article in Pages, Bernard must first select the relevant
text or paragraph, then select the appropriate style in a list on the side of the



Grab ‘n’ Drop: User Configurable Toolglasses 319

screen. Systematically applying these styles thus involves repeatedly scrolling
and precisely pointing in the document, then precisely pointing in the list on the
side, alternating attention and focus between the content and the styles palette
(Fig. 1).

Bernard creates a new grab ‘n’ drop toolglass and clicks through empty buck-
ets to add the section, subsection, and other styles from the styles panel to the
toolglass. He then closes the styles panel and clicks through to the bold and
italic toolbar buttons to add them to the toolglass. He can then use this tool-
glass to systematically apply the appropriate styles to the document by scrolling
and clicking through the toolglass within the document view, maintaining his
attention on the text content without the back-and-forth from before.

3.3 Styles in Mail

Some time later, Bernard is working in Mail and wants to style a rich-text
email message he is composing. He loads the toolglass that he created in Pages.
Although Mail does support rich text, it does not use the same styles function-
ality as Pages. As a result, Bernard must first re-define each of the grab ‘n’ drop
buckets in the toolglass by clicking through on the relevant controls in Mail. He
holds the shift key to combine (or stack) multiple actions and clicks through the
Helvetica font pull-down button, the bold button, and the 12-point font selector.
Once defined, clicking on a particular style in the toolglass in Mail will apply a
similar styling to text in a mail message as it would to text in his word processor.

3.4 Lab Notebook

Denise is documenting a lab procedure in an email. In the control software for a
piece of lab equipment, she creates a new toolglass for the procedure and clicks
through each of the relevant controls to extract its associated action. She then
switches to her email message and command-clicks the controls in the toolglass
to drop their stored screenshot as a rich-text attachment, integrating screenshots
of the configured controls into the text of the procedure.

Some time later, Eric reads the procedure and command-clicks through an
empty bucket onto the image of one of the controls embedded in the document in
order to grab it into the toolglass. He then command-clicks through the bucket
onto the relevant control to apply the state described in the image to the under-
lying control.

4 Grab ‘n’ Drop

The grab ‘n’ drop toolglass is based on traditional toolglasses, initially pro-
posed nearly 25 years ago [4]. As with traditional toolglasses, it uses two pointing
devices, such as an integrated trackpad in a laptop and a wireless mouse. The
left (non-dominant) hand controls the position of the toolglass, while the right
(dominant) hand controls the position of the pointer.



320 J.R. Eagan

With the grab ‘n’ drop toolglass, the user can compose new toolglasses from
the existing functionality exposed through the application’s existing interface,
even in applications that do not currently support toolglass-based interaction.
(Our prototype implementation is built on Mac OS X and integrates with arbi-
trary Cocoa applications using the Scotty toolkit [10].)

Initially, the toolglass is populated with empty controls, or buckets (Fig. 1).
These buckets can be filled by positioning an empty bucket on top of a clickable
control, such as a button, segmented control, list item, or toolbar item. When
the user clicks through the empty bucket, the toolglass inspects the underlying
control to extract its associated action. (We describe this process in more detail
in the implementation section.) Once the bucket has “grabbed” the associated
action, it draws itself with a copy of the control’s on-screen representation.

Fig. 2. Dropping an action in Pages. The user has just selected the word “Aperture”
through the “Heading 2” bucket of the toolglass. As soon as she releases the mouse,
the style will be applied.

By selecting a collection of desired controls, a user can create his or her own
custom toolglass. Furthermore, by storing the control’s target and associated
action, the source control itself need not continue to exist. If, for example, the
user populates one of the buckets with a control in a palette and later closes the
palette, the bucket will continue to function.

When the user clicks on a filled bucket, the toolglass passes the click through
to whatever window is underneath (Fig. 2). The press, any subsequent drag
events, and the release are all passed through the toolglass to the underlying
window. Each bucket can either trigger the associated action either just before
relaying the user’s initial press to the region below the toolglass or just after the
user releases the mouse. Activating the control before passing-through mouse
events is useful for controls that activate modes (command-then-target), whereas
the latter option is appropriate for controls that operate on a selection (target-
then-command). If the user drags beyond an individual toolglass item, such as
when highlighting a long sentence, the command used is that that was under
the initial mouse press.



Grab ‘n’ Drop: User Configurable Toolglasses 321

Toolglasses can be saved and restored in future invocations of the application,
allowing for use for both one-off tasks and for co-adaptive behaviors [18]. In this
way, a user can propose new interactions with an existing interface, making the
application better fit his or her particular needs. Furthermore, he or she is likely
to adapt his or her behavior as the interface itself now supports new kinds of
interaction.

4.1 Polymorphic Toolglasses

Beyond inherently polymorphic commands, such as copy and paste, the grab
‘n’ drop toolglass supports polymorphism across applications by letting the user
re-configure a toolglass for use in another application.

A toolglass loaded from another application will keep the same buckets, with
each bucket showing the control’s icon from the application in which it was
initially created. Because each application is different, however, the controls
themselves may or may not exist. As such, the bucket invalidates its references
to the underlying control actions when loaded into a new application and draws
itself in an inactive state. When the user attempts to use such an inactive bucket
in a new application for the first time, the application prompts to reconfigure it
for the new application by grabbing a new control. Holding the shift key appends
additional controls.

In this way, the user can create a toolglass whose functionality adapts itself
to the particular application in question. For example, applying a header style
from the toolglass in a word processor might change a style by applying its word-
processing concept of a style. In an HTML editor, it might trigger a command to
wrap that text in a header tag. In a Mail client, it might make the text bold and
change its size. In this way, a single bucket with a single logical function may
trigger different underlying functionalities depending on the particular program.

4.2 Command Syntax

As the name suggests, there are two primary interactions associated with the
grab ‘n’ drop toolglass: grab and drop. As described above, the grab operation
extracts the associated action (and state, if applicable) of a control into the
toolglass. The drop operation applies that action (including the associated state,
if any) to the subject of the interaction with the underlying window below the
toolglass. There is additionally a toggle to configure the drop operation to apply
its associated action before or after the user interaction has occurred.

In the current proof-of-concept implementation, we use modifier keys at the
time of the grab operation to regulate this mode. We plan to replace this inter-
action with something more intuitive in a future prototype. A modifier-less click
applies the operation after passing through user interactions to the underlying
window, as for a control that operates on a selection. Holding down the option
key during a grab operation will cause the drop operation to apply before passing
along the interactions, as suitable for a mode-switching control such as a control
pallet item.



322 J.R. Eagan

Normally, once a command has been grabbed into a bucket, subsequent clicks
on that bucket are treated as drops. A user can combine multiple commands,
however, by holding the shift key to grab additional controls into the toolglass.
When a bucket contains multiple controls, a drop operation applies each action
in the order in which they were grabbed.

Finally, holding the command-key during a drop causes the toolglass to drop
the captured human-readable image of the control instead of applying the action.
This image contains a serialization of the stored data in its meta-data, such
that the image actually contains the same machine-readable data stored in the
toolglass. A command-drop on a control, on the other hand, reconfigures the
state of the control to reflect that stored in the toolglass. Holding the command-
key during a grab operation causes the operation to look for such meta-data in
an image under the mouse instead of looking for a widget at the click location.

4.3 Live Screenshots

The typical use of grab ‘n’ drop toolglasses is to compose a personal toolglass
out of existing widget components, effectively treating the program’s interface
as malleable and re-composable. We further extended the toolglass to support
treating the live interface as an embeddable object in a document. As such, the
user can drop the captured screenshot of the widget in a bucket into a document,
as in the lab procedure scenario described above. Indeed this scenario itself comes
from Klokmose and Zander’s work with scientists on laboratory notebooks [16].

When the user command-drops a bucket, the toolglass passes the click
through to the underlying window, then inserts a screenshot of the widget as if
pasted from the clipboard. In the meta-data of the image, the toolglass writes
the same information that would be serialized for subsequent program invoca-
tions (described in more detail in the following section). As such, the dropped
image contains both a human-readable representation of the associated widget,
but also a machine-readable description sufficient to re-connect the image to the
associated widget, similarly to how Kato et al. encode robot pose data in images
embedded in source code [15].

Because all of the machine-readable information necessary to link the image
to the widget is stored in the meta data of the image, any existing document or
image editor that preserves the embedded meta-data can be used to edit that
document. Re-establishing the link requires only that the toolglass be able to
map a click to the image, which is currently implemented using the Mac OS X
Cocoa rich text editing APIs.

4.4 Serialization

Once the user has created a personal toolglass, such as the styles toolglass,
she can save that toolglass for later. Saving a toolglass causes each bucket’s
screenshot, associated action, and any state information about the widget to be
serialized and stored in a file on disk. On a subsequent invocation of the appli-
cation, the user can then load the toolglass to restore these links. Because the



Grab ‘n’ Drop: User Configurable Toolglasses 323

application was not designed for this kind of interaction in mind, re-establishing
this link can be potentially fragile and does not work in all cases. We describe
the details of this process in the Implementation section, and focus on specific
edge cases in the Discussion section, below.

Serialization for Other Applications. In some ways, loading a saved tool-
glass in another application is more straight-forward. The grab ‘n’ drop toolglass
relies on references to the underlying callback controllers of an application. With
the exception of standard, toolkit-level actions, any two arbitrary applications
are unlikely to use the same callbacks, even for logically-equivalent commands.
As such, it is generally not possible to re-link a toolglass bucket from one appli-
cation to a new application. For this reason, buckets loaded from another appli-
cation are initially disabled. Effectively, these buckets are like empty buckets: a
click through the bucket will grab the action off the target widget.

Unlike empty buckets, however, the bucket will still contain the original wid-
get’s screenshot and will keep that screenshot even after being re-linked in the
new application. We chose not to replace the screenshot so as to maintain a more
consistent representation across applications. For example, a styles toolglass is
a styles toolglass, regardless of the particular operations necessary to realize it
in the host application.

5 Implementation

We have created a proof-of-concept implementation of the grab ‘n’ drop tool-
glass as a Scotty [10] plugin for Mac OS X Cocoa applications. Eagan et al.’s
Scotty uses runtime toolkit overloading to enable the modification of third-party
applications without access to their source code1. Scotty plugins run inside the
host program and thus have access to its internal classes and objects, including
documents, views, and their controllers.

While this proof-of-concept implementation is effectively a Mac OS X hack
using Scotty, neither the concept of the grab ‘n’ drop toolglass nor the over-
all implementation approach is dependent on the Mac. Rather, this approach
enabled us to effectively extend the Cocoa toolkit to provide a set of generally
reusable components that could be provided by other toolkits such as Java Swing
or Windows .Net using analogous capabilities in those toolkits.

5.1 Requirements

There are four principal challenges in implementing grab ‘n’ drop toolglasses:

– Extracting and invoking a widget’s associated action.
– Handling state and other side-effects.
– Managing object-then-action and action-then-object command syntaxes.

1 We will make the source code available at code.eagan.me.



324 J.R. Eagan

– Serializing these extracted data for subsequent program invocations.
– Embedding serialized data in dropped images.

We address these challenges in the remainder of this section.

Creating Toolglasses. We have implemented toolglasses in Mac OS X using
the Cocoa Human Interface Device APIs. When a toolglass is first created, the
list of available input devices is polled. By default, when more than one mousing
device is present, the first one is bound to the toolglass and the remaining mice
control the standard system pointer. Thus, if only one mouse is present, toolglass
interaction is disabled, falling back on traditional interactions. On laptops, the
builtin trackpad is generally the first mouse found and is bound to the toolglass.

The toolglass itself is an undecorated, focus-less window with a mostly trans-
parent background. It is then filled with buckets, which are simply standard wid-
gets (NSView), with all input redirected into a state machine using a Scotty event
funnel [10]. In order to pass events to the underlying window, the toolglass clones
the currently handled event and injects it into the system event queue (using a
Cocoa event tap). That event can then be either consumed or propagated to the
standard event stream. It is essential that the state machine for the toolglass
preserve standard event symmetry invariants, such as press/release pairing and
that drag events always occur between a press and a release. If these invariants
are not respected, the program may enter into an undefined state.

Widget Design Patterns: (Controllers, Target-Action). Cocoa applica-
tions are typically developed using a model-view-controller (MVC) architecture
[24], where event handlers are typically implemented in a controller object asso-
ciated with the interface. Widgets, in turn, use a target-action pattern to desig-
nate their controller (the target) and the message2 to send to the target (action).
Other toolkits typically use a similar mechanism to handle callbacks, signals, or
event handlers: when a widget is triggered, the system executes some bit of code
with an event describing what happened and what was triggered. In Cocoa,
when a widget is triggered, such as by clicking a button or pressing return in a
text field, the widget sends its action message to its target with itself as the sole
parameter: the sender.

Grab: Extracting a Widget’s Action. Grabbing a widget’s “callback” thus
entails simply storing a reference to its target and action, and storing a refer-
ence to the widget itself. We also create a copy of its backing image in order to
store its on-screen representation in the toolglass bucket. Invoking a previously
grabbed command whenever it is dropped through the toolglass is then as sim-
ple as invoking the action on the target with the source widget as the sender
(e.g., target.invoke(action, from: sender)). This action will then typically
operate on the user’s current selection in the application.

2 Objective-C uses message-passing to invoke methods.



Grab ‘n’ Drop: User Configurable Toolglasses 325

Special Cases: State, Subclasses, Side-Effects. Some controls may be
stateful. For example, a compound control, such as a list or a segmented toolbar
control, may perform some form of “backchannel” communication beyond the
standard target-action invocation model. An action method might, for example,
query its sender to identify which list item or segment was clicked.

For such stateful controls, it is necessary to capture that state. We create a
proxied copy of the control to be used as the sender in place of the original widget.
This proxy is a Scotty object proxy [10]. An object proxy is a metaclass3 whose
instances are subclasses of the class of the object to be proxied. An instance of
this metaclass stores a copy of the source object to be proxied. Methods invoked
on it can then be forwarded to the underlying object, creating a sort of man-in-
the-middle stand-in for the original widget. We have implemented proxy classes
for the standard outline/list view, popup button, and segmented control classes.4

When invoking a control, the toolglass uses this proxy as the sender instead
of the original control. Thus, if the action method queries the control for one
of these overridden methods, the captured state is used instead of the current
state.

Drop: Invoking a Stored Action. When the user performs a drop, she clicks
through the toolglass, possibly dragging, before eventually releasing. Toolglass
buckets may be configured to trigger their action either before passing the initial
click to the window below, as in the case of a command mode (e.g. the redeye
tool), or after the terminating mouse release, as in the case of an operation on
a selection (e.g. the styles chooser).

As shown above, actually triggering the callback associated with the source
widget is straight-forward and simply involves sending the action message to the
target with either the source widget or its proxy as the sender parameter.

Serializing the Grab ‘n’ Drop Toolglass. Initially identifying a widget, its
target, and its action during a grab operation is easy: they come from the clicked
widget. But in order to serialize toolglasses across invocations of the application,
we need a way to find these same objects in a new application instance, without
a user’s click to identify the widget. Furthermore, when loading a previously
serialized toolglass, the program may be in a different state. The interface may
be in a different configuration and the relevant objects might not have been
created.

During serialization, we need to construct a path from a known, fixed refer-
ence point to the widget. To construct this path, we use three starting points:
3 A metaclass is a class of classes. Whereas an instance of a class is an object, an

instance of a metaclass is itself a class.
4 The first two simply override the clickedRow and selectedItem methods, respec-

tively, to return whatever value was active when the control was grabbed. For seg-
mented controls, there are two methods that need to be overridden: selectedSegment
and isSelectedForSegment:, which are actually independent methods that handle
multiple segments.



326 J.R. Eagan

the current document, the current window, and the application’s master con-
troller. We then use the reflection APIs to conduct a breadth-first search using
the attributes of each of these controllers to find a shortest path to the target
objects. If none of the controller’s instance variables matches the target widget,
we expand the search to any controllers or delegate objects that it may reference.
Unfortunately, controllers and delegates are merely design patterns; there is no
formally-expressed relationship in the code itself. By convention, however, in
Cocoa, such attributes typically have names ending in delegate or controller, as
in windowDelegate and playbackController. Other conventions apply in other
toolkits. We consider any such non-nil variables to be valid search candidates.

Finally, we fall back to the view hierarchy itself. We avoid using the view hier-
archy because it is more likely to change between application launches. Nonethe-
less, it is sometimes the only available path to a particular controller. As such,
any time we encounter an NSView instance, we add that to the search.

If no valid path is found at the end of this breadth-first search, it will not
be possible to serialize that particular control for future use. In such a case, the
bucket can still be used during the current session, but it will not be possible to
save it and restore it later. If there are multiple paths, we use the first (shortest)
path, preferring to avoid any paths involving the view hierarchy if possible.

In order to avoid unforeseen side effects, we look only at instance variable
when searching for serialization paths. Comparing the values of two variables is
safe. We ignore methods, since they may have unanticipated effects. For exam-
ple, in some applications, calling the accessor for the current print job could
potentially trigger a print job if one does not exist.

When loading in a new application instance, however, those attributes might
not yet have been initialized. Thus, when deserializing, we prefer to use those
very same accessors that we avoided during serialization.

In Java and other languages, accessors typically start with get. In Cocoa,
methods and attributes are in different namespaces. We therefor look for a
method with the same name, or with any leading underscores or a single m
removed and re-camel-cased. This strategy relies on programming conventions
and is thus inherently fragile.

Embedding Serialized Data in Dropped Images. Once the functionality
for serializing a bucket between applications exists, embedding that serialized
data in an image is easy. Furthermore, during a grab operation, we store a
screenshot of the target widget.5

6 Discussion

6.1 Leveraging Design Patterns: Controllers, Target-Action

In the general case, giving the user complete control over all aspects of the user
interface and functionality is almost certainly infeasible. Software applications
5 The current implementation uses Cocoa’s CGImageProperties APIs to read and

write the serialized bucket into the screenshot’s metadata.



Grab ‘n’ Drop: User Configurable Toolglasses 327

are frequently complex, and user interfaces particularly so. Nonetheless, certain
common design patterns in the development of user interfaces are particularly
helpful at enabling the runtime modification of interaction and functionality. We
rely on three design patterns in particular:

– The Model-View-Controller (MVC) programming model,
– Callback-bindings for widgets, and
– Dynamic dispatch in object-oriented programming languages.

The first of these, MVC [24], reflects the separation between interface, appli-
cation functionality, and the link between the two. Views, or widgets, are typi-
cally programmed using standard classes in a toolkit library, although they are
frequently customized through inheritance. The model is effectively opaque and
may even be implemented in another programming language, but it is linked
to the interface through the controller, which maps widget events to operations
on the model. Different programs follow more- or less-clean implementations of
this separation, and frequently the PAC model [5] under the guise of MVC.
Regardless of the particular implementation, analyzing the controller provides a
foothold into the underlying functionality of the program, and the links into the
operational interface that controls it.

Callback-bindings are the linking mechanism between a widget and the con-
troller. In Cocoa, these are implemented using the target–action model where a
widget event, such as a button press, triggers an action on its associated target.
The target is typically the associated controller, and the action is the associated
method. The grab ‘n’ drop toolglass relies on being able to thus map widgets to
their associated controllers and event handlers. Other user interface toolkits use
different design patterns to express callbacks, but the overall result is similar:
linking a widget to an event handler on some object. In Java Swing, this link
is performed using a listener pattern; in Qt (C++), this binding is performed
using signals and slots.

The last of these patterns, dynamic dispatch, is the process by which the pro-
gramming language chooses, at runtime, what code to execute when a program
invokes a method on an object. In most object-oriented programming languages,
such as Objective-C, Java6, C++7, JavaScript, and Python, a dynamic compo-
nent performs a mapping between an object and the particular method to exe-
cute. Our proof-of-concept implementation works by analyzing these mappings
for a particular class to create an object proxy capable of standing-in for an
existing object but with an overloaded or overridden implementation. This pat-
tern is not strictly necessary to implement user-configurable toolglasses. If the
target-action model were extended to provide for target-action-state, then appli-
cations could express their functionality entirely with such components. There
would no longer be a need for proxy objects to, e.g., hard-wire the selected item
in a list or segmented button.

6 for non-final methods.
7 for all virtual methods.



328 J.R. Eagan

6.2 The Interface as a Lens into the System

The human-software interface, of its nature, is designed to be understood by the
human user of the software. As such, the interface exposes the core functionality
of the system in a human-understandable fashion. While the design of the grab
‘n’ drop toolglass enables the user to transform the interaction around which the
system was designed, it does not require a deep understanding of that system.
Instead, it draws upon the user’s understanding of what different controls do, of
the user’s own situated context, to re-assemble the underlying functionality into
new controls. The only system knowledge necessary to implement the toolglass
is that of the general design patterns described in the previous section.

More generally, other tools beyond the grab ‘n’ drop toolglass may be able
to take similar advantage of the human user’s understanding of the interface
to make extensive modifications to the underlying functionality possible. The
grab ‘n’ drop toolglass does so without programming, but tools such as Yeh
et al.’s Sikuli [28] offer a glimpse into ways that end-users might be able to
reprogram existing software applications, creating a sort of situated macros or
software extensions to existing application interfaces. Sikuli relies exclusively on
the surface representation of the application, but a hybrid approach that offers a
similar degree of high-level interaction with existing components combined with
direct access to their underlying functionality offers an exciting potential.

On the more advanced end of the spectrum, programmable tools in the spirit
of Maclean et al.’s Buttons [21,25] could help make it possible for richer expres-
sivity with underlying software functionality. With a sufficiently scaffolded envi-
ronment, many kinds of programming tasks may become accessible even to end-
user programmers [22].

6.3 End-User Programming

The grab ‘n’ drop toolglass aims to provide a programming-free means of letting
a user adapt an existing user interface to her own needs. Tools such as Sikuli [28],
Prefab [8], and Scotty [10], among many others, provide tools for programmers to
alter software interfaces or functionality. Between these two ends of the spectrum
lie more advanced end-user programming techniques, aiming to increase raise the
ceiling of expressivity while maintaining a low threshold to entry.

For example, by using a model of intentionality based on some combination
of the user’s context and the widgets he or she grabs into the toolglass, the
toolglass could potentially provide more seamless interaction without explicit
programming. For richer control, EUD environments such as Sikuli could enable
the user to go beyond simply extracting existing widgets to including new inter-
actions and functionalities. Under the current proof-of-concept implementation,
the user explicitly configures each bucket to control only the order of operations
for dropped actions.



Grab ‘n’ Drop: User Configurable Toolglasses 329

6.4 Design Opportunities

Under normal usage, an application’s interface provides its own set of widgets—
which may potentially be instruments—through which the user interacts with
associated domain objects. For most typical users, this exposed interface should
be sufficient most of the time (assuming any reasonably well-designed applica-
tion). For those users or those situations where that interface is not sufficient,
however, the user may wish to act not on the domain objects but rather with
the application itself. We have created the grab ‘n’ drop toolglass as a first step
in this direction: the creation of a class of interactive tools to allow an end user
to operate on an application’s underlying interface and functionality, similarly
to how Façades let a user modify an application’s interface [26].

This type of interaction is common in physical interactions with real-world
tools, where a master craftsman might typically use standard off-the-shelf tools
to practice her trade. But when confronted with a particular need, she might
create an adapter, or modify the tool in some way to better satisfy her special
case. Should that adapter or modification be particularly useful, she might share
it with others, possibly even becoming a new member of a standard toolbox, as
we have seen with a wide variety of now standard tools: needle-nose pliers, 90-
degree screwdrivers, etc.

This type of interaction offers an exciting design opportunity to create a
broad class of tools. One need not necessarily look as far as the real world to
identify these kinds of practices. Unix users have a long and well-documented
history of customizing their software with Unix dotfiles [19], whether for func-
tional reasons, to work around compatibility issues, or even for self-expression.
Furthermore, sharing cultures [12,17] arising around such customizations have
even led to entire communities, with customizations being produced and shared
by expert programmers and tinkerers alike [21].

Furthermore, when confronted with a relevant problem within one’s domain,
with sufficient motivation, even regular end-users may program extensive cus-
tomizations for their own particular needs. For example, spreadsheet software
has led to vast collections of complex logic programmed by secretaries and other
non-computing professionals [22], while artists have formed communities around
the development and exchange of Photoshop plugins and customizations [9].

6.5 Generalizability Across Applications

In order to understand the generalizability of the grab ‘n’ drop toolglass, we
conducted a survey of different applications in addition to Aperture, Pages, and
Mail, used in the scenarios: Keynote, Pixelmator, OmniGraffle, and Preview.

While the grab ‘n’ drop toolglass is able to bring toolglass interaction to
applications that were not designed with such interaction in mind, not all inter-
actions are compatible. Moreover, current designs of applications that would
be amenable to toolglasses, e.g., drawing applications, may use an unsuitable
interaction vocabulary.



330 J.R. Eagan

The grab ‘n’ drop toolglass works well with command-then-action or action-
then-command interactions, such as toolbar buttons that operate on a selection.
However, many buttons may not interact directly with a selection. For example,
drawing in Keynote would be a perfect application for a traditional toolglass.
However, its interaction model is such that, when the user creates a shape, it is
dropped on the canvas at an arbitrary position. The user then resizes and re-
styles that object. As such, it is possible to click through the toolglass to create
a shape, but that shape is placed independent of where the user has clicked. As
such, the user can compose a personal toolglass, but it’s utility degrades to that
of a toolbar.

Similarly, OmniGraffle allows the user to click and drag out rectangles, but
not other forms. The user must draw a rectangle, then change its form with a
separate control. Moreover, it provides a list of forms that have been used in that
document. As such, the list of pertinent forms depends on the current document
and is thus inconsistent throughout the application. In this case, the user may
expect to draw a circle, but instead find a cloud or a rounded rectangle because
the captured state varies between documents.

On the other hand, applications with a more traditional modal palette inter-
action style, such as Pixelmator for drawing or Preview’s annotations toolbar,
provide compatible interface elements. Creating, for example, an annotation
toolglass with differently-colored highlighters or an underline thus behaves as
expected.

Finally, our proof-of-concept is implemented as a hack on the system using
Scotty [10]. As each new version of Mac OS introduces stricter sandboxing
restrictions, fewer and fewer applications remain compatible. While this will
prevent deployment of the prototype as-is, our contribution is an interaction
technique for user-composable toolglasses, not a hack on Cocoa. For example, if
Cocoa provided its own grab ‘n’ drop toolglass, there would be no need to break
into the sandbox and into an application’s runtime.

6.6 Limitations and Fragility

We have successfully used grab ‘n’ drop toolglasses in a variety of Mac OS X
Cocoa-based applications, including Pages (word processor), Keynote (presenta-
tion tool), Mail, Aperture (photo manager), and others. Additionally, we have
used the toolglass on a variety of widgets, both standard and custom, includ-
ing standard buttons (e.g. OK), toggle buttons (e.g. on/off switch), segmented
buttons (e.g. unified bold/italic/underline button), pull-down menus (e.g. font
button), and lists.

Nonetheless, any time one modifies the behavior of an existing program, espe-
cially without knowledge of its underlying design and implementation, there is a
non-insignificant risk of breaking any hidden assumptions and thus introducing
instability. Such instability may range from mild, such as a user expecting an
action to make something bold but seeing it turn italic instead, to severe, such
as corrupting or losing data or crashing.



Grab ‘n’ Drop: User Configurable Toolglasses 331

In our use of the grab ‘n’ drop toolglass, we have not observed data corrup-
tion. The worst we have seen has been unexpected program termination (i.e.
a crash) induced by a bug (since corrected) in the implementation of the tool-
glass prototype that injected an extraneous mouse press event or suppressed a
mouse release event, breaking the system’s underlying assumptions about the
symmetry of press/release events.

The most common sort of non-bug-related unexpected behavior that we have
observed in our testing relates to uncaptured state leading to hidden behavior not
exposed by the standard callback model. As we have seen earlier, in the standard
target-action design pattern, a widget invokes its target’s action method with
itself as the sole parameter, the sender, whenever a widget event is triggered (e.g.
a button is clicked). For a button, this is the end of the widget’s involvement,
but for other widgets, such as a list or a segmented control, the action method
may query the sender for its state, such as the item selected. Or it may even
interact with any other arbitrary part of the system to determine its behavior.
We are not aware of a robust, automatic solution to capture and model such
hidden interactions. If the behavior of a triggered action depends on such hidden
interactions, then the toolglass might end up triggering a different, unexpected
behavior.

We have implemented proxies for the following standard widgets:

– NSOutlineView to capture the clicked row
– NSPopUpButton to capture selected item
– NSSegmentedControl to capture the selected or clicked segment.

The grab ‘n’ drop toolglass uses these proxies any time one of these widgets
or any of its subclasses is grabbed. Although our current implementation has
worked in our usage, there is a risk that a subclass may only re-use other aspects
of the parent class’ behavior and may re-implement or bypass the captured
behavior of the proxy. In these cases, the resulting behavior is difficult to predict.

We have also created a SNDTracerProxy that logs all method calls to the
console before forwarding them to the proxied object. This proxy is useful for
a programmer to probe any hidden interactions that may involve the proxied
object but is beyond the scope of normal user interaction with the toolglass.

It may be possible to resolve much of this fragility by extending the target-
action design pattern to more fully express some of these relationships. Such
extensions, however, would require that programmers change the way that they
develop software. Furthermore, if these patterns do not fully integrate with the
tools to implement the software functionality, then they could add a similar
burden as AppleScript [1] or other extension interfaces, which provide a second,
parallel API for developers to maintain.

Even with strong design patterns, not all software is well-designed. Certain
applications do not adequately follow recommended design patterns or even mis-
use them, resulting in applications that may be difficult to maintain even with
access to their source code. Augmenting their existing behavior or interaction
may further exacerbate such fragility.



332 J.R. Eagan

7 Conclusions and Future Work

The grab ‘n’ drop toolglass provides a relatively simple interaction technique
through which end-users can modify the underlying interaction of existing appli-
cations without access to their source code. In many cases, it lets user create
new, customized toolglasses suited to their own particular needs without pro-
gramming and without special support by the underlying application. We have
demonstrated a proof-of-concept implementation for Mac OS X Cocoa applica-
tions, but variations of this technique should be compatible with other graphical
environments.

We view the grab ‘n’ drop toolglass as part of a larger class of user-
programmable interactions, wherein the underlying software functionality and
interaction is malleable. We plan to continue our work in this area, investigat-
ing a combination of novel programming models and interactions techniques to
increase the flexibility and control over the software without requiring extensive
programming on the part of the user. Of particular need are richer design pat-
terns to better express the currently-hidden assumptions behind the interactions
between the user interface and the application functionality.

Additionally, there is currently no effective way for an end user to adequately
gauge the fragility and risk associated with performing certain operations. It may
not be fully necessary to fully insulate the user from all risk so long as she may
be able to make her own informed decision as to whether to assume it. In future
work, we plan to explore such trade-offs.

References

1. Apple Computer Inc.: AppleScript Language Guide. Addison-Wesley Longman
Publishing Co., Inc., Boston (1994)

2. Beaudouin-Lafon, M.: Instrumental interaction: an interaction model for designing
post-WIMP user interfaces. In: CHI 2000: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 446–453. ACM, New York (2000)

3. Beaudouin-Lafon, M., Mackay, W.E.: Reification, polymorphism and reuse: three
principles for designing visual interfaces. In: AVI 2000: Proceedings of the Working
Conference on Advanced Visual Interfaces, pp. 102–109. ACM Press (2000)

4. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic
lenses: the see-through interface. In: SIGGRAPH 1993: Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques, pp. 73–80.
ACM, New York (1993)

5. Coutaz, J.: PAC: an object oriented model for implementing user interfaces.
SIGCHI Bull. 19(2), 37–41 (1987). http://doi.acm.org/10.1145/36111.1045592

6. Cypher, A., Dontcheva, M., Lau, T., Nichols, J.: No Code Required: Giving Users
Tools to Transform the Web. Morgan Kaufmann Publishers Inc., San Francisco
(2010)

7. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A. (eds.): Watch What I Do: Programming by Demonstration.
MIT Press, Cambridge (1993)

http://doi.acm.org/10.1145/36111.1045592


Grab ‘n’ Drop: User Configurable Toolglasses 333

8. Dixon, M., Fogarty, J.: Prefab: implementing advanced behaviors using pixel-based
reverse engineering of interface structure. In: CHI 2010: Proceedings of the 28th
International Conference on Human Factors in Computing Systems, pp. 1525–1534.
ACM, New York (2010)

9. Dorn, B., Tew, A.E., Guzdial, M.: Introductory computing construct use in an
end-user programming community. In: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing, VLHCC 2007, pp. 27–32 (2007).
http://dx.doi.org/10.1109/VLHCC.2007.33

10. Eagan, J.R., Beaudouin-Lafon, M., Mackay, W.E.: Cracking the cocoa nut: user
interface programming at runtime. In: Proceedings of the 24th Annual ACM Sym-
posium on User Interface Software and Technology, UIST 2011, pp. 225–234. ACM,
New York (2011). http://doi.acm.org/10.1145/2047196.2047226

11. Fishkin, K., Stone, M.C.: Enhanced dynamic queries via movable filters. In: CHI
1995: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pp. 415–420. ACM Press/Addison-Wesley Publishing Co., New York (1995)

12. Gantt, M., Nardi, B.A.: Gardeners and gurus: patterns of cooperation among cad
users. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 107–117. ACM, New York (1992)

13. Hudson, S.E., Rodenstein, R., Smith, I.: Debugging lenses: a new class of trans-
parent tools for user interface debugging. In: UIST 1997: Proceedings of the 10th
Annual ACM Symposium on User Interface Software and Technology, pp. 179–187.
ACM, New York (1997)

14. Hutchings, D.R., Stasko, J.: Quantifying the performance effect of window snipping
in multiple-monitor environments. In: Baranauskas, C., Palanque, P., Abascal, J.,
Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4663, pp. 461–474. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74800-7 42

15. Kato, J., Sakamoto, D., Igarashi, T.: Picode: inline photos representing posture
data in source code. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 2013, pp. 3097–3100. ACM, New York (2013). http://
doi.acm.org/10.1145/2470654.2466422

16. Klokmose, C.N., Zander, P.-O.: Rethinking laboratory notebooks. In: Lewkowicz,
M., Hassanaly, P., Wulf, V., Rohde, M. (eds.) Proceedings of COOP 2010, pp.
119–139. Springer, London (2010). doi:10.1007/978-1-84996-211-7 8

17. Mackay, W.E.: Patterns of sharing customizable software. In: Proceedings of the
1990 ACM Conference on Computer-Supported Cooperative Work, pp. 209–221.
ACM Press, New York (1990)

18. Mackay, W.E.: Users and Customizable Software: A Co-Adaptive Phenomenon.
Ph.D. thesis, Massechusetts Institute of Technology (1990)

19. Mackay, W.E.: Triggers and barriers to customizing software. In: CHI 1991: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
153–160. ACM Press (1991)

20. Mackay, W.E.: Which interaction technique works when?: floating palettes, mark-
ing menus and toolglasses support different task strategies. In: AVI 2002: Proceed-
ings of the Working Conference on Advanced Visual Interfaces, pp. 203–208. ACM,
New York (2002)

21. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: press-
ing the issues with buttons. In: CHI 1990: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 175–182. ACM Press, New York
(1990)

22. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-
ing. MIT Press, Cambridge (1993)

http://dx.doi.org/10.1109/VLHCC.2007.33
http://doi.acm.org/10.1145/2047196.2047226
http://dx.doi.org/10.1007/978-3-540-74800-7_42
http://doi.acm.org/10.1145/2470654.2466422
http://doi.acm.org/10.1145/2470654.2466422
http://dx.doi.org/10.1007/978-1-84996-211-7_8


334 J.R. Eagan

23. Ponsard, A., McGrenere, J.: Anchored customization: anchoring settings to the
application interface to afford customization. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, CHI 2016. pp. 4154–4165.
ACM, New York (2016). http://doi.acm.org/10.1145/2858036.2858129

24. Reenskaug, T.: Models—views—controllers. Technical report, Xerox PARC,
December 1979

25. Robertson, G.G., Henderson Jr., D.A., Card, S.K.: Buttons as first class objects
on an X desktop. In: Proceedings of the 4th Annual ACM Symposium on User
Interface Software and Technology, pp. 35–44. ACM Press, New York (1991)

26. Stuerzlinger, W., Chapuis, O., Phillips, D., Roussel, N.: User interface façades:
towards fully adaptable user interfaces. In: UIST 2006: Proceedings of the 19th
Annual ACM Symposium on User Interface Software and Technology, pp. 309–
318. ACM, New York (2006)

27. Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts: manipulating arbitrary window
regions for more effective use of screen space. In: CHI 2004 Extended Abstracts on
Human Factors in Computing Systems, pp. 1525–1528. ACM, New York (2004)

28. Yeh, T., Chang, T.H., Miller, R.C.: Sikuli: using GUI screenshots for search and
automation. In: UIST 2009: Proceedings of the 22nd Annual ACM Symposium on
User Interface Software and Technology, pp. 183–192. ACM, New York (2009)

http://doi.acm.org/10.1145/2858036.2858129

	Grab `n' Drop: User Configurable Toolglasses
	1 Introduction
	2 Related Work
	3 Four Scenarios
	3.1 Aperture
	3.2 Styles in Pages
	3.3 Styles in Mail
	3.4 Lab Notebook

	4 Grab n drop
	4.1 Polymorphic Toolglasses
	4.2 Command Syntax
	4.3 Live Screenshots
	4.4 Serialization

	5 Implementation
	5.1 Requirements

	6 Discussion
	6.1 Leveraging Design Patterns: Controllers, Target-Action
	6.2 The Interface as a Lens into the System
	6.3 End-User Programming
	6.4 Design Opportunities
	6.5 Generalizability Across Applications
	6.6 Limitations and Fragility

	7 Conclusions and Future Work
	References


