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Abstract. Modular verification and dynamic testing techniques are
often combined to validate complex software systems. Formal verifica-
tion is used to cover all input spaces and program paths. However, due to
the high complexity of modern software systems, they might not achieve
complete verification results. Dynamic testing techniques can easily be
applied to any type of software. Current approaches use them to handle
incomplete verification results by validating unverified sections. This way
of combining verification and testing ignores the fact that tests can only
be used to show the presence of errors, but not their absence. Undis-
covered errors pose the risk to trigger further errors in vulnerable code
sections. Vulnerable sections are modularly verified, but depend on the
guarantees of the tested code. We include robustness testing to analyse
the influence of undiscovered errors. The generated robustness tests sim-
ulate failed guarantees within the tested code. The triggered response
to those simulated errors helps the developer in adding additional error
handling code. This makes the system more robust against undiscov-
ered errors and guards it against uncontrolled crashes and unexpected
behaviour in case of software failures. In the second part of this paper,
we introduce a reference-architecture to generate and apply robustness
tests. This architecture has been applied to multiple case studies and
helped to identify potential errors yet undiscovered by generated test
cases.

Keywords: Software verification · Robustness testing · Test vector
generation

1 Introduction

Modular verification and dynamic testing techniques are often combined to val-
idate complex software systems. Verification techniques are used to guarantee
that an implementation matches its formal specification. For object oriented
programs (OOPs), the specification is often defined as a set of conditions such
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as pre- and post-conditions and invariants. Modular verification techniques [1]
analyse this type of specification based on a generated set of proof obligations
(also known as verification goals). A proof obligation (POG) is similar to a
Hoare-Triple {P} S {Q} [2]. The POG contains a program segment (Hoare: S),
a set of assumptions (Hoare: {P}), and a guarantee (Hoare: {Q}) [3]. While con-
sidering all assumptions, the verification framework has to verify whether each
possible execution of the embedded program section fulfils the defined guaran-
tee. Assumptions made by one proof obligation must be ensured by another one.
Only the validity of all proof obligations implies the correctness of the entire
software system. Especially OOP concepts such as inheritance and (recursive)
aggregation cause an infinite number of feasible control flows and thereby a high
level of complexity. Due to this complexity, formal verification techniques are
rarely capable of achieving complete verification results.

We use Listing 1.1 as running example to introduce our methodology. The
listed method cannot be verified using the verification framework Microsoft Code
Contracts 1. It is part of a program to solve the Cutting Stock problem [4]. This
problem is about cutting standard-sized pieces of material into pieces of specified
sizes. The listed method is used to add new cutting lengths (Cut) to the current
cutting layout (Bar). It checks whether the available material length is long
enough to add the given piece length. It analyses the summarised lengths of all
added cuts plus the required minimum space between two cuts (line 14). The
value of UsedLength must always be smaller than the total material length. This
is required by the invariant in line 7. Figure 1 shows how Code Contracts claims
that this invariant is not guaranteed on exit. This illustrates how specifications
remain unverified.

Fig. 1. Code Contracts marks unverified invariant

In such cases, where some proof obligations remain unverified, current
approaches ensure the correctness of those proof obligations by exhaustive testing.
1 https://www.microsoft.com/en-us/research/project/code-contracts/, Last visit
June 2017.

https://www.microsoft.com/en-us/research/project/code-contracts/
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1 public class Bar {
2 public double Length , UsedLength , MinSpace ;
3 public List<Double> Cuts ;
4 [ ContractInvariantMethod ]
5 private void Objec t Invar iant ( ) {
6 Contract . Inva r i an t ( UsedLength >= 0) ;
7 Contract . Inva r i an t ( UsedLength <= Length ) ;
8 Contract . Inva r i an t ( Cuts != null ) ;
9 }

10 public Bar ( double l ength , double minSpace ) { [ . . . ] }
11 public bool AddCut( double cutLength ) {
12 Contract . Requires ( cutLength > 0) ;
13 double usedSpace = Cuts . Count ∗ MinSpace ;
14 if ( ( Length − UsedLength − usedSpace ) < cutLength ) {
15 return false ;
16 }
17 UsedLength += cutLength ;
18 Cuts .Add( cutLength ) ;
19 return true ;
20 }
21 }

Listing 1.1. Code Contracts: Unverified Invariant

1 public void TestAddCut ( ) {
2 Bar bar = new Bar (5000 , 5) ;
3 bool couldAdd = bar . AddCut(1500) ;
4 Assert . IsTrue ( couldAdd && bar . UsedLength == 1500) ;
5 couldAdd = bar . AddCut(5500) ;
6 Assert . IsTrue ( ! couldAdd && bar . UsedLength == 1500) ;
7 }

Listing 1.2. Testing unverified method

This use of testing can be shown to have residual risks. As Dijkstra put it, pro-
gram testing can only be used to show the presence of bugs, but not their absence.
Program sections which require the correctness of tested guarantees remain vul-
nerable, because undiscovered errors regarding failed guarantees produce further
failures. Let’s come back to our running example. The unverified method in List-
ing 1.1 can be tested using the unit test Listing 1.2, achieving full branch, path
and condition coverage. In view of testing, this test case covers all major coverage
rates and the method can be seen as validated. However, we achieve the same test-
ing results when replacing line 14 by if ((Length - usedSpace)< cutLength).
This would be a major bug, because this line ignores the used material length. This
bug allows to add more cuts to the bar than available material space. This could
be tested when executing line 4 of our test case multiple times in a row. This sim-
ple example illustrates how testing can achieve good coverage rates while missing
important defects.
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This paper introduces a new approach that uses robustness testing to analyse
the influence of such undiscovered errors. We initialise invalid program states to
simulate failed guarantees and inspect the corresponding behaviour of vulnerable
program sections. Our goal is to support the developer in adding additional error
handling code on critical locations in order to secure vulnerable sections against
potential failures.

The remainder of this paper is structured as follows: Sect. 2 describes related
work and current tools. Section 3 describes how we use robustness testing to
analyse the influence of undiscovered errors. Section 4 defines one reference imple-
mentation to generate the defined type of robustness tests. Section 5 presents our
results in comparison to current tools. Section 6 concludes the paper and presents
future work.

2 Related Work

Several methodologies and tools already exist which combine formal verification
and dynamic testing.

Christakis et al. [5–7] present a methodology that combines verification and
semantic testing. Different static verification models are used together to verify
the software under test in a sound way. Assumptions made by one prover, e.g.
regarding numerical overflows, are ensured by another. Unverified assumptions
are subsequently tested. The symbolic testing is guided to cover specifically those
properties that could not been verified.

Czech et al. [8] present a method to create residual programs based on failed
proof obligations. They reduce the number of required test cases, by testing only
those control flows that have not been verified.

Kanig et al. [9] present an approach that uses explicit assumptions to verify
ADA programs. Unverified assumptions are tested by generated test suites.

Code Contracts [10], Pex [11] and Moles [12] is the current Microsoft tool
chain for software verification and symbolic test case execution. Code Contracts
can be used to verify C# programs and supports contracts such as pre- and
postconditions. Pex and Moles have been integrated into Visual Studio 2015
under the names IntelliTest and Fakes. Moles/Fakes is used to isolate test cases
and can replace any method with a delegate. Pex iteratively applies symbolic
execution to create test vectors in order to cover all branches of the method under
test. The Microsoft tool chain does not provide any standard methodology to
combine both tools.

In summary, all mentioned approaches try to reduce the number of required
test cases by testing only unverified control flows. They try to handle incomplete
verification results by achieving high test coverage on the unverified software
components. No mentioned approach handled the residual risk of tested source
code on vulnerable code sections. Therefore, they mark code sections as formally
correct, even when those sections may contain serious errors caused by failed
guarantees in tested code.
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3 Methodology

The presented methodology integrates into existing workflows combining formal
verification and dynamic testing techniques. Figure 2 shows an abstract illus-
tration on how current approaches combine verification and testing. The input
to those workflows is the program source code and its specification. The proof-
obligation-generator analyses the source code and the specification to generate
a set of proof obligations. In the second step, those proof obligations are verified
by the verification backend. This step divides the set of proof obligations into a
verified and unverified subset. In step 3, unverified proof obligations are further
analysed by a test case generation framework. Those frameworks use symbolic
execution (also known as concolic testing) to automatically create test cases and
test vectors to explicitly cover control flows of unverified proof obligations.

Fig. 2. Abstract workflow to combine formal verification and testing techniques

The presented methodology adds two new steps to existing workflows. In step
2B, the POG inspector analyses the dependencies between verified and unverified
proof obligations in order to identify vulnerable code sections. Step 3B generates
robustness tests for those vulnerable POGs. These tests simulate errors within
the tested code and uncover locations where additional error handling and sanity
checks are required.

This section starts by defining proof obligations, then describes how to iden-
tify vulnerable code sections, illustrates their risks and finally explains how to
generate corresponding robustness tests.
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3.1 Proof Obligations

We start by defining the input to our methodology and corresponding symbols
to refer to the different components of object oriented programs. The input to
the proof obligation inspector is a set of verified and unverified proof obligations
(POG). The POGs are generated based on the source code of an object-oriented
program Prog and its specification set ΓProg. This program contains classes
c ∈ CProg. Each class can contain methods m ∈Mc and fields f ∈ Fc. A method
consists of an ordered set of statements s∈〈S〉m. The list of method parameters is
�m. The specification can contain preconditions Γ pre

m , postconditions Γ post
m , and

object invariants Γ inv
c .

The proof of the overall correctness is divided into a generated set of proof
obligations. Each proof obligation covers one control flow:

Definition 1 (Control Flow). A control flow S̃ = 〈s0, . . . , sn〉 is a set of state-
ments si ∈ Sm, m ∈Mc. Between each pair of statements si and si+1 exists one
unique transition.

Definition 2 (Proof Obligation). The set of all generated proof obligations
is Π. A proof obligation π = (Ω, S̃, φ) is a triple, combining a set of assumptions
(Ω), a control flow (S̃), and a verification goal (φ). We refer to the method
which contains the control flow S̃ by mπ. Assumptions and goals are represented
as boolean predicates. A proof obligation is verified iff one can show that each
execution of S̃ validates φ while assuming Ω. The predicate Ψ(π) is true iff π
can be verified. A proof obligation is always generated based on a specification
γ ∈ Γ , we write Π(γ)→ π.

Let’s apply this to our running example. Here we can extract two work flows
and POGs: s̃1 = 〈s12, s13, s14, s15〉 and s̃2 = 〈s12, s13, s14, s17, s18, s19〉. The indexes
si mark the global line number of the corresponding statement. The unverified
invariant φ1 = (UsedLength<=Length) is covered by two proof obligations: Ω1 =

{(cutLength > 0), (CutLength! = null)} in π1 = (Ω1, s̃1, φ1) and π2 = (Ω1, s̃2, φ1).

3.2 Identifying Vulnerable Proof Obligations

The verification framework (Step 2 in Fig. 2) divides the set of POGs Π into a
set of verified POGs Π+ = {π ∈Π|Ψ(π)} and a set of unverified POGs Π−

= {π ∈
Π| ¬ Ψ(π)}. Modular verification techniques build their correctness proof upon
dependencies between different POGs. Those dependencies must be considered
when testing unverified POGs. In step 3B of Fig. 2, we identify POGs depending
on unverified code. We call them vulnerable proof obligations.

Definition 3 (Vulnerable Proof Obligations). One proof obligation πi =

(Ωi, s̃i, φi) depends on a different proof obligation πj =(Ωj , s̃j , φj) iff the assump-
tion list Ωi contains the verification goal φj:

πi ⊢ πj ⇔ ∃ω ∈Ωi|ω ≡ φj (1)

One proof obligation πi is vulnerable iff πi⊢πj ∧¬Ψ(πj). The set of all vulnerable
proof obligations is defined as Π?

= {πi|πi ⊢ πj ∧ ¬Ψ(πj)}.
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1 public List<Bar> CreateBars ( L i s t<double> cutLengths ,
Dict ionary<double , int> mate r i a l s ) {

2 List<Bar> cutt ingLayouts = new List<Bar>() ;
3 foreach ( double cLen in cutLengths ) {
4 bool couldAdd = false ;
5 foreach (Bar bar in cutt ingLayouts ) {
6 if ( bar . AddCut( cLen ) ) { couldAdd = true ; break ; }
7 }
8 if ( ! couldAdd ) {
9 double bfLength = Double . MaxValue ;

10 foreach ( double matLength in mate r i a l s . Keys ) {
11 double o f f c u t = matLength − cLen ;
12 if ( o f f c u t > 0 && o f f c u t < bfLength − cLen &&

mate r i a l s [ matLength ] > 0) {
13 bfLength = matLength ;
14 }
15 }
16 if ( bfLength < Double . MaxValue ) {
17 Bar newBar = new Bar ( bfLength , 5) ;
18 newBar . AddCut( cLen ) ;
19 cutt ingLayouts .Add(newBar ) ;
20 mate r i a l s [ bfLength ] −= 1 ;
21 }
22 }
23 return cutt ingLayouts ;
24 }

Listing 1.3. Implicit depending code

Let’s have a look what dependencies and vulnerable code section we can
identify in our running example. Listing 1.3 shows another code section of the
Cutting Stock program. To conserve space, we list this example without its
specification. This method creates different cutting layouts using the AddCut
method. The above defined POG π2 = (Ω1, s̃2, φ1) of AddCut requires a valid
precondition. Therefore, this POG depends on all POGs covering this precon-
dition. One of those POGs is generated based on the following control flow
s̃3 = 〈s2, s3, s4, s5, s6, . . . 〉 for the CreateBars method π3 = (Ω3, s̃3, (CLen > 0)).
This control flow must guarantee that the used cut length is greater than zero
before calling AddCut. We call this an explicit dependency. There exists another
kind of dependency for all control flows calling AddCut. These code sections
depend on the invariants of Bar, such as π2, even if these invariants are not explic-
itly addressed. This is the case because every method requires valid object states
when calling their methods. We call this an implicit dependency. Such dependen-
cies are expressed as assumptions and are handled during the POG generation.
However, we remember that the POG π2 could not be verified. Therefore, all
POGs calling AddCut in their control flow are considered as vulnerable.



Using Robustness Testing to Handle Incomplete Verification Results 61

3.3 Spreading Errors - the Risk of Vulnerable Proof Obligations

The main risk is the spreading of undiscovered errors in tested code into seem-
ingly unrelated or previously verified code sections. In such cases, errors might
be difficult to find, because the error source might be hidden in the method call
stack. This is illustrated in Fig. 3. The method call graph shows two methods,
m1 and m3, both calling method m2. The precondition γ3 of method m2 must
be respected by both calling methods m1 and m3. Therefore, the precondition
is covered by two POGs: π3a for the control flow in m1 and π3b for the control
flow in m3. The postcondition γ4 of m2 is covered by the POG π4 = Π(γ4). It
depends on the correctness of the precondition γ3: π4⊢{π3a, π3b}. Let us assume
that the POG π3a can not be verified. This makes π4 vulnerable because it now
depends on an unverified POG. Errors in m1 may cause a failed precondition γ3,
which produces errors in m2 even though m2 has been modularly verified. The
result might be an invalid return value of m2, which in turn may affect the code
section in m1 handling this return value. Thereby, even the postcondition γ2 of
method m1 may fail.

Fig. 3. Method call graph (Top) and possible POG dependency graph (Bottom)

The goal of our approach is to identify such risks by testing the method m2

assuming that γ3 has failed. This allows us to add additional checks to prevent
such an error propagation.

3.4 Generating Robustness Tests

In general, robustness tests are used to analyse the behaviour of a program
under hostile circumstances. This can be done in different ways. In some cases,
it is sufficient to call a method with invalid parameter values. In other cases it
is required to modify the tested code in order to simulate failures. In such a
scenario, we speak of “Mocked Test Cases”.
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Definition 4 (Mocked Test Case). A test case t ∈T with test vector �t executes
the control flow s̃: t→ s̃. A mocked test case t[η↦ ή]→ s̃ replaces in s̃ the symbol
η by ή before executing s̃.

Definition 5 (Robustness Tests). A robustness tests t ∈T ? is used to simulate
failed guarantees by injecting invalid symbol values. We use following syntax to
express the requirements on a symbol’s value: ⟦γ ⟧v →⊥. When evaluating γ using
value v, γ must evaluate to false. Additional test oracles are defined using following
syntax: ⟦t ⟧ → ⊥ φ The evaluation of test case t must fulfil the boolean condition
φ. Invalid symbols must be set during the test case execution and the only location
to define them is within the robustness test parameter vector. Therefore it must be
possible to back trace those values to the test vector. We use the right arrow syntax
→ to express this trace, e.g. �t→ �̈m→F . This syntax expresses that the original test
vector �t is used to fill the method parameter list �̈m. These parameter values �̈m are
used to set the class field values F .

We create one robustness test for each POG πi depending on an unverified POG:

T ?
= {∀i πi = (Ωi, S̃i, φi) ∈Π? : t→ S̃i} (2)

We use the verification goals of all proof obligations covering the tested control
flow as additional test oracles:

∀i (ti → S̃i) ∈ T ? ∀j πj = (Ωj , S̃j , φj) ∈Π : ⟦ti ⟧ →φj | S̃i ⊆ S̃j (3)

The way failed guarantees are simulated depends on the POG’s origin:
If the unverified POG πi was generated to cover the precondition γpre

i of
method ṁ, we must create a robustness test which calls ṁ with parameter
values �t violating γpre

i :

∀j πj ⊢ πi | ¬ Ψ(πi) : t→ S̃j ,�t | ⟦ γpre
i ⟧�t →⊥ (4)

If the unverified POG πi was generated to cover the postcondition γpost
i of

method ṁ, we must inject a return value of ṁ violating γpost
i . To inject the

simulated return value, we must create a mocked version m̈ of ṁ. The mocked
version uses an extended parameter list �̈m, which allows us to directly set the
return value based on �t. We refer to the return value of m̈ by ⟦m̈⟧.

∀j πj ⊢ πi | ¬ Ψ(πi) : t[ṁ↦ m̈]→ S̃j ,�t→ �̈m→ ⟦m̈ ⟧ | ⟦ γpos
i ⟧

⟦m̈⟧ →⊥ (5)

If the unverified POG πi was generated to cover an invariant γinv
i of class

ci, we must inject an invalid object instance. Therefore we must distinguish
between two further cases: (1) The POG was generated based on a constructor

˙ctor. (2) The POG was generated based on a method ṁ. In the first case, the
invalid object instance can be created by a mocked constructor method ¨ctor.
The mocked constructor uses an extended parameter list �̈ctor, which allows us
to directly set all class fields F based on �t.

∀j πj ⊢ πi | ¬ Ψ(πi) : t[ ˙ctor↦ ¨ctor]→ S̃j ,�t→
�̈ctor→ F | ⟦ γinv

i ⟧F →⊥ (6)
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1 public bool AddCutMocked( double cutLength , double usedLength ,
double l ength ) {

2 if ( ( Length − UsedLength − ( Cuts . Count ∗ MinSpace ) ) <
cutLength )

3 { return false ; }
4 UsedLength += cutLength ;
5 Cuts .Add( cutLength ) ;
6 UsedLength = usedLength ; // Inject invalid field values

7 Length = length ; // based on parameter list

8 return true ;
9 }

Listing 1.4. Mocked method to inject simulated errors

In the second case, the invalid instance must be simulated by a mocked copy m̈
of ṁ. The mocked method must set all referenced class fields F of ci based on
its own extended parameter list �̈m.

∀j πj ⊢ πi | ¬ Ψ(πi) : t[ ˙ctor↦ ¨ctor]→ S̃j ,�t→ �̈m→ F | ⟦ γinv
i ⟧F →⊥ (7)

In our running example, the failed POG was generated to cover an invariant
during the execution of AddBar. Therefore, we need to inject the simulated error
through a mocked method, which is Listing 1.4. We have added the additional
parameters UsedLength and length to the original parameter list. These values
are used in line 6 and 7 to set the invalid object state. Now, we only need to
replace calls to AddBar by calls to AddBarMocked when testing CreateBars. We
can simulate the invalid object state of Bar by calling AddBarMocked, e.g. with
usedLength=7000 and length=5000. The results of the robustness test will show
that the created cutting layouts are invalid. Now we know that we need to add
extra sanity checks to validate the correctness of cuttingLayouts before return
them. This prevents undiscovered errors in AddBar from spreading into code
sections where the origin of invalid cutting layouts may be difficult to find.

4 Reference-Implementation

Applying robustness tests and injecting simulated errors requires more effort
than regular testing. Especially creating all required mocks is very labour intense
when doing it manually. Therefore, we have implemented our methodology into
a new mocking framework to face three major challenges: First, we need to
ensure that every tested method is visible and accessible within the test suite.
Second, we need to initialise object instances with deliberate states hosting the
tested methods. Third, we must create the possibility to inject simulated errors
to apply robustness testing. We meet those challenges by creating three different
layers of mocked code: The first layer mocks the original source code to provide
access to all class fields and methods. The second layer contains the mocked test
methods to validate unverified POGs and vulnerable code sections. All steps in
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Algorithm: InitList(c)

Globals: RecursionDepth, MaxRecursion, CollectionSize
begin

if RecursionDepth[c] >MaxRecursion then return {c}
IP ←∅
RecursionDepth[c] + +
foreach f ∈ Fc do

if IsSimpleType(f) then IP = IP ∪ Type(f)
else if IsCollection(f) then

for i = 0→ CollectionSize do
if HasKeyType(f) then IP = IP ∪ InitList(KeyType(f))
IP = IP ∪ InitList(V alueType(f))

end

else IP = IP ∪ InitList(Type(f))

end
RecursionDepth[c] − −
return IP ;

end
Algorithm 1. Algorithm to generate initialisation parameter lists

both layers can be applied automatically and do not require manual work. The
third layer contains the actual test cases.
Layer 1 contains a mocked version ¯Prog of Prog to make the complete code
base testable. We need to consider that we do not want to test complete meth-
ods but explicit control flows of unverified POGs. Those control flows might be
extracted from private or abstract methods. In ¯Prog we set the visibility of each
class field and tested method to public. We have chosen this way, because it
is language independent. other solutions for accessing private symbols require
language specific runtime flags or reflection APIs. We remove the abstract
attribute from each tested class and method. Instead, we add an empty default
implementation and a corresponding default return value to each pure abstract
method so our program can be compiled. To be able to initialise every object
type, we add a default constructor and a static initialisation method to each
user-defined type. To create those initialisation methods, we use the recursive
Algorithm 1 to inspect aggregated object types c ∈ C. The algorithm extracts a
list with parameters representing the aggregated primitive values. To that end,
we also create items to fill used collection types, such as Lists, Arrays or Dictio-
naries. The number of items are added is set with the constant CollectionSize.
Recursively analysing the key and value types, we merge the resulting parameter
lists. To prevent endless recursion steps, we track the recursion depth with the
map RecursionDepth(c→N) until the maximum recursion depth MaxRecursion
has been reached.

Layer 2 contains the mocked methods and constructors to inject invalid return
types and object states. Invalid return values and object states are injected by set-
ting corresponding class fields or by creating corresponding return values, instead



Using Robustness Testing to Handle Incomplete Verification Results 65

of computing them. We use Algorithm 1 to extract the list of required primitive
types in order to manipulate or initialise the aggregated object. These extracted
primitive types are added to the parameter list of the mocked method. Thereby,
we can use the parameter list to explicitly control return values and object states.
An example is given in Listing 1.7, in lines 6 and 7.

Layer 3 contains the actual robustness tests calling the mocked test methods
in layer 2. The parameter lists of test cases in this layer combine the extended
parameter lists of called mocked methods. Errors can be injected by assigning
corresponding parameter values. This might require additional manual work,
if the list of parameters is to long and cannot be automatically covered by a
symbolic execution tool like Pex.

5 Case Studies

The real world case study ‘Settings Manager’ (SM) is extracted from an indus-
trial machine control software. The case study ‘Cutting Stock’ (CS) is the pro-
gram hosting our running example. The program creates a list of cutting lay-
outs based on the lengths and quantities of material and pieces. The case study
‘Lending Library’ (LL) is a small code example to manage the rental and return
of items. All three studies are implemented in C# and use Code Contracts as
specification language. Table 1 summarises the main properties.

We compare our methodology with results of current verification and testing
techniques. We apply Microsoft Code Contracts as formal verification framework
and IntelliTest as automatic test case generation framework. To get detailed
POG information, we have implemented our own POG generator based on [3,13].
The results are summarised in Table 2. To benchmark the achieved benefits, we
analyse the results of the generated robustness tests, and analyse whether they
triggered an error within the vulnerable code. The resulting table lists those
errors as “Robustness Errors”. This table also lists the automatically achieved
test coverage by regular test cases on unverified proof obligations.

Table 1. Overview case studies

Settings
Manager (SM)

Cutting Stock
(CS)

Lending
Library (LL)

LOC 1277 634 432

Preconditions 46 32 12

Postconditions 22 19 13

Invariants 21 13 15

Proof obligations 187 115 52
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1 public object GetValue ( string targetName ) { [ . . . ]
2 Contract . Requires ( ta rge tVa lues . ContainsKey ( targetName ) ) ;
3 Contract . Requires ( ta rge tScopes . ContainsKey ( targetName ) ) ;
4 Contract . Ensures ( Contract . Result<System . Object >() != null ) ;
5 if ( ! ta rge tVa lues . ContainsKey ( targetName ) )
6 { throw new UnkownTargetException ("[...]" ) ; }
7 // Exception when targetName is no key [...] }

8 Sett ingScope targetSope = targe tScopes [ targetName ] ;

Listing 1.5. Vulnerable code section which can causes a software crash

5.1 Case Study: Settings Manager

We have created 187 POGs to cover all 89 single specifications. The verification
framework left 4 POGs unverified, covering different preconditions. The auto-
matically generated test suite achieved 92% branch coverage on those 4 unverified
control flows. Analysing those 4 unverified POGs, we could identify 18 vulnerable
proof obligations. Two of them were not sufficiently secured against undiscovered
errors.

Listing 1.5 shows one of those unsecured code sections. The precondition in
line 3 could not be verified for each caller. To handle this incomplete verifica-
tion result, related approaches create test cases to validate the unverified caller.
In addition, we use robustness tests to analyse the consequences of a failing
precondition. The robustness tests created by our approach call this method
with a value for targetName which explicitly invalidates the precondition in line
2, while respecting all other assumptions. Thereby, we discovered the potential
KeyNotFound-Exception in line 8, which would cause a software crash. This dis-
tinguishes a robustness test from a regular test. Regular test coverage could be
achieved by testing this method while respecting both preconditions, but such
tests would not trigger the error in line 8. This method was programmed based
on the assumption that both containers (targetScopes and targedNames) share
the same keys. Therefore the programmer checked the key only for one container.
After discovering this risk, the developer could add additional exception handling
similar to the one in lines 5–6.

5.2 Case Study: Cutting Stock

This case study is comprised of 64 specifications, which are covered by 115 POGs.
The verification framework left 7 POGs unverified (4 invariants, 2 preconditions,
1 postcondition). The automatically generated test suite achieved 94% branch
coverage on those 7 unverified control flows. We could identify 23 vulnerable
proof obligations.

One of them was already discussed above and used as the running exam-
ple. Another unverified POG covers the postcondition of GetFreeClamp in List-
ing 1.6. This method is called by a different method AssignClamps, which of
course depends on the validity of that postcondition. AssignClamps calculates
the required Clamp positions for the cutting machine, which is used to produce
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1 private Clamp GetFreeClamp ( double minPos , double maxPos) {
2 Contract . Ensures ( Contract . Result<Clamp>() == null | | (

Contract . Result<Clamp>() . f r e e && Contract . Result<Clamp>() .
minPos <= minPos ) ) ;

3 foreach (Clamp clamp in clamps ) {
4 if ( clamp == null ) continue ;
5 if ( clamp . minPos <= minPos && clamp .maxPos >= maxPos)
6 { return clamp ; }
7 }
8 return null ; }

Listing 1.6. Code section with an unverified postcondition

the generated cutting-layouts. Wrong clamp positions may cause damage to the
machine, e.g. when the saw hits a wrongly positioned clamp. Therefore, we want
to test the behaviour of AssignClamps when this postcondition fails, in order to
guarantee safe error handling. The corresponding robustness test must inject an
invalid return value for GetFreeClamp into AssignClamps. Our framework gen-
erates the mocked copy GetFreeClampMocked in Listing 1.7. In AssignClamps,
all method calls to the original methods are replaced in order to call the mocked
copy. As described in Sect. 4, the mocked method uses an extended parameter
list to initialise the returned object: free 3, minPos 4, maxPos 5. These parame-
ters map to the basic field values of class Clamp. Thereby it is possible to return
a Clamp instance which is not null and which does not meet the defined postcon-
dition. The analysis of this robustness test shows that the simulated error caused
an invalid return value for AssignClamps. An invalid return value would cause
invalid cutting layouts, leading to faulty production in the real world. What
makes this bug particular dangerous is the absence of easily detectable errors
such as exceptions or a crash. The problem would not have been detected until
someone tried to produce the erroneously calculated cutting layouts. Analysing
the robustness test, the developer can add an additional sanity check within
AssignClamps and make sure that the results meet all requirements.

1 private Clamp GetFreeClampMocked ( double minPos 1 , double

maxPos 2 , bool f r e e 3 , double minPos 4 , double maxPos 5 ) {
2 Clamp clamp = new Clamp ( ) ;
3 clamp . I n i t ( f r e e 3 , minPos 4 , maxPos 5 ) ;
4 return clamp ; }

Listing 1.7. Mocked method to inject invalid return values

5.3 Case Study: Lending Library

The smallest case study, ‘Lending Library’ was specified using 30 conditions,
which were covered by 54 generated POGs. The verification step left 6 proof
obligations unverified (3 invariants, 2 postconditions, 1 precondition). Based on
those 6 unverified POGs, we could identify 12 vulnerable code sections. The cor-
responding robustness tests discovered 3 critical code sections where additional
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1 public bool ReturnItem ( RentalItem item ) {
2 if ( ! item . Rented ) { return false ; }
3 [ . . . ] }

Listing 1.8. Existing checks also handle simulated errors

sanity checks were required. Now someone could wonder about the vulnerable
sections where no robustness error was found. The answer is very simple. The
other 9 vulnerable code sections already contained error handling code, so no
additional code needed to be added. An example is given in Listing 1.8. This
method requires that the given RentalItem is actually rented and not returned.
This state is encoded as an boolean class field. The related precondition could
not be verified. However, this flag is already checked in line 2 and the robustness
test could not trigger any new error.

Table 2. Comparsion between both approaches

SM CS LL

Unverified proof obligations 4 7 6

Autom. achieved code coverage 92% 94% 98%

Identified vulnerable code sections 18 23 12

Discovered robustness errors 2 5 3

6 Conclusion and Future Work

Our case studies have shown that automatic test frameworks already achieve
high coverage rates on unverified code sections. This poses the risk that such
test suites might never be checked manually by the corresponding developer to
identify insufficient test cases, as shown in Listing 1.2. That makes the inspection
of code sections that rely on the correctness of the tested code particularly impor-
tant. Even tested methods, entirely covered, may still contain errors. Therefore,
only testing unverified code sections is insufficient when combining formal veri-
fication and dynamic testing techniques. Undiscovered errors in tested code my
spread into other code sections, even those sections that have been previously
verified. Such errors may be hard to debug, as they might be camouflaged after
having been propagated through different methods. This was demonstrated in
our running example extracted from the Cutting Stock case study. These risks
are not handled by current approaches.

To reduce this residual risk, we have presented a new methodology to use
robustness testing to handle incomplete verification results. We extract the guar-
antees of unverified proof obligations and use them to create and inject simulated
errors. Those errors test the behaviour of vulnerable code sections in situations
when those guarantees fail. The presented reference-architecture demonstrates
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how robustness tests can be generated and how simulated errors can be injected.
By injecting simulated errors, the developer can analyse the consequences of
failed guarantees. They can add further exception handling and sanity checks to
prevent the propagation of previously undiscovered errors into other methods.
The software can then handle errors in a controlled way rather than default-
ing to unpredictable behaviour. It could be argued that developers can always
add more exception handling and state checking. But this would be very labour
intense when applied for every return value and argument. Furthermore, these
sanity checks must be tested as well, requiring many robustness tests to cover
the corresponding program paths. The presented methodology helps the devel-
oper to localise precisely those code sections, where additional error handling is
required.

Finally, one major issue regarding formal verification needs to be addressed in
future work. There is still no proper way to tell whether the defined specifications
are sufficient and cover all necessary requirements. When the specification is
insufficient, the number of generated POGs may be too small to properly analyse
dependencies between them in order to identify vulnerable sections. Future work
must find more sophisticated coverage rates for specifications.
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