
Generating Checking Sequences
for User Defined Fault Models

Alexandre Petrenko1(&) and Adenilso Simao2

1 CRIM, Centre de recherche informatique de Montréal,
405 Ogilvy Avenue, Suite 101, Montréal, QC H3N 1M3, Canada

petrenko@crim.ca
2 Instituto de Ciencias Matematicas e de Computacao,
Universidade de Sao Paulo, Sao Carlos/Sao Paulo, Brazil

adenilso@icmc.usp.br

Abstract. In this paper, we investigate how a checking sequence can be gen-
erated from a Finite State Machine, with respect to a user-defined set of faults,
modeled as a nondeterministic FSM, called Mutation Machine (MM). We
propose an algorithm for generating a checking sequence in this scenario and
demonstrate its correctness.

Keywords: FSM testing � Fault models � Checking sequence � Mutation
machine

1 Introduction

Generation of checking sequence (CS) from a Finite State Machine (FSM) is a relevant
problem, when the implementation may not be reset or when reset operation it pro-
hibitively costly. There are methods which, given a distinguishing sequence, can gen-
erate a checking sequence in polynomial time [2, 3]. Other methods generate checking
sequence from characterization sets instead of a distinguishing sequence [1], since the
former is available for any minimal machine, while the latter may not exist. Those
methods, however, rely on the repetition of the sequences in the characterization sets,
resulting in an exponentially long sequence. These methods also consider the classical
fault domain where the implementation may have arbitrary faults, except extra states.

In this paper, we investigate how a CS can be generated from an FSM, with respect
to a subset of faults. The faults of interest are modeled as a nondeterministic FSM,
called Mutation Machine (MM), such that any implementation is assumed to be a
deterministic submachine of the MM. We propose an algorithm for generating a CS in
this scenario. After demonstrating the correctness of the algorithm, we illustrate its
application on a simple example.

2 Checking Sequence Construction

An FSM is a tuple M = (S, S0, X, O, h), where S is the set of states, S0 � S is the set of
initial states, X is the set of inputs, O is the set of outputs, which satisfy the condition

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 320–325, 2017.
DOI: 10.1007/978-3-319-67549-7_20

I \ O ¼ £, and h� S� X � O� Sð Þ is the set of transitions. For state s and input x,
let h(s, x) be the set of transitions from state s with input x. The FSM M is initialized if |
S0| = 1 and is deterministic if for each (s, x) 2 S� X; h s; xð Þj j � 1. For an initialized
FSM, where |S0| = 1, write s0, instead of {s0}.

The machine M is completely specified (complete FSM) if |h(s, x)| � 1 for each
s; xð Þ 2 S� X; otherwise, it is partially specified (partial FSM).

A path of the FSM M = (S, S0, X, O, h) from state s 2 S is a sequence of transitions
(s1, x1, o1, s2) (s2, x2, o2, s3) … (sk, xk, ok, sk+1), such that (si, xi, oi, si+1) 2 h, for
1� i� k. Notice that we also allow a path to be empty, represented by e. The machine
is strongly connected, if it has a path from each state to any other state. The input
projection (output projection) of the path is x1x2 … xk (o1o2 … ok). Input sequence
b 2 I� is a defined input sequence in state s of M if it is an input projection of a path
from state s. We use X sð Þ to denote the set of all input sequences defined in state s and
X Mð Þ for the states in S0, i.e., for M. X Mð Þ = X* holds for any complete machine M,
while for a partial FSM X Mð Þ � X�.

Given a path p, let trav(p) be the set of transitions of M which appear in p. For state
s and input x, let trans(p, (s, x)) be the set of transitions from state s with input x in trav
(p), i.e., trans p; s; xð Þð Þ ¼ trav pð Þ \ h s; xð Þ. For the FSM M = (S, S0, X, O, h), given a
set of states S0 � S and an input sequence a, let path S0; að Þ be the set of paths of M from
states of S0 with input projection a. We denote path S0; að Þ by pathM að Þ. Let k S0; að Þ be
the set of output projections of the paths in Path S0; að Þ; we denote k S0; að Þ by kM að Þ.
Unless stated otherwise, paths are assumed to be from an initial state.

Given states s; t 2 S of the deterministic FSM M = (S, S0, X, O, h), t is quasi-
equivalent to s, if X tð Þ 	 X sð Þ and k t; að Þ ¼ k s; að Þ for all a 2 X sð Þ; moreover, in case
X tð Þ 	 X sð Þ , states are equivalent. States s, t 2 S are distinguishable, if k t; að Þ 6¼
k s; að Þ for some a 2 X tð Þ \ X sð Þ. The machine is reduced, if any two states are dis-
tinguishable. The quasi-equivalence (equivalence) of two deterministic FSMs is the
corresponding relation of their initial states.

Spec = (S, s0, X, O, h) is an initialized deterministic FSM specification. We assume
that it is strongly-connected machine, not necessarily complete and reduced.

Given an FSM M = (S, s0, X, O, h) and s 2 S, let M/s be the FSM (S, s, X, O, h),
i.e., M initialized in state s. We let s-after-a denote the set of states reached by input
sequence a from state s; if a is applied to the initial state of M then we write M-after-a
instead of s0-after-a; for deterministic machines, we write s-after-a = s0 instead of s-
after-a = s0f g.

We use a so-called mutation machine MM = S0; S00;X;O; h
0� �
which is a completely

specified possibly nondeterministic FSM.
FSM M = (S, s0, X, O, h) is a submachine of MM = S0; S00;X;O; h

0� �
iff S� S0,

s0 2 S00 and h� h0. Any complete deterministic submachine ofMM is one of the mutants
of Spec. The number of mutants is S00

�� ��Q
s;xð Þ2S�X h0 s; xð Þj j. For the sets of states S, inputs

X and outputsO, we define the machineChaos(S, X,O) = S; s0;X;O; S� X � O� Sð Þð Þ
representing the universe of all FSMs with |S| states.

Let Prod be the product of Spec and MM = S0; S00;X;O; h
0� �
; the states of Prod is a

subset of S[Df gð Þ � S0. A state D; sð Þ is a D-state. The product Prod = (P, P0, X, O,

Generating Checking Sequences for User Defined Fault Models 321

H), where P0 ¼ s0; s0ð Þ s0 2 S
0
0

��� �
is such that P and H are the smallest sets satisfying

the following rules:

1. If s; s0ð Þ 2 P; s; x; o; tð Þ 2 h; s0; x; o0; t0ð Þ 2 h0; and o ¼ o0, then t; t0ð Þ 2 P and s;ðð
s0Þ; x; o; t; t0ð ÞÞ 2 H:

2. If s; s0ð Þ 2 P; s; x; o; tð Þ 2 h; s0; x; o0; t0ð Þ 2 h0; and o 6¼ o0, then D; t0ð Þ 2 P and
s; s0ð Þ; x; o0; D; t0ð Þð Þ 2 H:

Notice that D-states are sink states. If the product has no D-states, then any mutant
of MM is quasi-equivalent to Spec.

An input sequence x ¼ X Specð Þ is a checking sequence for Spec w.r.t. MM, if for
each deterministic submachine N of MM, if kN xð Þ ¼ kSpec xð Þ, then N is quasi-
equivalent to Spec/s, where s 2 S.

Given a path p = ((s1, m1), x1, o1, (s2, m2)) ((s2, m2), x2, o2, (s3, m3))… ((sk, mk), xk,
ok, (sk+1, mk+1)) of the product Prod of Spec and MM, let p#MM be the corresponding
path in MM, i.e., p#MM = (m1, x1, o1, m2) (m2, x2, o2, m3) … (mk, xk, ok, mk+1).

A path of the product Prod is deterministic (w.r.t. MM) if for every state s and input
x, |trans(p#MM, (s, x))| � 1. Given a set of paths Q of Prod, let det(Q) be the set of
paths of Q which are deterministic (w.r.t. MM) and D(Q) be the set of deterministic
paths which leads to a D-state.

Lemma 1. Let x be an input sequence such that for each input sequence a, we have
that D(det(pathMM(xa))) = £. Then, x is a checking sequence for Spec w.r.t. MM.
Proof. Assume that x is not a checking sequence for Spec w.r.t.MM, but for each input
sequence a, we have that D(det(pathMM(xa))) = £.

Thus, there exists a deterministic submachine N of MM, such that kN xð Þ ¼
kSpec xð Þ, and for each s 2 S, we have that N is not quasi-equivalent to Spec/s. This
implies that state N-after-x is not quasi-equivalent to any state Spec/s-after-x. Then for
each s 2 S, there exists an input sequence b 2 X sð Þ such that kN=N
after
x 6¼
kSpec=s
after
x bð Þ.

Let pxb be the path in N which has xb as the input projection. It follows that
pxb 2 D det pathMM xbð Þð Þð Þ, sinceN is deterministic;moreover, it leads to aD-state, since
kN=N
after
x bð Þ 6¼ kSpec=s
after
x bð Þ, thus,D det pathMM xbð Þð Þð Þ 6¼ £, a contradiction.□

322 A. Petrenko and A. Simao

Thus, by Lemma 1, if the algorithm stops, the resulting sequence x is indeed a
checking sequence. It remains to show that it will always stop for any specification and
mutation machine.

Lemma 2. After a finite number of steps, the algorithm terminates.
Proof. First, notice that for a given deterministic submachine of MM, there is exactly
one deterministic path with a given input sequence projection (many submachines can
share the same path). Thus, the number of paths in det pathMM xð Þð Þ is limited by the
number of deterministic submachines of MM; as there are finitely many such subma-
chines, there are finitely many paths in det pathMM xð Þð Þ. Let Subx be the set of
deterministic submachines for which correspond the paths in det pathMM xð Þð Þ. At least
one path in det pathMM xð Þð Þ leads to a D-state, since the algorithm updated x in the
previous iteration to xa and D det pathMM xað Þð Þð Þ 6¼ £.

Let a be a nonempty input sequence, such that D det pathMM xað Þð Þð Þ 6¼ £. Let
Subxa be the set of deterministic submachines each which has a path in
det pathMM xað Þð Þ. As D-states are sink states, any submachine in Subx with a path to a
D-state is not in Subxa. Thus, there exists at least one submachine which is in Subx but
not in Subxa. The set of submachines with paths in det pathMM xð Þð Þ is thus reduced
each time x is updated by the algorithm. As the set of submachines is finite, eventually
after a finite number of steps the set Subx has no more machines distinguishable from
the specification machine Spec, which means that for any input sequence a, it holds that
D det pathMM xað Þð Þð Þ 6¼ £, and the algorithm terminates. □

We now illustrate the application of the algorithm. Consider the FSM in Fig. 1a.
Observe first that it has no distinguishing sequence. In Fig. 1b, we include a mutation
machine for which we will generate a checking sequence.

Notice that there are twelve deterministic complete submachines of MM. One
possibility to obtain a checking sequence for Spec is to use any of the applicable
methods [2, 3], ignoring MM. However, the resulting checking sequence would be
unnecessarily long.

The algorithm starts by building the product of Spec and MM, as well as initializing
x with the empty sequence. The nonempty input sequence a = aa is such that xa
reaches a D-state in the product, since det pathMM xað Þð Þ = {((1, a, 0, 2), (2, a, 1, 3)),

Fig. 1. (a) Specification FSM. (b) The Mutation Machine MM

Generating Checking Sequences for User Defined Fault Models 323

((1, a, 0, 2) (2, a, 0, D)), ((1, a, 0, 2), (2, a, 1, 2))}, i.e.,D det pathMM xað Þð Þð Þ 6¼ £. We
append a to x, so that now x = aa. In the next iteration, the nonempty input sequence
a = ba is selected, since det pathMM xað Þð Þ = {((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a,
1, 3)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 1), (1, a, 0, D)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1,
3), (3, a, 1, 3)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2))}, i.e.,
D det pathMM xað Þð Þð Þ 6¼ £. We append a to x, so that nowx = aaba. In the next
iteration, the nonempty input sequence a = aba is selected, since det pathMM xað Þð Þ =
{((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3)), ((1,
a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 2), (2, b, 1, 1), (1, a, 0, D)), ((1, a, 0,
2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2)), ((1, a, 0, 2),
(2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1, 2)), ((1, a, 0, 2), (2,
a, 1, 2), (2, b, 1, 3), (3, a, 1, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2))}, i.e.,
D det pathMM xað Þð Þð Þ 6¼ £. We append a to x, so that now x = aabaaba. In the next
iteration, the nonempty input sequence a = bba is selected, since det pathMM xað Þð Þ =
{((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3,
b, 1, 2), (2, b, 1, 1), (1, a, 0, 2)), ((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1,
3), (3, b, 1, 2), (2, a, 1, 3), (3, b, 1, 2), (2, b, 1, 3), (3, a, 1, D)), ((1, a, 0, 2), (2, a, 1, 3),
(3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, b, 1, 2), (2, a,
1, D)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1,
2), (2, b, 1, 3), (3, b, 1, 2), (2, a, 1, D)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2),
(2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, b, 1, 2), (2, a, 1, D))}, i.e.,
D det pathMM xað Þð Þð Þ 6¼ £. We append a to x, so that x = aabaababba. There is no
nonempty input sequence such that D det pathMM xað Þð Þð Þ 6¼ £. Thus, by Lemma 1,
aabaababba is a checking sequence for Spec with respect to MM.

Consider now the Spec in Fig. 1(a) and the corresponding Chaos(S, X, O) which
represents a traditional fault domain, the universe of all FSMs with up to three states.
The algorithm we propose in this paper generates the checking sequence
aaaabaabababbababbabbbba, of length 24. On the other hand, the algorithm proposed
in [1], generates a checking sequence of length 130.

3 Experimental Results

In this section we present some preliminary experimental results on the length of the
checking sequence obtained for various size of a mutation machine. The experiments
are set up as follows. For each run, a random complete deterministic FSM Spec with 5
states, 2 inputs and 2 outputs is generated, as proposed in [4]. Then, increasingly bigger
mutation machines are generated from Spec by adding transitions to it. The size of the
mutation machine is the number of its transitions; the smallest mutation machine is the
specification itself, which the biggest one is the Chaos machine with that a given
number of states, inputs and outputs. We executed 30 runs and collected the length of
the obtained checking sequence. Figure 2 shows the result of the experiments. We note
that, as expected, the length of the checking sequence increases with the size of the
mutation machine. However, the increment tends to be smaller, as the number of
transitions approaches the maximum.

324 A. Petrenko and A. Simao

4 Conclusion

In this paper, we proposed an algorithm for generating a checking sequence with
respect to a user-defined fault model. In the forthcoming steps of this research, we plan
to characterize scenarios when the algorithm can be effectively applied as well as its
scalability.

Acknowledgement. This work was partially supported by MESI (Ministère de l’Économie,
Science et Innovation) of Gouvernement du Québec and NSERC of Canada, and by Brazilian
Funding Agency FAPESP, Grant 2013/07375-0.

References

1. Rezaki, A., Ural, H.: Construction of checking sequences based on characterization sets.
Comput. Commun. 18(12), 911–920 (1995)

2. da Silva Simão, A., Petrenko, A.: Generating checking sequences for partial reduced finite
state machines. In: TestCom/FATES, pp. 153–168 (2008)

3. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans. Comput.
55(5), 618–629 (2006)

4. da Silva Simão, A., Petrenko, A.: Checking completeness of tests for finite state machines.
IEEE Trans. Comput. 59(8), 1023–1032 (2010)

Fig. 2. Variation of the length of the checking sequence with respect to the number of
transitions in the mutation machine.

Generating Checking Sequences for User Defined Fault Models 325

	Generating Checking Sequences for User Defined Fault Models
	Abstract
	1 Introduction
	2 Checking Sequence Construction
	3 Experimental Results
	4 Conclusion
	Acknowledgement
	References

