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Abstract. This paper studies the situation in which the system under
test and the system model are distributed and have the same structure;
they have corresponding remote components that communicate asyn-
chronously. In testing, a component with interface Ci has its own local
tester that interacts with Ci and this local tester observes a local trace
consisting of inputs, outputs and durations as perceived by Ci. An obser-
vation made in testing is thus a multi-trace: a tuple of (timed) local
traces, one for each Ci. The conformance relation for such distributed
systems combines a classical unitary conformance relation for localised
components and the requirement that the communication policy was sat-
isfied. By expressing the communication policy as a constraint satisfac-
tion problem, we were able to implement the computation of test verdicts
by orchestrating localised off-line testing algorithms and the verification
of constraints defined by message passing between components. Lastly,
we illustrate our approach on a telecommunications system.

Keywords: Model-based testing · Distributed testing · Timed input
output transition systems · Off-line testing · Constraint-based testing

1 Introduction

Distributed systems can be seen as collections of physically remote reactive sys-
tems communicating through communication media. The classical approach to
testing such systems involves placing a local tester at each localised interface,
with each local tester only observing the events at its interface. If testers do not
exchange synchronisation messages and there is no global clock, this corresponds
to the ISO standardised distributed test architecture [11]. The result of test exe-
cution can be modelled as a collection of logs (local traces); each is a sequence
of messages involving a given localised system.
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Model-Based Testing (MBT) [8,17,21] aims to automate three central
processes in testing, namely: the test generation process whose purpose is to
extract test cases from a behavioural model of the System Under Test (SUT),
the test execution process whose purpose is to orchestrate the stimulation of the
SUT with input test data and the collection of the SUT’s reactions and finally,
the verdict (oracle) computation phase whose purpose is to analyse the results
of test case executions, given as execution traces, in order to identify faults by
checking traces against the model1. This comparison is based on a conformance
relation that relates traces of SUTs and traces of their associated models.

MBT was first explored in a centralised context but extensions to distributed
SUTs have been defined, initially motivated by protocol conformance testing [19].
This includes work that uses Input Output Transition System (IOTS) as the
modelling formalism [3,9,10]. In the context of distributed testing from Timed
IOTS (TIOTS), in [6], we extended the tioco conformance relation [14,15,20] to
define a conformance relation dtioco for timed distributed testing. The model of a
distributed SUT is given as a tuple of TIOTSs, each modelling one of the localised
subsystems of the SUT. The result of test case execution is a tuple of timed
traces (a timed trace is a trace in which delays between consecutive interactions
of the tester with the localised SUT are recorded). Under the hypothesis that
localised systems communicate in a multi-cast mode, we have shown that the
verdict computation process can be conducted by combining centralised MBT
techniques for each localised system, using the tioco conformance relation, and a
step-by-step algorithm whose purpose is to check that the tuple of timed traces
is consistent with the underlying communication hypothesis [6].

The goal of this paper is twofold. First, we propose an improvement of the
algorithm presented in [6] by formulating the oracle problem as a constraint
solving problem. While the previous algorithm analyses a multi-trace by mim-
icking step by step emissions and receptions of messages, as well as the passage
of time, in this article, we reformulate the verification of message passing as a set
of inequality constraints that can be supported by a constraint solver. Compared
to the one introduced in [6], the new algorithm treats durations between commu-
nication actions as real numbers. In [6] those durations had to be representable
as multiples of a basic time unit, which only allowed us to consider durations
in a set isomorphic to the set of natural numbers. The previous approach also
included backtracking. In the new algorithm, durations may be any real number
that falls in the theory addressed by the considered solver. Second, we present
the tool that solves the oracle problem using both a localised verdict computa-
tion approach for tioco (presented in [1]) and the verification of constraints to
check internal communications between localised systems. We consider a case
study modelling a telecommunication system, named PhoneX [18] specified as
a collection of Timed Input Output Symbolic Transition Systems (TIOSTS),
which are symbolic representations of TIOTS.

Section 2 introduces the types of models used and Sect. 3 presents the PhoneX
case study. Section 4 recalls the testing framework and introduces the verification

1 When the processes are intertwined testing is on-line; otherwise it is off-line.
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of message passing using constraints. Section 5 describes a scalability study,
based on the PhoneX example, that applied mutation techniques to generate
correct and faulty trace tuples. Section 6 discusses related works and Sect. 7
gives concluding remarks.

2 Modelling Framework

2.1 TIOSTS

Timed Input Output Symbolic Transition Systems (TIOSTS) are symbolic
automata built over a signature Σ = (Ω,A, T,C) where Ω = (S, F ) is an equa-
tional logic signature with S a set of types and F a set of functions provided
with an arity. The functions are interpreted in a model M as usual. A is a set
of data variables used to store input values, to denote system state evolutions
and to define guards. T is a set of clocks, which are variables whose values are
elements of a set D isomorphic to non-negative real numbers and that are used
to denote durations. D+ will denote D \ {0}. M is supposed to contain D. Vari-
ables in A∪T are assigned values by interpretations of the form ν : A∪T → M ;
MA∪T is the set of all interpretations. Finally, C is a set of channels parti-
tioned as Cin

∐
Cout where elements of Cin (resp. Cout) are input (resp. output)

channels. The set of terms TΩ(A) over Ω and A is inductively defined as usual
and variable interpretations are canonically extended to terms. The set of sym-
bolic actions Act(Σ) is I(Σ) ∪ O(Σ) with I(Σ) = {c?x | x ∈ A, c ∈ Cin} and
O(Σ) = {c!t | t ∈ TΩ(A), c ∈ Cout}. In order to simplify the exposition, at
the level of our modelling framework, we consider messages that contain only a
single piece of data. However, at the tooling level, without adding any particular
difficulties, messages contain 0 (signals c! or c?), 1 or n data (c!(t1, . . . , tn) or
c?(x1, . . . , xn), the xi being different variables of A).

A TIOSTS is a triple G = (Q, q0, T r) where Q is a set of states, q0 is a
distinguished element of Q called the initial state, and Tr is a set of labeled
transitions. A transition is defined by a tuple (q, φ, ψ,T, act, ρ, q′) where q (resp.
q′) is the source (resp. target) state of the transition, φ is a formula, called time
guard, of the form z ≤ Cst or z ≥ Cst where z ∈ T and Cst is a constant
interpreted in D (φ constrains the delay at which the action act occurs), ψ
is an equational logic formula, called data guard (ψ is a firing condition on
attribute variables), T ⊆ T is a set of time variables (to be reset to 0 when the
transition is executed), act is a communication action and ρ assigns terms of
TΩ(A) to variables in A in order to represent state evolutions. In the sequel, we
use M |=ν ϕ to say that ϕ holds for interpretation ν. The set of paths of G

contains the empty sequence ε and all sequences tr1. · · · .trn of transitions of Tr
such that source(tr1) = q0 and for all i < n, target(tri) = source(tri+1).

Concrete actions are values exchanged through channels. The set of concrete
actions over C is thus Act(C) = I(C) ∪ O(C) where I(C) = {c?v | c ∈ Cin, v ∈
M} are inputs and O(C) = {c!v | c ∈ Cout, v ∈ M} are outputs. Given act ∈
Act(C) of the form cΔv with Δ ∈ {!, ?}, chan(act) refers to c, act refers to its
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mirror action, cΔv with ! =? and ? =!. Variable interpretations are canonically
extended to symbolic actions (ν(c?x) = c?(ν(x)) and ν(c!t) = c!ν(t)).

A concrete action is generally observed after a delay has occurred since the
previous occurrence of a concrete action. This is captured by the notion of events.

Definition 1 (Events). The set of (resp. initialised) events over C is defined
as Evt(C) = (D+∪{ })×(Act(C)∪{δ}) (resp. IEvt(C) = D+×(Act(C)∪{δ})).

Pair (d, a) represents the observation of concrete action a after delay d. Fol-
lowing [21], symbol ‘δ’ is used to denote the absence of observation of a concrete
action (i.e. quiescence). Let us point out that usually, in a pure timed framework,
δ may be useless (e.g. [6,13,14]). Here, the use of δ is a side effect of considering
atomic actions as events. Indeed, expressing that a system is quiescent after a
duration d has to be representable as an event, and thus, we need a symbol to
represent these quiescent situations as a couple (d, δ). Symbol ‘ ’ is introduced
to denote the absence of the observation of a delay (i.e. ( , a)). We require this so
that the first action of a localised trace need not be stamped with a duration. In
addition, between two consecutive concrete actions on one location, we require
that the delay is greater than zero so that two events do not occur simultane-
ously. Given ev ∈ Evt(C), we let act(ev) = a and delay(ev) = d if ev = (d, a)
with d ∈ D+, else delay(ev) = 0 (ev = ( , a)). In the sequel δEvt(C) denotes
{ev ∈ Evt(C)\act(ev) = δ}.

Definition 2 (Timed traces). The set ITraces(C) of initialised traces over
C is2 (IEvt(C) \ δEvt(C))∗.(ε + δEvt(C)).
The set UTraces(C) of uninitialised traces over C is {u(σ) | σ ∈ ITraces(C)}
where u(σ) denotes ε if σ = ε and ( , a).σ′ if σ = (d, a).σ′.
The set TTraces(C) of timed traces over C is UTraces(C) ∪ ITraces(C).

Any event of an initialised trace contains a duration and a concrete action.
For the first event, this duration represents a delay between some distinguished
moment (e.g. since the time at which a tester started to measure the duration)
and the first observed action. Uninitialised traces are timed traces for which no
initial instant is identified. Finally, note that quiescence is only observed at the
end of traces, when no communication action follows it. Indeed when a commu-
nication action a occurs after a period of time where an implementation remains
silent, this period of time is captured by the delay of the event introducing a.

For σ ∈ TTraces(C), dur(σ) denotes the duration of σ, which is 0 if σ is ε,
and otherwise is the sum of all delays of events in σ. Pref(σ) denotes the set of
prefixes of σ defined as {ε} if σ is ε and Pref(σ′)∪{σ} if σ is of the form σ′.ev.
Moreover, for an action a in Act(C), |σ|a denotes the number of occurrences of a
in σ. pref(σ, a, n) stands for the smallest prefix of σ that contains n occurrences
of a when this prefix exists. Finally, using the pref operation, we introduce an
operation that measures the elapsed time at the nth occurrence of an event a

2 E∗ is the set of finite sequences of elements in E with ε as neutral element for
sequence concatenation.
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from the beginning of the trace. By convention, if a trace contains strictly fewer
than n occurrences of a, then the associated duration is that of the entire trace.

dur occ(σ, a, n) =
{

dur(pref(σ, a, n)) if pref(σ, a, n) exists
dur(σ) else

We now define runs of transitions of TIOSTS:

Definition 3 (Runs of transitions). Let G = (Q, q0, T r) be a TIOSTS
over Σ. The set SnpM (G) of snapshots of G is the set Q × MA∪T . For tr =
(q, φ, ψ,T, act, ρ, q′) ∈ Tr, the set of runs of tr is the set Run(tr) ⊆ SnpM (G) ×
Evt(C) × SnpM (G) s.t. ((q, ν), ev, (q′, ν′)) ∈ Run(tr) iff there exist d ∈ D and
ξ : A ∪ T → M satisfying:

– for all w ∈ T , ξ(w) = ν(w) + d,
– if act = c!t then for all x ∈ A, ξ(x) = ν(x), else (act = c?x) for all y ∈ A\{x},

ξ(y) = ν(y),

and such that we have either ev = (d, ξ(act)) or ev = ( , ξ(act)), ∀x ∈ A, ν′(x) =
ξ(ρ(x)), ∀w ∈ T, ν′(w) = 0, ∀w ∈ (T \T), ν′(w) = ξ(w), M |=ξ φ and M |=ξ ψ.

In Definition 3, ξ is an intermediate interpretation whose purpose is to let
time pass from ν for all clocks (ξ(w) = ν(w) + d) and take into account a
potential input value (denoted by ξ(x) if act = c?x). Guards of the transition
should be satisfied by ξ and if it is the case then the transition can be fired
resulting on a new interpretation ν′ updating data variables according to ρ and
resetting clocks occurring in T.

For a path p of G, the set of timed traces of p, denoted TTraces(p) is {ε}
if p = ε and if p is of the form tr1. · · · .trn, TTrace(p) contains all sequences of
events ev1 · · · evn such that there exists a sequence of runs r1 · · · rn satisfying:
for all i ≤ n, ri is a run of tri of the form (snpi, evi, snp′

i+1) and for all j < n
we have snp′

j = snpj+1 and such that all events are initialised except for i = 1,
i.e. ev1 is of form ( , a1) and for all i > 1, evi is of form (di, ai).

By taking into account the particular action δ, the set of timed traces of G,
denoted TTraces(G), is defined as:

– For all p ∈ Path(G) we have TTraces(p) ⊆ TTraces(G),
– For all σ ∈ TTraces(G) such that there exists no path p and no event ev with

act(ev) ∈ O(C) satisfying σ.ev ∈ TTraces(p), we have σ.(d, δ) ∈ TTraces(G)
if σ 	= ε and ( , δ) ∈ TTraces(G) if σ = ε.

2.2 Communication and Systems

We now define a distributed interface as a collection of localised interfaces.

Definition 4 (Distributed interface). A distributed interface is a tuple Λ =
(C1, · · · , Cn), with n ≥ 1, where for all i ≤ n, Ci is a set of channels such that
for any i 	= j we have Cout

i ∩ Cout
j = ∅. C(Λ), which is equal to

⋃
i≤n Ci, is the

set of channels of Λ with C(Λ)in =
⋃

i≤n Cin
i and C(Λ)out =

⋃
i≤n Cout

i .
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Cout
i ∩ Cout

j = ∅ ensures that for a channel c, messages emitted through
c can only be emitted from one sender. This is a simplification hypothesis
that makes the later formalisation lighter. In a distributed architecture, for a
given localised interface Ci of Λ = (C1, · · · , Cn), Cint

i (resp. Cext
i ), defined

as
⋃{Ci ∩ Cj | j ≤ n ∧ j 	= i} (resp. Ci\Cint

i ), denotes the set of internal
channels (resp. external channels) that can be used to exchange messages with
other localised subsystems (resp. exchange messages with the system environ-
ment). We let Cint(Λ) denote

⋃
i≤n Cint

i , Cext(Λ) denote
⋃

i≤n Cext
i , and Act(Λ)

denote I(Λ) ∪ O(Λ) with I(Λ) =
⋃

i≤n I(Ci) and O(Λ) =
⋃

i≤n O(Ci). Iint(Λ)
(resp. Oint(Λ)) is the subset of I(Λ) (resp. O(Λ)) whose elements are inputs
(resp. outputs) through internal channels. For any c!v ∈ O(Λ), Sender(Λ, c!v)
stands for the index j such that c ∈ Cout

j . We let Actint(Λ) = Iint(Λ)∪Oint(Λ),
Evt(Λ) = Evt(C(Λ)), and Evtint

in (Λ) be the set of events whose action is an
internal input. We define Tup(Λ) to be TTraces(C1) × · · · × TTraces(Cn). In
the sequel, a distributed interface Λ = (C1, · · · , Cn) is given. An observation
made in a system will be a tuple of timed traces where each timed trace repre-
sents a local observation. We first introduce the notion of a multi-trace, which
is a tuple of timed traces characterising compatible communications between a
collection of localised subsystems.

Definition 5 (Multi-traces). The set of multi-traces of Λ with initial
instants, denoted IMTraces(Λ), is the subset of ITraces(C1)×· · ·×ITraces(Cn)
defined as follows:

– Empty multi-trace: (ε, · · · , ε) ∈ IMTraces(Λ),
– multi-trace Extension: for any μ = (σ1, . . . , σn) ∈ IMTraces(Λ), for

ev ∈ IEvt(Ci) for i ≤ n, (σ1, . . . , σi.ev, . . . , σn) ∈ IMTraces(Λ) provided
that: if act(ev) ∈ I(Ci) ∩ Iint(Λ), we have |σj |ev ≥ |σi|act(ev) + 1 and
dur occ(σj , ev, |σi|act(ev) + 1) < dur(σi.ev) with j = Sender(Λ, act(ev)).

The set UMTraces(Λ) (resp. MTraces(Λ)) of uninitialised multi-traces (resp.
of multi-traces) of Λ is {(u(σ1), · · · , u(σn)) | (σ1, · · · , σn) ∈ IMTraces(Λ)}
(resp. UMTraces(Λ) ∪ IMTraces(Λ)).

Initialised multi-traces denote tuples of traces, each trace of the tuple being a
partial centralised vision of a common distributed execution. The nature of com-
munication considered is multicast, as captured by the property that an internal
message can be received at some Ci only if Ci has consumed fewer occurrences
of this message than the number of the corresponding output occurrences. Each
trace occurring in an initialised multi-trace starts with an event introducing a
duration. All those durations are supposed to start at a common initial instant.
Of course, in the context of distributed executions it is generally not possible to
observe such a common initial instant. Therefore, we defined uninitialised multi-
traces in which the initial durations are not observable. Similar rules have been
proposed in [16] to express component composition in a distributed setting.

In distributed testing, we assume that there is a separate tester at each
localised interface and there is no global clock for globally ordering distributed
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events. Hence, we cannot make any assumption on the different moments at
which the different local testers stop observing their associated interfaces. To
capture this, we accept as valid observations, tuples made of multi-trace prefixes.

Definition 6 (Observable multi-traces). The set of initialised observ-
able multi-traces of Λ, denoted IOTraces(Λ), is the smallest set containing
IMTraces(Λ) and such that for any (σ1, · · · , σi.ev, · · · , σn) ∈ IOTraces(Λ) we
have (σ1, · · · , σn) ∈ IOTraces(Λ).

The set of uninitialised observable multi-traces of Λ, denoted UOTraces(Λ),
is the set {(u(σ1), · · · , u(σn)) | (σ1, · · · , σn) ∈ IOTraces(Λ)}.

Initialised observable multi-traces characterise observations starting at a
common initial instant but ending at different instants depending on the con-
sidered component of the interface. Of course, since there is a common initial
instant it is possible to order the moments at which the observations of the differ-
ent traces of the tuple occur (σi ends before σj if dur(σi) < dur(σj)). However,
in general such an initial instant cannot be identified in testing. Therefore, real
observations of system executions should be defined by tuples containing only
uninitialised traces, which is captured by uninitialised observable multi-traces.

Definition 7. Let Λ = (C1, · · · , Cn) be a distributed interface. A system over
Λ is a tuple Sys = (G1, · · ·Gn) such that for all i ≤ n we have Gi is a TIOSTS
over a signature of the form (Ωi, Ai, Ti, Ci). The semantics of Sys, denoted
TTraces(Sys) is defined as (TTraces(G1)×· · ·×TTraces(Gn))∩ UOTraces(Λ).

3 The PhoneX Case Study

PhoneX [18] is a central telecommunication system model describing a proto-
col to establish sessions between phones. It was initially used as a reference
to investigate the test case generation capacities of the platform Diversity3 by
the Ericsson company. In our context, PhoneX is interesting since it allows
the number of communicating actors to be parameterised, even though there
is only one time constraint in the subsystem models. Figure 1 depicts a sce-
nario of a successful session setup and call establishment between 2 phones.
A caller with Phone112 initiates a call (doCall(113)) to the user of Phone113.
The PhoneX server, after receiving Calling(112, 113), checks if Phone113 is reg-
istered, available, and then starts StartSession(112, 113) for communication
management and remains available. Session113

112 informs Phone113 that Phone112
tried to get in contact (CalledBy(112)). The user of Phone113 can accept the call
(doAcceptCall) and informs Session113

112 using AcceptingCall which can estab-
lish communication (multicasting InitCall). Each user can end the call (the user
of Phone112 hangs up, doEndCall) and report it (EndingCall) to Session113

112

that closes the connection by multicasting TermCall and becomes available
(EndSession(112, 113)) again. Figure 2 depicts the architecture. Components

3 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project.

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project


Constraint-Based Oracles for Timed Distributed Conformance Testing 283

Fig. 1. Interaction scenario of a successful call operation

Fig. 2. The PhoneX architecture

Caller Client and Called Client define two roles that registered phones can
have. PhoneX is the component that plays the role of the telecommunication
centre. Active Session is a generic representation of sessions created by the cen-
tre to manage communications between phones. Communication channels model
the media used by components in Fig. 2.

Caller client behaviour (Fig. 3(a)). At the Idle state, caller src receives a call
from the environment (a caller) to make a call operation with called dest. Then
it joins PhoneX central by sending to it src and dest (caller reaches Initiating
state). Caller returns to Idle state when it receives an error code from PhoneX
(PhoneX cannot establish a call due to violated condition of call establishment)
or a signal to terminate the call from the active session (due to a call rejection
by called client). At Initiating, src may reach Established if a call is estab-
lished by active session or state Terminating if a no-answer (from called client)
is observed during a waiting delay. When a call is established (at Established),
src may return to Idle by receiving a terminating signal from the active session
(due to an ending call by called client) or receive a signal from the environ-
ment (a caller) to end the call in progress (caller reaches UserEndingCall). At
UserEndingCall, the caller notifies the active session for terminating the call
(caller reaches Terminating). At Terminating, src returns to Idle by receiving
a terminating signal from the active session.
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Called client behaviour (Fig. 3(b)). This role is symmetric (on the called
client side) to the one described in Fig. 3(a)).

Fig. 3. TIOSTSs Gsrc and Gdest of Caller and Called clients

PhoneX central behaviour (Fig. 4(a)). At the Idle state, PhoneX may receive
a call and reach Calling or get notified of the ending of an already active session
and return to Idle. At Calling, PhoneX may start a new session (src, dest)
and return to Idle provided that dest is a registered and allowed-to-call number
in the Client database and there is no active session with called client dest.
Otherwise, PhoneX may also return to Idle when dest is not registered in Client
database, or calling dest is not allowed, or called client dest is busy.

Session behaviour (depicted in Fig. 4(b)). When a new session is started, a
Session TIOSTS is instantiated. At the Idle state, Session receives src and dest
numbers, it then reaches Starting. It notifies dest with a call operation emitted
by src and reaches Initiating. At Initiating, it may reach either Accepted when
called client accepts the call during a waiting delay or Terminating if a no-
answer is observed during a waiting delay or the call get rejected. At Accepted,
active session initiates a call between src and dest and reaches state Established.
Then, either caller or called client may end the call (session reaches Terminating
state). At Terminating state session sends a terminating signal to both caller
and called clients and reaches Ending. Finally, it returns to Idle by notifying
PhoneX central of ending the active session.
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Fig. 4. TIOSTSs GX and GS of PhoneX Central and Active Session

4 Testing

In [6], we modelled timed distributed systems as tuples (LS1, . . . ,LSn) where each
LSi denotes a black box localised system under test. Then we defined a confor-
mance relation dtioco to test such a distributed system with respect to a system
model (G1, . . . ,Gn). We showed that solving the oracle problem for an observable
multi-trace (σ1, · · · , σn) reduces to: (a) solve the oracle problem of each σi with
respect to tioco [15] and with Gi as reference model (unitary testing, see Sect. 4.1)
and, (b) check whether (σ1, · · · , σn) is an observable (uninitialised) multi-trace. In
Sect. 4.1 we briefly recall the principles of a simplified4 version of the unitary test-
ing algorithm defined in [1]. Then in Sect. 4.2, we introduce the new algorithm
based on constraint solving to decide if a tuple is an observational multi-trace.
As compared to [1,6], we have slightly adapted our definitions of timed traces in
order to deal with events instead of atomic observations such as inputs, outputs
or durations; this adaptation has no impact on the results in [1,6].

4.1 Unitary Testing

A Localised subsystem Under Test (LUT) is defined over a set of channels C as
a non-empty subset LS of UOTraces(C) such that:

– Input completeness: for any σ in LS of the form σ′.ev′, for any ev ∈ Evt(C)
such that act(ev) ∈ I(C) and delay(ev) ≤ delay(ev′), we have σ′.ev ∈ LS.

4 Due to the lack of space.
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– Quiescence: for all σ ∈ LS we have:

∀ev ∈ Evt(C).(act(ev) ∈ O(C) ⇒ σ.ev /∈ LS)

⇔
(σ 	= ε ⇒ (∀d ∈ D+, σ.(d, δ) ∈ LS)) ∧ (σ = ε ⇒ ( , δ) ∈ LS)

Moreover for any σ in LS of the form σ′.ev′ with act(ev′) = δ, for any ev ∈
Evt(C) with act(ev) ∈ O(C) we have σ.ev /∈ LS.

– Reaction prefix: for any σ in LS, we have Pref(σ) ⊆ LS.

Input completeness is required so that an LUT cannot refuse an input
from the environment. Quiescence corresponds to situations where the LUT
will not react anymore until it receives a new stimulation. Reaction prefix is
a realistic property stating that a prefix of an observation is an observation.

The local verdict computation algorithm is based on a symbolic structure
SE(G)δ computed from the reference model G obtained by classical symbolic
execution techniques. It is a tree-like structure whose nodes are symbolic states
used to capture information related to the possible executions of G. A path
p is a sequence of consecutive edges relating symbolic states and labelled by
symbolic events. The set of executions (uninitialised timed traces) associated to
p is characterised by the sequence ev1 · · · evn of symbolic events labelling the
consecutive edges and by the final symbolic state η. Each symbolic event of the
sequence is of the form (di, acti) (except ev1 which is of the form ( , act1)). Each
di is a new fresh variable (i.e. not used in the definition of G) used to represent
durations (they are typed as clocks) and each acti is of the form c?zi or c!ti
where zi is a new fresh variable and ti is a term built over the same equational
logic signature Ω as terms in G but on a set of new fresh variables. η is of the
form (q, πd, πt, �) where q is the state reached in G, πd is a constraint on new
fresh data variables (let Fd be the set of those variables), πt is a constraint on
the set of variables of the form di and � : A → TΩ(Fd) associates symbolic values
to variables of G. An uninitialised timed trace ev′

1 · · · ev′
n belongs to p iff for all

i ≤ n:

– ev′
i is of the form ( , act′i) (resp. (d′

i, act′i)) if evi is of the form ( , acti) (resp.
(di, acti)) and act′i is of the form c?z′

i (resp. c!t′i) if acti is of the form c?zi

(resp. c!ti).
– Let xi (resp. x′

i) stand for the variable zi (resp. z′
i) if acti (resp. act′i) is

an input and for the term ti (resp. t′i) if acti (resp. act′i) is an output. The
formula (

∧
i≤n xi = x′

i) ∧ πd ∧ πt is satisfiable.

The verdict computation algorithm analyses successively all events of σ =
ev′

1 · · · ev′
n and at each steps it computes the set of paths to which the already

analysed prefix of σ belongs. As soon as possible a verdict is emitted5:

5 In accordance with the tioco conformance relation.
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– Fail if act(ev′
i) is an output or δ and the set of path becomes empty, or else

act(ev′
i) is an input (d′

i, act′i) and there exists an event ev′′
i = (d′′

i , act′′i ) where
act′′i is an output (not δ) satisfying d′′

i < d′
i and ev′

1 · · · ev′
i−1.ev

′′
i belongs to

some path of SE(G)δ.
– Inconc if act(ev′

i) is an input (d′
i, act′i), the set of path becomes empty, and

for all events ev′′
i = (d′′

i , act′′i ) where act′′i is an output (not δ), d′′
i < d′

i we
have ev′

1 · · · ev′
i−1.ev

′′
i does not belong to any path of SE(G)δ.

– Pass if σ is fully analysed without generating any of the previous verdicts.

4.2 Communication Testing

An SUT over Λ is a tuple S = (LS1, . . . ,LSn) where LSi is an LUT defined
over Ci (all i ≤ n). The semantics of S, denoted Obs(S) ⊆ LS1 × · · · × LSn,
contains all observations that can be made when executing S. The goal of
Algorithm 1 is to check whether those observations reveal communication errors
by checking whether they are in UOTraces(Λ). It is based on the property that
an uninitialised observable multi-trace μ = (σ1, · · · , σn) is such that each σi is
either empty or of the form ( , ai).σ′

i, but in the latter case μ has been obtained
from an initialised observable multi-trace of the form μ′ = (σ′′

1 , · · · , σ′′
n) where

σ′′
i is ε for σi = ε and of the form (di, ai).σ′

i for σi of the form ( , ai).σ′
i. Thus,

(σ1, · · · , σi.ev, · · · σn) ∈ UOTraces(Λ) iff there exist durations d1, · · · , dn where
μ′′ = (σ′′

1 , · · · , σ′′
i , · · · σ′′

n) ∈ IOTraces(Λ). We check whether such durations
exist by considering them as n variables d1, · · · , dn (of type D); we construct
constraints on these variables characterising the properties of observable traces.
By definition, only the occurrence of an internal input might break the prop-
erty. There are two reasons for allowing an initialised observable multi-trace
to be extended by an internal input. The first is that a sufficient number of
corresponding internal outputs have previously been emitted. The second is
that at the time when the extension is performed, the trace emitting the cor-
responding internal output is no longer observed. If σi is the trace extended
by internal input a, ρ = σi.a and σj is the trace at the interface that sends
a, the first case correspond to situation in which pref(σj , a, |ρ|a) exists and C:
di+dur(ρ) > dj +dur occ(σj , a, |ρ|a) holds. The latter case corresponds to situa-
tions in which pref(σj , a, |ρ|a) does not exist and C ′: di +dur(ρ) > dj +dur(σj)
holds. However, by definition of dur occ, when pref(σj , a, |ρ|a) does not exist
we have that dur occ(σj , a, |ρ|a) = dur(σj), which means that the constraints
C and C ′ are equivalent. Therefore both cases can be treated in the same way
by requiring that C holds, as is done in Algorithm1. Every new constraint to
be considered is added to the set E (line 10). Sat is a function on sets of con-
straints such that Sat(E) returns True if all constraints in E are simultaneously
satisfiable and False otherwise.
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Algorithm 1. ObsMult(μ, d, Λ)
Data: μ = (σ1, · · · , σn) tuple of traces, d = (d1, · · · , dn) n variables, Λ system signature
Result: a verdict stating whether or not μ is an observable multi-trace

1 begin
2 E ← ∅;
3 for i ∈ [1 · · · n] do
4 ρ ← ε ;
5 foreach ev ∈ σi do
6 ρ ← ρ.ev ;

7 if act(ev) ∈ I(Cint(Λ)) then
8 a ← act(ev);

9 j ← Sender(Λ, act(ev));
10 E ← E ∪ {(di + dur(ρ) > dj + dur occ(σj , a, |ρ|a)};
11 if ¬Sat(E) then
12 return Failcom /* It’s not an observable multi-trace */;

13 return Passcom;

5 Experiments

We implemented the approach by separating the verification of local traces
(Sect. 4.1) and the verification of the tuple of traces against the definition of
observable multi-traces (Definition 6 and Sect. 4.2). If there are n subsystems, the
global verdict V erdictg has n + 1 verdicts (V erdict1, . . . , V erdictn, V erdictcom)
where for l in [1 . . . n], V erdictl is the local verdict in {Passl, Faill, Inconcl}
associated to the lth component and where V erdictcom ∈ {Passcom, Failcom}
is the verdict relating to the verification of the communication policy.

In order to assess the scalability of the framework, we adopted a mutation-
based approach. We first generated multi-traces that are correct by construction
with respect to local analyses and communication rules. For this purpose, a global
model of the system is built by simulating internal communications using one
timed queue per component. Since the reception of a message can be delayed, the
model specifies asynchronous communications. Then, we use the symbolic exe-
cution platform Diversity6 to build long traces, focusing on the behaviours that
complete communication scenarios as much as possible. Finally, the resulting
multi-traces are directly constructed by considering a tuple made of all projec-
tions for each component. Generated multi-traces are then modified by applying
some simple mutation schemas. Table 1 summaries mutation schemas we applied
on a multi-trace μ to produce a set of mutated tuples of traces.

Mutation schemas #1 and #3 require that added or modified events respect
syntactic requirements from the system signature and concerning channels and
data types. Mutation schema #5 is designed to break the key property of
multi-traces, that is that time is necessarily elapsing when messages are trans-
mitted. Let us illustrate with the observable multi-trace μ = (σ1, σ2) where
σ1 = ( , c1?v1).(1, c2!v2).(3, c3?v3) and σ2 = ( , c2?v2).(1, c3!v3). Applying muta-
tion schema #5 consists of breaking the so-called round-trip communication,

6 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project.

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project
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Table 1. Mutation schemas on multi-traces

Mut. schema Description

#1 Choose (randomly) a position in μ and insert an event ev

#2 Choose randomly an event ev in μ and delete it

#3 Choose randomly an event ev in μ and modify its data

#4 Choose randomly an event ev in μ and modify its duration

#5 Choose randomly a round-trip-commnunication (RTC) in μ
and break it

abbreviated as the acronym RTC, c2!v2 → c2?v2 → c3!v3 → c3?v3, for which
by construction, the delay between the emission and the reception on the first
component has to be strictly greater than the delay between the reception and
the emission on the second component. Mutation schema #5 modifies delays
between these actions so that there is an internal reception occurring before
its corresponding emission is sent. A possible mutation of μ using mutation
schema #5 could be μ′ = (σ′

1, σ
′
2) with σ′

1 = ( , c1?v1).(1, c2!v2).(1, c3?v3) and
σ′
2 = ( , c2?v2).(2, c3!v3). While the first 4 mutation schemas do not necessarily

create faulty multi-traces, mutation schema #5 creates by construction at least
a communication fault.

The size of the PhoneX system depends on the number of clients. We consider
a system with 3 caller clients, 3 called clients, 3 active sessions and a PhoneX
central. In Table 2, the third column (com. checking) give the time7 needed to
solve the constraint associated to the verification of communications described
in a multi-trace whose number of events is given in the first column and number
of internal communications is given in the second column. The fourth column
provides the time8 needed to analyse all local traces. For each multi-trace, we
generate 1000 mutated tuples of traces and we count the ratio of multi-traces that
are faulty with regards to communication policy (before last column). Finally, in
the last column, we give the average time to check the communication constraint
of the mutated tuples. Experiments have been performed on a 3.10 Ghz Intel
Xeon E5-2687W working station with 64 GB of RAM on Linux Ubuntu 14.04.

Among classical solvers, we get best results with the Yices SMT solver [5].
The efficiency of Yices for solving constraints of the form di + x > dj + y where
x and y are concrete durations together with the fact that constructing the set
of constraints from a tuple is linear explains that communication checking is
more efficient than unit testing. Unit testing of subsystems is performed by the
extension to unitary testing of the symbolic execution platform Diversity which
is coupled with several solvers such as Yices, CVC4 or Z3. Regarding symbolic
models without timed issues, functionalities (test case generation driven by test
purposes, verdict computation) offered by the Diversity test extension are similar
to those provided by the tool STG [4].

7 using the Yices SMT solver [5].
8 using the CVC4 solver [2] embedded in the Diversity platform.
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Table 2. Experimental data for correct multitraces and their mutants

Correct multi-traces generated by Diversity 1000 Mutated tuples of traces

#events #internal.
com

Com.
checking

Local. testing
(for all traces)

#com. errors Average of com.
checking

759 340 17ms 6 s 519 ms 713 17.371 ms

1587 700 28ms 21 s 761 ms 729 27.648 ms

3633 1589 49ms 1m 34 s 178ms 800 40.934 ms

6486 2830 59ms 7m 5 s 797ms 737 60.140 ms

7797 3400 69ms 10m 52 s 378ms 722 66.315 ms

9999 4357 88ms 24m 14 s 860ms 738 80.825 ms

6 Related Work

Testing timed distributed systems from models gives rise to several recent works.
In [16], hypotheses are broadly the same as those adopted in this paper, namely
a model for each local component, and a testing architecture constituted of inde-
pendent local testers. [16] mainly focuses on the generation of test cases from
a global model built by composing local models and queues, similar to the one
that we used in Sect. 5. The main difference is that the correction of the system
can boil down to the local correction of each component, without any verifica-
tion of internal communications. In [13], testing of distributed real-time systems
is based on the conformance relation tioco and considers timed automata as
models. Testers can be local or global so that the testing architecture does not
necessarily reflect the one of the system. The authors focus on the construction
of analogue-clock and digital-clock test cases. The question of communications
is supported by a compositionality result saying that correctness up to tioco
is preserved by parallel composition of timed automata provided that they are
input-enabled. Similarly, in [22], local testers that can exchange synchronisation
messages are derived from a global timed automaton. Thus, all these works are
rather interested in the issue of test case generation, assuming testing hypotheses
on communications between components, while we leave aside this question to
focus on the analysis of traces with almost no hypotheses on internal communi-
cations. Lastly, the use of constraint solvers is often advocated when dealing with
software and system testing issues [7]. As an example of usage for the verdict
computation in MBT, [12] uses SAT solvers for generating checking sequences
from finite state machines.

7 Conclusion

We focus on the oracle problem for testing distributed systems against specifica-
tions. A system execution is a tuple of timed local traces, one for each location.
An observation is correct iff each local trace is allowed by the corresponding
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specification component and the tuple of local traces defines a valid communica-
tion scenario. The oracle problem is reduced to several instances of the standard
oracle problem for centralised testing plus a constraint satisfaction problem for
communication. This is implemented as an orchestration coordinating several
centralised verdict computations using the Diversity tool and calls to classi-
cal constraint solvers. We have carried out experiments with a central telecom-
munication system which have shown low computation time. Our algorithm is
designed for active testing in which we run a test and then check the observation
made. It would be interesting to extend it to deal with passive testing.
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