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Abstract. Computing a shortest synchronizing word of an automaton
is an NP–hard problem. Therefore, heuristics are used to compute short
synchronizing words. SynchroP is among the best heuristics in the lit-
erature in terms of word lengths. The heuristic and its variants such
as SynchroPL have been frequently used as a baseline to judge the
quality of the words generated by the new heuristics. Although, its qual-
ity is good, the heuristics are significantly slow especially compared to
much cheaper heuristics such as Greedy and Cycle. This makes them
infeasible for large-scale automatons. In this paper, we show how one can
improve the time performance of SynchroP and its variants by avoiding
unnecessary computations which makes these heuristics more competi-
tive than they already are. Our experimental results show that for 2500
states, SynchroP can be made 70–160× faster, via the proposed opti-
mizations. In particular, for 2500 states and 32 letters, the SynchroP
execution reduces to 66 s from 4745 s. Furthermore, the suggested opti-
mizations become more effective as the number of states in the automata
increase.

Keywords: Finite state automata · Synchronizing words · Synchronizing
heuristics

1 Introduction

A synchronizing word w for an automaton A is a sequence of inputs such that no
matter at which state A currently is, if w is applied, A is brought to a particular
state. Such words do not necessarily exist for every automaton. An automaton
with a synchronizing word is called synchronizing automaton.

Synchronizing automata have practical applications in many areas. For exam-
ple in model based testing [1] and in particular for finite state machine based
testing [2], test sequences are designed to be applied at a particular state. Note
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that a finite state machine given as the specification can be viewed as an automa-
ton by omitting the output symbols labeling the transitions of the finite state
machine. The implementation under test can be brought to the desired state by
using a synchronizing word. Similarly, synchronizing words are used the gener-
ate test cases for synchronous circuits with no reset feature [3]. Even when a
reset feature is available, there are cases where reset operations are too costly
to be applied. In these cases, a synchronizing word can be used as a compound
reset operation [4]. Natarajan puts forward another surprising application area,
part orienters, where a part moving on conveyor belt is oriented into a partic-
ular orientation by the obstacles placed along the conveyor belt [5]. The part
is in some unknown orientation initially, and the obstacles should be placed in
such a way that, regardless of the initial orientation of the part, the sequence
of pushes performed by the obstacles along the way makes sure that the part
is in a unique orientation at the end. Volkov presents more examples for the
applications of synchronizing words together with a survey of theoretical results
related to synchronizing automata [6].

As noted above, not every automaton is synchronizing. As shown by [7],
checking if an automaton with n states and p letters is synchronizing can be
performed in time O(pn2). For a synchronizing automaton, finding a shortest
synchronizing word (which is not necessarily unique) is of interest from a prac-
tical point of view for obvious reasons (e.g., shorter test sequences in testing
applications, or less number of obstacles for parts orienters, etc.).

The problem of finding the length of a shortest synchronizing word for a
synchronizing automaton has been a very interesting problem from a theoretical
point of view as well. This problem is known to be NP-hard [7], and coNP-hard [8].
Another interesting aspect of the problem is the following. It is conjectured that
for a synchronizing automaton with n states, the length of the shortest synchro-
nizing sequence is at most (n − 1)2, which is known as the Černý Conjecture in
the literature [9,10]. Posed half a century ago, the conjecture is still open and
claimed to be one of the longest standing open problem in automata theory. The
best upper bound known for the length of a synchronizing word is (n3 − n)/6 as
provided by [11].

Due to the hardness results given above for finding shortest synchronizing
words, there exist heuristics in the literature, known as synchronizing heuristics,
to compute short synchronizing words. Among such heuristics are Greedy [7],
Cycle [12], SynchroP [13], SynchroPL [13], and FastSynchro [14]. In
terms of complexity, these heuristics are ordered as follows: Greedy/Cycle
with time complexity O(n3+pn2), FastSynchro with time complexity O(pn4),
and finally SynchroP/SynchroPL with time complexity O(n5 + pn2) [13,14],
where n is the number of states and p is the size of the alphabet. This ordering
with respect to the worst case time complexity is the same if the actual perfor-
mance of the algorithms are considered (see for example [14,15] for experimental
comparison of the performance of these algorithms).

The SynchroP heuristic and its variants such as SynchroPL have been
commonly used as a baseline to evaluate the performance of new heuristics in
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terms of synchronizing word length. However, since these heuristics are slow, a
limited experimental setting with small-scale automata is usually employed for
comparison purposes. For this reason, there exist attempts to improve the per-
formance; for instance, a faster variant FastSynchro of SynchroP has been
proposed in the literature. FastSynchro proposes a cheaper way to choose path
to follow while generating the synchronizing words. However, the performance
improvement comes with an increase on the average length of the synchronizing
words [13,14].

In this work, we propose a set of techniques to make SynchroP much faster
without changing its nature. Hence, the synchronizing words generated by the
heuristic will be the same. The impact of the proposed techniques is two-fold:
first, the SynchroP heuristic becomes more competitive to be used as a stronger
benchmark for the new heuristics; our experimental results show that for 2500
states, SynchroP can be made 70–160× faster with our optimizations. Sec-
ond, the heuristic becomes feasible to be used in practice; for instance, with
2500 states and 32 letters in the automaton, the execution time of the heuristic
reduces to 66 s from 4745 s. Furthermore, the experiments reveal that suggested
optimizations become more effective as the size of the automaton increases. As
we will discuss later, it is straightforward to apply some of the proposed tech-
niques to SynchroPL.

The rest of the paper is organized as follows: In Sect. 2, we introduce the
notation used in the paper and explain SynchroP in detail. The proposed
optimizations are introduced at Sect. 3 and experimental results are given in
Sect. 4. Section 5 discusses threats to validity and Sect. 6 concludes the paper.

2 Background and Notation

A (complete and deterministic) automaton is defined by a triple A = (S,Σ, δ)
where S = {1, 2, . . . , n} is a finite set of n states, Σ is a finite alphabet consisting
of p input letters (or simply letters). δ : S × Σ → S is a transition function.

An element of the set Σ� is called a word. For a word w ∈ Σ�, we use |w|
to denote the length of w, and ε is the empty word. We extend the transition
function δ to a set of states and to a word in the usual way. We have δ(i, ε) = i,
and for a word w ∈ Σ� and a letter x ∈ Σ, we have δ(i, xw) = δ(δ(i, x), w). For
a set of states C ⊆ S, we have δ(C,w) = {δ(i, w)|i ∈ C}.

For a set of states C ⊆ S, let C2 = {〈i, j〉|i, j ∈ C} be the set of all multisets
with cardinality 2 with elements from C, i.e. C2 is the set of all subsets of C
with cardinality 2, where repetition is allowed. An element 〈i, j〉 ∈ C2 is called a
pair. Furthermore, it is called a singleton pair (or an s–pair) if i = j, otherwise
it is called a different pair (or a d–pair). The set of s–pairs and d–pairs in C2

are denoted by C2
s and C2

d respectively.
A word w is said to be a merging word for a pair 〈i, j〉 ∈ S2 if δ({i, j}, w) is

singleton. Note that, for an s-pair 〈i, i〉, every word (including ε) is a merging
word. A word w is called a synchronizing word for an automaton A = (S,Σ, δ) if
δ(S,w) is singleton. An automaton A is called synchronizing if there exists a syn-
chronizing word for A. In this paper, we only consider synchronizing automata.
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As shown by [7], deciding if an automaton is synchronizing can be performed
in time O(pn2) by checking if there exists a merging word for 〈i, j〉, for all
〈i, j〉 ∈ S2.

We use the notation δ−1(i, x) to denote the set of those states with a tran-
sition to state i with letter x. Formally, δ−1(i, x) = {j ∈ S|δ(j, x) = i}. We also
define δ−1(〈i, j〉, x) = {〈k, �〉 | k ∈ δ−1(i, x) ∧ � ∈ δ−1(j, x)}.

2.1 The SynchroP heuristic

SynchroP is composed of two phases. In the first phase, which is common to
almost all existing heuristics, a shortest merging word τ〈i,j〉 for each 〈i, j〉 ∈ S2

is computed by using a breadth first search such as the one given in Algorithm 1.

Algorithm 1. Computing shortest merging words for state pairs (Phase 1)

input : An automaton A = (S, Σ, δ)
output: A shortest merging word τ〈i,j〉 for all 〈i, j〉 ∈ S2

1 let Q be an initially empty queue; // Q: BFS frontier

22 P = ∅; // P: the set of nodes in the BFS forest constructed so far

3 foreach 〈i, i〉 ∈ S2
s do push 〈i, i〉 onto Q, insert 〈i, i〉 into P , and set τ〈i,i〉 = ε;

4 while P �= S2 do // we still have some more pairs to discover

5 〈i, j〉 = pop the next item from Q;
6 foreach x ∈ Σ do
7 foreach 〈k, �〉 ∈ δ−1(〈i, j〉, x) do
8 if 〈k, �〉 �∈ P then
9 τ〈k,�〉 = xτ〈i,j〉;

10 push 〈k, �〉 onto Q;
11 P = P ∪ {〈k, �〉};

Algorithm 1 performs a breadth first search (BFS), and therefore constructs
a BFS forest, rooted at s–pairs 〈i, i〉 ∈ S2

s , where these s–pair nodes are the
nodes at level 0 of the BFS forest. A d–pair 〈i, j〉 appears at level k of the BFS
forest if |τ〈i,j〉| = k.

In almost all synchronizing heuristics, a second phase generates a synchro-
nizing word in a constructive, step-by-step fashion. The heuristics keep track of
the current set C of states, which is initially the entire set of states S. At each
iteration, the cardinality of C is reduced at least by one. This is accomplished
by picking a d-pair 〈i, j〉 ∈ C2

d , and considering δ(C, τ〈i,j〉) as the next active set
in the next iteration. Since τ〈i,j〉 is a merging sequence for (at least) the states
i and j, the cardinality of δ(C, τ〈i,j〉) is guaranteed to be smaller than that of
C. The synchronizing heuristics differ from each other in the way they pick the
d-pair 〈i, j〉 ∈ C2

d to be used at each iteration.
For a set of states C ⊆ S, let the cost φ(C) of C be defined as

φ(C) =
∑

i,j∈C

|τ〈i,j〉|

φ(C) is a heuristic indication of how hard it is to bring the set C to a singleton.
The intuition here is that, the larger the cost φ(C) is, the longer a synchronizing
word would be required to bring C to a singleton set.
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During the iterations of SynchroP, the selection of 〈i, j〉 ∈ C2
d that will

be used is performed by favoring the pair with the minimum possible cost
δ(C, τ〈i,j〉). Based on this cost function, the second phase of SynchroP is given
in Algorithm 2.

Algorithm 2. Computing a synchronizing word (Phase 2 of SynchroP)

input : An automaton A = (S, Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2

output: A synchronizing word Γ for A
1 C = S; // C: current state set

2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty

3 while |C| > 1 do // still not a singleton

4 minCost = ∞
5 foreach d–pair 〈i, j〉 ∈ C2

d do
6 thisPairCost = φ(δ(C, τ〈i,j〉))
7 if thisPairCost < minCost then
8 minCost = thisPairCost
9 τ ′ = τ〈i,j〉

10 Γ = Γ τ ′; // append τ ′ to the synchronizing word

11 C = δ(C, τ ′); // update current state set with τ ′

3 Speeding up SynchroP and its Variants

In this section, we will introduce three improvements for increasing the perfor-
mance of SynchroP. The first improvement explained in Sect. 3.1 precomputes
the cost of δ(C, τ〈i,j〉) under certain conditions to eliminate some redundant cost
computations. The improvement explained in Sect. 3.2 is in fact an improvement
over the approach given in Sect. 3.1 where the precomputations are delayed until
they are necessary. Finally in Sect. 3.3, we explain a particular improvement that
can accelerate the first iteration of SynchroP, which in practice is the most
expensive iteration of SynchroP.

3.1 Eliminating Redundant Cost Computations

The first improvement is based on the following observation. For each d–pair
〈i, j〉 ∈ C2

d , the cost φ(δ(C, τ〈i,j〉)) is calculated at line 6 of Algorithm 2. Suppose
that for two different d–pairs 〈i, j〉, 〈i′, j′〉 ∈ C2

d , we have τ〈i,j〉 = τ〈i′,j′〉. In this
case, we surely have δ(C, τ〈i,j〉) = δ(C, τ〈i′,j′〉). Therefore, computing the cost
φ(δ(C, τ〈i,j〉)) and φ(δ(C, τ〈i′,j′〉)) separately is a redundant work.

One approach to eliminate these redundant cost computations can be the
following. For an integer k ≥ 1, consider the set of non–empty words Σ≤k of
length at most k. Formally, Σ≤k = {σ | σ ∈ Σ�, 1 ≤ |σ| ≤ k}. In each iteration of
SynchroP, one can precompute the cost φ(δ(C, σ)) for all σ ∈ Σ≤k. For any d–
pair 〈i, j〉 ∈ C2

d , one can then simply look up the precomputed cost φ(δ(C, τ〈i,j〉))
when |τ〈i,j〉| ≤ k. For a word σ ∈ Σ≤k, let Φ(σ) be this precomputed cost of
φ(δ(C, σ)) for the current iteration with the active state set C. Although, the
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values of φ(δ(C, σ)) and Φ(σ) are the same, the main difference is that φ is an
expensive function and Φ is a data structure that stores a set of precomputed
values of φ. Using the precomputed cost Φ(σ) for all σ ∈ Σ≤k, the second phase
of SynchroP can be modified as shown in Algorithm 3.

Algorithm 3. Computing a synchronizing word (modified Phase 2 of

SynchroP)

input : An automaton A = (S, Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2, an integer
k ≥ 1

output: A synchronizing word Γ for A
1 C = S; // C: current state set

2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty

3 while |C| > 1 do // still not a singleton

4 foreach σ ∈ Σ≤k do Φ(σ) = φ(δ(C, σ)); // precompute Φ(σ)
5 minCost = ∞
6 foreach d–pair 〈i, j〉 ∈ C2

d do
7 if |τ〈i,j〉| ≤ k then
8 thisPairCost = Φ(τ〈i,j〉)

9 else
10 thisPairCost = φ(δ(C, τ〈i,j〉))

11 if thisPairCost < minCost then
12 minCost = thisPairCost
13 τ ′ = τ〈i,j〉

14 Γ = Γ τ ′; // append τ ′ to the synchronizing word

15 C = δ(C, τ ′); // update current state set with τ ′

Although the improvement is always useful for eliminating duplicate com-
putations in theory, one needs to be careful in practice. Indeed, the larger the
value of k is, the more benefit one can obtain by eliminating such computations.
However, the number of precomputed costs, and hence, the amount of mem-
ory to store the results of these computations also increase exponentially with
k. Formally, for a given k, the number of different sequences whose costs are
precomputed is equal to

K =
k∑

�=1

p� =
pk+1 − 1

p − 1
− 1

where p is the alphabet size. We need to use Θ(K) space to store the precomputed
costs. Let C be the active state set for the current iteration; each sequence τ can
be applied with Θ(|C|× |τ |) automata accesses and the cost of the new state set
δ(C, τ) can be computed in O(|C|2) time and O(|C|) extra memory to store the
next active state set. Since there are K possible sequences in total, the overall
cost of the precomputation phase for a single iteration is

O

(
|C|

k∑

�=1

�p� + |C|2K
)

= O
(
|C|p−(k+1)pk+1+kpk+2

(p−1)2 + |C|2K
)

.
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To avoid the first part, we interleaved the automata accesses and cost com-
putations; since Φ(σ) is computed for all σ ∈ Σ≤k, the state set δ(C, σ) can be
stored and used to compute δ(C, σx) with only O(|C|) automata accesses for
all x ∈ Σ and σ ∈ Σ<k. Overall, this yields O(|C|K) automata accesses and
O(|C|2K) time complexity for a single iteration. This implementation requires
O(|C|k) extra space to store the intermediate active state sets.

3.2 Lazy Computation of Sequence Costs

The approach explained in Sect. 3.1 precomputes Φ(σ) for all σ ∈ Σ≤k. However
in an iteration of Algorithm 3, the only Φ(σ) values that we benefit from are the
ones for which σ = τ〈i,j〉 for some 〈i, j〉 ∈ C2

d . Therefore, rather than precom-
puting Φ(σ) for all σ ∈ Σ≤k, it is better if we could precompute Φ(σ) for only
those σ ∈ Σ≤k such that σ = τ〈i,j〉 for some 〈i, j〉 ∈ C2

d .
One way of accomplishing this is to use a lazy computation approach to

construct the data structure Φ. More explicitly, one can compute Φ(σ) for a
σ = τ〈i,j〉 the first time it is used in the iteration, and then store it for further
uses in the same iteration. Algorithm 4 given below implements this approach.

Algorithm 4. Computing a synchronizing word (modified Phase 2 of Syn-

chroP with lazy Φ(σ) computation

input : An automaton A = (S, Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2, an integer
k ≥ 1

output: A synchronizing word Γ for A
1 C = S; // C: current state set

2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty

3 while |C| > 1 do // still not a singleton

4 foreach σ ∈ Σ≤k do Φ(σ) = ∞;
5 minCost = ∞;
6 foreach d–pair 〈i, j〉 ∈ C2

d do
7 if |τ〈i,j〉| ≤ k then
8 if Φ(τ〈i,j〉) = ∞ then
9 Φ(τ〈i,j〉) = φ(δ(C, τ〈i,j〉))

10 thisPairCost = Φ(τ〈i,j〉)

11 else
12 thisPairCost = φ(δ(C, τ〈i,j〉))

13 if thisPairCost < minCost then
14 minCost = thisPairCost
15 τ ′ = τ〈i,j〉

16 Γ = Γ τ ′; // append τ ′ to the synchronizing word

17 C = δ(C, τ ′); // update current state set with τ ′

Similar to the improvement described above, the space complexity for this
improvement is also Θ(K) when a simple vector/array is used for Φ and the
sequences are indexed and queried based on their ordered letters. Let C be the
active state set in the current iteration. With lazy computation, the number of
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different sequences, and hence, the number of cost computations, is bounded by
the number of state pairs 〈i, j〉 ∈ C2

d . Considering C = O(n), this yields a space
complexity of O(min(K,n2)). This complexity can be easily obtained with a set
or better with a hash table. Obviously, using such data structures will increase
the query costs to the precomputed values. In our implementation, we use a
simple vector for Φ that implies a Θ(K) complexity. However, we also select k
in a way that makes K = O(n2) as described below.

Lazy computation does not have an impact on theoretical time complexity
since all the cost computations are already meant to be done by the original
SynchroP. That is there is no redundant cost computation incurred by the
improvement. However, the k value still needs to be set to have a better memory
utilization. To restrict the memory usage in a judicious way, we use the largest
integer that satisfies

∣∣{〈i, j〉 ∈ S2
d : τ〈i,j〉 ∈ Σ≤k}∣∣ ≥

k∑

�=1

p�.

The right-hand of the inequality is the amount of memory that will be used
and the left-hand side is the number of pairs in S2

d that can benefit from the
improvement with maximum sequence length k. Since the left-hand side is O(n2),
the memory complexity follows.

3.3 Accelerating the First Iteration

The final improvement that will be suggested in this paper is based on the
following observation.

Lemma 1. Let C ⊆ S be a subset of states and 〈i, j〉, 〈i′, j′〉 ∈ C2
d be two d–pairs

such that τ〈i,j〉 = στ〈i′,j′〉 for some σ ∈ Σ�. If δ(C, σ) ⊆ C then φ(δ(C, τ〈i,j〉)) ≤
φ(δ(C, τ〈i′,j′〉)).

Proof. We have δ(C, τ〈i,j〉) = δ(δ(C, σ), τ〈i′,j′〉) ⊆ δ(C, τ〈i′,j′〉), where the last
step is due to the fact that δ(C, σ) ⊆ C. Since δ(C, τ〈i,j〉) ⊆ δ(C, τ〈i′,j′〉), we
have φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)).

Lemma 1 suggests that in an iteration of SynchroP if we have a set C,
d–pairs 〈i, j〉, 〈i′, j′〉 ∈ C2

d satisfying the preconditions stated in Lemma 1, then
we can eliminate the consideration of the d–pair 〈i′, j′〉 in that iteration, since
we will always have φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)). Although it may feel highly
unlikely to fulfill the preconditions of Lemma 1, Corollary 1 given below explains
how Lemma 1 can easily be used in the first iteration of SynchroP.

Corollary 1. For two d–pairs 〈i, j〉, 〈i′, j′〉 ∈ S2
d if τ〈i,j〉 = στ〈i′,j′〉 for some

σ ∈ Σ�, then φ(δ(S, τ〈i,j〉)) ≤ φ(δ(S, τ〈i′,j′〉)).

Proof. Consider Lemma 1 when C = S.
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Corollary 1 gives us the following improvement opportunity. In the first itera-
tion of SynchroP, it is sufficient to consider only those d–pairs 〈i, j〉 ∈ S2

d such
that τ〈i,j〉 is not a suffix of τ〈i′,j′〉 for any other d–pair 〈i′, j′〉 ∈ S2

d . Notice how
Algorithm 1 constructs the shortest merging sequences by using other shortest
merging sequences as suffix at line 9.

3.4 Speeding up SynchroPL

The proposed techniques can be exploited also for SynchroP variants such as
SynchroPL and FastSynchro. Let C ⊆ S be the current active state set. For
a sequence σ ∈ Σ∗, SynchroPL uses the cost function

φPL(δ(C, σ)) = φ(δ(C, σ)) + f(σ) =
∑

i,j∈C

|τ〈i,j〉| + f(σ)

where f(.) is a function used to make the shorter sequences more preferable.
It is suggested to use f(σ) = |σ| where |σ| denotes the length of the sequence
σ [13]. The improvements based on precomputation and lazy computation can
be easily adapted for this cost function. However, applying the last improvement
is not straightforward since we omit the suffix sequences which are shorter than
the sequences the improvement takes into account.

Using the proposed techniques with other cost functions such as the cardi-
nality of active state sets, i.e., φ′(δ(C, σ)) = |δ(C, σ)|, is also possible. However,
the speedups for cheaper heuristics may not be as much as the ones that we
obtain for SynchroP which we will show in the next section.

4 Experimental Results

All the experiments in the paper are performed on a single machine running
on 64 bit CentOS 6.5 equipped with 64 GB RAM and a dual-socket Intel Xeon
E5-2620 v4 clocked at 2.10 GHz where each socket has 8 cores (16 in total)
and 20 MB cache. We only used a single core and all the speedups are obtained
with no parallelization. The codes are compiled with gcc 4.9.2 with the -O3
optimization flag enabled.

To measure the impact of the proposed techniques, we used randomly gener-
ated automatons1 with n ∈ {500, 1000, 1500, 2000, 2500} states and p ∈ {2, 8, 32}
inputs. For each (n, p) pair, we randomly generated 5 different automata and exe-
cuted each algorithm on them. The values in the figures and the tables are the
averages of these 5 executions for each configuration.

4.1 Selecting the Target to Optimize

As described above, SynchroP has two phases where the first is common to
many other synchronizing heuristics. In a previous study, we proposed algorithms
1 For each state s and input x, δ(s, x) is randomly assigned to a state s′ ∈ S.
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to parallellize the first phase on a shared-memory multicore system [16]. The
second phase is the one which makes SynchroP recognized as one of the slowest
heuristics in the literature. This is why we, in this study, targeted this phase. We
measured the execution times of the phases individually to observe the impact
of the second phase’s execution time to the overall execution time. As Table 1
shows, the second phase is responsible for almost all the execution time of the
heuristic.

Table 1. The ratio of the execution time of Phase 2 (Algorithm 2) to the overall
execution time of SynchroP, i.e., Phase 1 (Algorithm 1) + Phase 2.

n: number of states

500 1000 1500 2000 2500

p 2 0.991 0.997 0.999 0.999 0.999

8 0.991 0.998 0.999 0.999 1.000

32 0.982 0.995 0.998 0.999 0.999

4.2 Impact of the Proposed Techniques

To measure the impact of the proposed techniques, we run them on the ran-
dom automata we generated as explained above. Table 2 shows the results of
these experiments. The timings in the table are for the whole heuristic, Phase 1
and Phase 2, for each variant. As the results show, the proposed improvements,
especially lazy cost computation, reduce the runtime of SynchroP significantly
and more than 100 speedups are obtained for some automata type. For each n
and p, the exact speedups for each variant are given in Fig. 1. As the trend of
each subfigure shows, the impact of the proposed techniques increase with n.
Although, the speedups seem to decrease with increasing p, the absolute differ-
ence between the naive SynchroP’s execution time and those of the proposed
variants increase.

As expected, each of the proposed techniques increases the performance, but
with different amounts; the lazy cost computation is proven to be the most use-
ful one. We later target the first iteration and added the third one described
in Sect. 3.3 on top of lazy computation. Although its impact is not significant
in practice, we were expecting more. Because, when the execution times of the
Phase 2 iterations for the proposed lazy computation variant are measured, as
Fig. 2 shows, the first one dominates the overall execution time. Here the figure
shows only the case for n = 2500. However, the same trend can be obtained for
other automata sizes. We show the trend here for completeness and point out the
bottleneck of our implementation for future studies. To overcome this bottleneck,
other suffix or subset-based improvements can be applied. A promising one is
representing an active state set with an unknown cost as a union/difference
of other active sets whose costs are precomputed. This representation, with
an efficient implementation, can be a great tool to reduce the number of cost
computations.
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Table 2. The execution times of the SynchroP variants (in seconds) for n ∈
{500, 1000, 1500, 2000, 2500} and p ∈ {2, 8, 32}. The first row for each p value is the
baseline implementation from [15] and the second one is our baseline implementation.
The next two rows are the variants with precomputation and lazy cost computation,
respectively. The fifth and the last row is the one with additional first iteration opti-
mization on top of lazy computation. Each value is average of five executions.

Algorithm n: number of states

500 1000 1500 2000 2500

p = 2 Baseline [15] 6.2 72.0 324.5 969.1 2309.3

Naive 2.6 30.4 133.3 382.5 881.7

Precompute 1.3 10.0 67.5 108.6 308.7

Lazy 0.2 0.9 2.1 4.3 7.7

First Iter. 0.1 0.6 1.6 3.2 5.4

p = 8 Baseline [15] 9.5 123.1 682.8 2179.7 5440.8

Naive 6.3 90.4 418.5 1247.3 2946.0

Precompute 1.8 42.4 93.1 164.4 1687.2

Lazy 0.3 1.7 8.6 19.9 33.1

First Iter. 0.3 1.6 7.9 18.6 31.2

p = 32 Baseline [15] 12.9 162.5 785.3 2438.3 6085.4

Naive 9.7 140.4 658.2 2008.7 4745.6

Precompute 3.0 11.8 625.0 1113.9 1691.9

Lazy 0.9 8.4 22.4 43.4 68.3

First Iter. 0.9 8.2 22.0 42.1 66.7

5 Threats to Validity

We consider several threats to validity of the methods suggested in this paper.
First of all, to eliminate any implementation errors we may have in the new
algorithms, we always check if a word w found by our implementations is a
synchronizing word or not, by checking if δ(S,w) is singleton or not.

At each iteration, SynchroP selects a pair with minimum cost. Therefore
the computed synchronizing sequence may change by picking a different pair with
same cost. Algorithms 3 and 4 search the pair as in Algorithm 2, i.e. they pick the
same pair by avoiding redundant computation. We also carefully implemented
the variants in such a way that even the tie-breaking mechanisms become the
same for all variants. In this way, we are able to check if the synchronizing words
are the same for each variant which was the case in our experiments. On the other
hand, the use of Corollary 1 can possibly eliminate some pairs with a minimum
cost. Hence the algorithm may pick different pair with same cost. However we
observed the same synchronizing sequences in our experiments (Table 3).

Since we consider the speed ups over our naive SynchroP implementa-
tion, we need to be sure that our baseline implementation is competitive in
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Fig. 1. The speedup values normalized w.r.t. the naive SynchroP baseline for n ∈
{500, 1000, 1500, 2000, 2500} and p ∈ {2, 8, 32}.

terms of performance and word lengths. In this respect, we compared the syn-
chronizing word lengths of our naive implementation and those of [15] for 75
automata used in our experiments; the average ratio of the former to the latter
is 1.01 for SynchroP, with a standard deviation of 0.02. In order to judge the
time performance of our naive variant objectively, we also compared our naive
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Fig. 2. The execution times of the iterations of the Lazy variant for n = 2500.

Table 3. The length of the synchronizing sequences for n ∈ {500, 1000, 1500, 2000,
2500} and p ∈ {2, 8, 32}.

p n: # automata states

500 1000 1500 2000 2500

2 78.6 111.2 147.4 160.6 192.8

8 45.4 70.2 85.6 98.6 111.2

32 37.8 54.8 66.6 78.2 88.0

implementation to the one in [15] as shown in Table 2. The comparison shows
that our naive implementation is comparable to the state-of-the-art used in the
literature.

6 Conclusion and Future Work

In this work, we proposed techniques to speedup SynchroP which is shown
to produce shorter synchronizing words compared to cheaper heuristics such
as Greedy and Cycle. Using various optimizations, we obtained order(s) of
magnitude speed up for SynchroP. The techniques suggested in this paper
become more effective as the size, i.e., the number of states, of the automata
increases. With these improvements, SynchroP is more scalable and is highly
practical even for automata with thousands of states.
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