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Abstract. Homing sequence derivation for nondeterministic finite state
machines (NFSMs) has important applications in system testing and
verification. Unlike prior methods based on explicit tree based search,
in this work we formulate the derivation of a preset homing sequence in
terms of a quantified Boolean formula (QBF). The formulation allows
implicit NFSM representation and compact QBF encoding for effective
computation. Different encoding schemes and QBF solvers are evaluated
for their suitability to homing sequence derivation. Experimental results
show the generality and feasibility of the proposed method.

1 Introduction

Model based testing techniques rely on formal specifications of the system under
test. Whenever such systems are reactive, i.e., are working in a request-response
mode, one of the appropriate formal models to describe the system behaviour
is the finite state machine (FSM). Therefore, a significant branch of research in
model based testing is devoted to FSM based testing.

Classical FSM based testing techniques, which are known to start with the
W-method [4,18] are mostly based on three main assumptions/steps: (1) to reach
a given state from the initial one, (2) to traverse the transitions under each input,
and (3) to distinguish the state that was reached from all other FSM states. The
derivation of the corresponding test sequences in this case is based on solving
state identification problems for the specification FSM [11].

FSM state identification is performed via an application of either distinguish-
ing (for the initial state) or homing/synchronizing (for the current or final FSM
state) sequences. The length of these sequences as well as the complexity of
their derivation significantly depend on the type of the specification FSM. For
distinguishing sequences (DSs), even for complete and deterministic machines
the decision problem of DS existence is PSPACE-complete. However, for homing
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and synchronizing sequences (HSs and SSs) for deterministic complete machines
the upper bounds on the corresponding length are known to be polynomial [14].

For nondeterministic FSMs, the complexity upper bounds rise higher. The
existence check becomes PSPACE-complete while the length of the shortest HS
or SS for the machine is exponential with respect to the number of states. Devel-
opment of complex (embedded) systems that can have nondeterministic behav-
iour due to various reasons, such as limited controllability and observability,
therefore motivates studying the possibilities for reducing the complexity, at
least for specific FSM classes [19].

In this paper, we consider non-initialized complete nondeterministic FSMs
and we propose to improve the performance of HS existence checking and deriva-
tion using scalable FSM representation. We note that existing solutions for this
problem mostly rely on the derivation of the homing tree which is built based on
the successor tree [8] with the proper usage of truncating/termination rules [14].
For nondeterministic machines, not only the width but the height of this tree
can grow exponentially before the nodes are truncated and thus, any search of
the shortest HS in the homing tree is either length-bounded or requires exponen-
tial number of steps. Note that in this case, one of the most costly operations
is shown to be the computation of the set of successors of a subset of FSM
states [5]. In this paper, we circumvent deriving the homing tree and computing
successor state sets.

The enabling technology of our computation is quantified Boolean formula
solving, which has been advanced in recent years [6,12,17]. Quantified Boolean
formulas (QBFs) are an extension to propositional formulas for their allowance of
universal and existential quantification over variables. The additional quantifiers
make QBFs exponentially more succinct than quantifier-free formulas in encoding
many decision problems. Essentially, quantified Boolean satisfiability (QSAT) is
PSPACE-complete in contrast to the NP-completeness of its Boolean satisfiability
(SAT) counterpart. The generality of QBF and advancement of QSAT motivate
our study of HS existence checking and derivation with QBF solving.

We implicitly represent the specification FSM as a Boolean circuit/formula.
The HS existence checking and derivation can thereby be reduced to the corre-
sponding QBF solving. In addition, we propose several techniques to enhance
the scalability for QBF solving of homing sequences. Experimental results show
promising applicability of our method.

The rest of this paper is organized as follows. After introducing backgrounds
of homing sequence and QBF in Sect. 2, we present the QBF encoding of homing
sequence computation in Sect. 3. We discuss some crucial implementation issues
in Sect. 4. Experimental evaluation is then given in Sect. 5. Finally, we conclude
this paper and outline future work in Sect. 6.

2 Preliminaries

2.1 Finite State Machine and Homing Sequence

A finite state machine (FSM) is a five tuple M = (Q,Qinit , I, O, T ), where Q is
a finite set of states, Qinit ⊆ Q is the set of initial states, I is the input alphabet,
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O is the output alphabet, and T ⊆ Q × I × O × Q is the transition relation.
In the sequel, we assume an FSM is uninitialized, that is, Qinit = Q. Since the
initial state set is assumed to be all possible states, we omit specifying Qinit in
the sequel. We write |Q| to denote the cardinality of the state set Q; we write |I|
and |O| to denote the sizes of the input and output alphabets, respectively; we
write |T | to denote the number of transitions in T . A trace is a sequence of the
form q0, i1, o1, q1, i2, o2, . . . , qn, such that (qk−1, ik, ok, qk) ∈ T for all 1 ≤ k ≤ n.

A deterministic FSM (DFSM) is an FSM, where for each current-state input
pair (q, i) ∈ Q×I, there exists at most one output next-state pair (o, q′) ∈ O×Q
such that (q, i, o, q′) ∈ T . Otherwise, the machine is a nondeterministic FSM
(NFSM). A finite state machine is complete if for each current-state input pair
(q, i), there exists at least one output next-state pair (o, q′) such that (q, i, o, q′) ∈
T . A finite state machine is called (fully) observable if for each current-state
input output triple (q, i, o), there exists at most one next-state q′ such that
(q, i, o, q′) ∈ T .

Given an FSM, a homing sequence (HS) is an input sequence such that after
running the machine under this input sequence, by observing the corresponding
output response, the final state after the execution can be uniquely determined.
A homing sequence can be either nonadaptive (or called preset), which is a
fixed input strategy regardless of the output response, or adaptive, which is
an input strategy that determines the next input symbol based on the so-far
observed output response. In this work, we consider the problem of finding a
preset homing sequence for a complete NFSM.

An uninitialized complete NFSM has the following property.

Proposition 1. Given an uninitialized complete NFSM, if there exists a homing
sequence of length n, then there exists a homing sequence of length n + 1.

It is because given an uninitialized complete NFSM, with a homing sequence of
length n, we can easily extend it to a length n+1 homing sequence by adding an
arbitrary input symbol to the head of the sequence. After taking the first state
transition, the possible current states are a subset of all states. Hence, applying
the original homing sequence of length n, the final state can be determined by
observing the output sequence.

Note that Proposition 1 is especially interesting for non-observable FSMs for
which a prolongation of a homing sequence is not necessarily a homing sequence
itself. However, it shows that any prefix can be added to a given homing sequence
without ruining the property of the final state identification via the observation
of an output response.

2.2 Quantified Boolean Formula

A Boolean variable takes a value in the Boolean domain B = {⊥,�}, with ⊥
and � representing false and true, respectively. A Boolean formula φ con-
sists of Boolean variables and Boolean connectives, which we denote negation,
conjunction, disjunction, implication, and equivalence by symbols ¬, ∧, ∨, →,
and ↔, respectively. A vector of Boolean variables is denoted by a letter in
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bold, such as x of variables (x1, x2, . . . , xn). Given two vectors of Boolean vari-
ables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), we use “x = y” to denote∧n

i=1 xi ↔ yi, the bit-wise equivalence between x and y.
For a Boolean formula φ and a Boolean variable x, we use φ|x to denote the

induced formula obtained from φ by assigning variable x to �. Similarly, φ|¬x

denotes the formula obtained from φ by assigning variable x to ⊥. A satisfying
assignment is a complete assignment of truth values to each variable that makes
the formula evaluate to �. The on-set of a Boolean formula φ is the collection
of its satisfying assignments to φ.

A literal � is either a Boolean variable x or its negation ¬x. A clause is
a disjunction of literals. A Boolean formula is in the conjunctive normal form
(CNF) if it is a conjunction of clauses.

A quantified Boolean formula (QBF) Φ can be expressed in a prenex form as
follows.

Q1x1, . . . , Qkxk.φ, (1)

where Qi ∈ {∃,∀} is the quantifier over variable xi, and φ is a quantifier-free
Boolean formula over variables x1, . . . , xk. A variable xi with Qi = ∃ (respec-
tively Qi = ∀) is referred to as an existential variable (respectively a universal
variable). We call Q1x1, . . . , Qkxk the prefix of Φ, denoted Φ.pfx, and call the
quantifier-free formula φ the matrix of Φ, denoted Φ.mtx. A prenex-form QBF is
called in the prenex conjunctive normal form (PCNF) if the matrix is expressed
as a CNF formula. In the sequel, unless otherwise said, we assume a QBF is
expressed in PCNF.

Given the QBF Φ of (1), the quantification level of variable xi is defined to
be the number of quantifier alternations between the quantifiers ∃ and ∀ from
left (outer) to right (inner) plus one. A QBF is of l quantification levels if the
number of quantifier alternations between ∃ and ∀ from Q1 to Qk is l − 1. In
this work, our considered QBFs are of quantification levels 2 or 3.

The QBF ∃x1, Q2x2, . . . , Qkxk.φ is true if one of Q2x2, . . . , Qkxk.φ|x1 and Q2

x2, . . . , Qkxk.φ|¬x1 is true. On the other hand, the QBF ∀x1, Q2x2, . . . , Qkxk.φ
is true if both Q2x2, . . . , Qkvk.φ|x1 and Q2x2, . . . , Qkvk.φ|¬x1 are true. A QBF Φ
is true if there exist Skolem functions for the existential variables of Φ such that
substituting the existential variables with their corresponding Skolem functions
in Φ.mtx makes the resultant formula a tautology. By duality, a QBF Φ is false
if there exist Herbrand functions for the universal variables of Φ such that sub-
stituting the universal variables with their corresponding Herbrand functions in
Φ.mtx makes the resultant formula unsatisfiable. A detailed exposition of Skolem
and Herbrand functions can be found in [1].

3 QBF for Bounded-Length Homing Sequence Existence
Checking and Derivation

Given a uninitialized complete NFSM M = (Q, I,O, T ), we aim at finding a
shortest homing sequence. We search from length 1 to the theoretical upper
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bound 2(
|Q|
2 ) − 1 of a shortest homing sequence [10]. We present the QBF for-

mulation of the bounded homing sequence checking as follows.
Since Q, I, O are all finite, we perform Boolean encoding on the states, input

symbols, and output symbols with current-state variables s, next-state variables
s′, input variables x, and output variables y. Then the transition relation T
of the machine can be represented by the characteristic function T (s,x,y, s′)
in terms of the encoding Boolean variables. In our QBF formulation, we rely
on time-frame expansion and denote the variables at the tth time-frame with a
superscript index t.

Then the QBF corresponding to the existence of homing sequence of length
n can be expressed as follows.

∃X,∀Y ,∀S,∀S∗.[Δ(n)(X,Y ,S) ∧ Δ(n)(X,Y ,S∗) → (sn = s∗n)], (2)

where variables S = (s0, . . . , sn), X = (x1, . . . ,xn), Y = (y1, . . . ,yn), S∗ =
(s∗0, . . . , s∗n), and Δ(n) is the conjunction of the transition relation of n time-
frames, i.e., Δ(n)(X,Y ,S) =

∧n
k=1 T (sk−1,xk,yk, sk) and Δ(n)(X,Y ,S∗) =

∧n
k=1 T (s∗k−1,xk,yk, s∗k). In the expression, the variables s∗ are fresh variables

as the instantiated versions of their counterparts s.
The formula asks whether there exists an input sequence of length n, such

that for any two traces with same output response, we can always conclude that
the final states of the two traces are the same. Clearly, an input sequence satisfies
such a constraint if and only if it is a homing sequence.

Proposition 2. Formula (2) is true if and only if the underlying NFSM has a
homing sequence of length n.

Proposition 3. If Formula (2) is true, then the Skolem functions for variables
X correspond to a homing sequence of the underlying NFSM.

4 Implementation

In this section, we discuss some implementation details in generating Formula (2)
for QBF solving.

4.1 Input Symbol Encoding

The size of input alphabet may not necessarily be in the form of 2j for some
j. If some binary code is unused in representing any input symbol, the QBF
solver may assign the unused code for the existential variables. In this case, the
solver can falsify the transition relation and make Formula (2) true. However,
the unused code does not correspond to any input symbol and cannot form a
‘legal’ homing sequence. Hence unused codes for input symbol encoding should
be avoided.

There are two methods to eliminate unused input codes. The first one is to
modify the matrix of Formula (2) by restricting xt, for t = 1, . . . , n, in For-
mula (2) to only used codes. Essentially, the characteristic functions expressing
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the used codes of x1, . . . , xn are conjuncted with Formula (2). The second one
is to assign two or more codes to the same input symbol to make all codes
used, which can avoid adding more clauses to Formula (2), and gain flexibility
in circuit minimization.

In our implementation, we used 
log2 |I|� bits to encode the input symbols.
Consider the input alphabet I with j symbols. It requires 
log2 j� bits for the
encoding. We let each of the first 2�log2 j� − j symbols be associated with two
consecutive codes, and let each of the rest be associated with one of the remain-
ing codes. For instance, if the input alphabet is {a, b, c}, both codes “00” and
“01” are associated with ‘a’, and “10” and “11” are associated with ‘b’ and ‘c’,
respectively.

4.2 Minimization of Transition Relation

To improve the efficiency of QBF solving, it is desirable to simplify the matrix
of a QBF. Therefore, minimizing the transition relation of the NFSM under
homing sequence derivation helps to simplify Formula (2) and improve QBF
solving efficiency.

The characteristic function of the transition relation can be naively built by
the on-set of T , i.e., by disjoining the characteristic function of each transition,
which corresponds to a conjunction of literals of state, input, and output vari-
ables. It can be represented as a Boolean formula or a logic circuit. Two-level
or multi-level logic minimization algorithms can be applied to reduce the size of
the formula/circuit.

To simplify the QBF matrix, one may also exploit different state encoding
methods. In our implementation, we study the effects of binary encoding and
onehot encoding1. The empirical results on our generated benchmark instances
are shown in Table 1, where Column “|T |” shows the number of transitions in T
of each NFSM, Columns “#gates (bin)” and “#gates (1hot)” show the numbers
of gates in the final simplified circuits under binary state encoding and onehot
encoding, respectively, and Column “ratio (bin/1hot)” shows the ratio of the gate
count of binary encoding to the gate count of onehot encoding. In the experi-
ments, the input encoding method described at the end of Sect. 4.1 is applied,
with the same encoding strategy applied on output symbols. Also, circuit mini-
mization is applied on each case. Note that unlike input encoding, unused state
codes do not affect the correctness of QBF analysis. We do not assign multiple
codes for one state; otherwise, this encoding may introduce state equivalence in
our formula and complicate the homing sequence derivation. Encoding for output
symbols has no such an unused code problem, too. In the experiment, however,
output is encoded in the same way as the input. As can be seen, binary encoding
yields gate counts about 70% to 90% of those yielded by onehot encoding.

1 By onehot encoding, n states q1, q2, . . . , qn are encoded with n bits b1, b2, . . . , bn, one
for each state, such that state qi, i ∈ {1, . . . , n}, is coded with bi = 1 and bj = 0 for
j �= i.
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Table 1. Gate count comparison under different state encodings

Case |Q|/|I|/|O| |T | #gates (bin) #gates (1hot) Ratio (bin/1hot)

0 5/2/2 13 43 64 0.67

1 5/2/2 17 39 60 0.65

2 5/2/2 18 50 76 0.66

3 5/2/2 17 38 54 0.70

4 5/2/2 14 37 58 0.64

5 10/5/5 153 480 531 0.90

6 10/5/5 139 466 566 0.82

7 10/5/5 147 451 527 0.86

8 10/5/5 154 475 591 0.80

9 10/5/5 142 459 536 0.86

10 13/7/7 371 1071 1169 0.92

11 13/7/7 385 1092 1214 0.90

12 13/7/7 384 1067 1197 0.89

13 13/7/7 381 1046 1172 0.89

14 13/7/7 394 1073 1200 0.89

15 15/8/8 517 1435 1758 0.82

16 15/8/8 567 1507 1760 0.86

17 15/8/8 528 1463 1677 0.87

18 15/8/8 539 1421 1723 0.82

19 15/8/8 523 1451 1700 0.85

20 20/10/10 1087 3211 3563 0.90

21 20/10/10 1147 3243 3539 0.92

22 20/10/10 1071 3130 3692 0.85

23 20/10/10 1094 3101 3482 0.89

24 20/10/10 1116 3234 3637 0.89

4.3 QBF Negation for Quantification Level Minimization

Simplifying transition relation is in general desirable. It is unclear, however,
whether to represent the transition relation in two-level or multi-level circuits,
especially when Tseitin transformation [16] is applied to convert a circuit into a
CNF formula for PCNF-based QBF solvers. Tseitin transformation2 uses inter-

2 In Tseitin transformation, an intermediate variable is introduced for each internal
gate output, and a number of clauses are generated to characterize the relation of
consistent valuations between input and output variables of each gate. For example,
the circuit in Fig. 1(a) can be converted into the CNF formula (x∨ ¬u) ∧ (y ∨ ¬u) ∧
(¬x∨¬y∨u)∧(¬u∨w)∧(¬z∨w)∧(u∨z∨¬w), in which two intermediate variables
u and w are used and the first (resp. last) three clauses describe u ↔ (x ∧ y) (resp.
w ↔ (u ∨ z)).
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mediate variables in circuit-to-CNF conversion. It makes the final QBF having
an extra innermost layer of existential quantification over these intermediate
variables. That is, Formula (2), which is of two quantification levels, will become
a QBF with three quantification levels of the following form

∃X,∀Y ,∀S,∀S∗,∃Z.φ, (3)

where φ is a CNF formula converted from a circuit representing [Δ(n)(X,Y ,S)∧
Δ(n)(X,Y ,S∗) → (sn = s∗n)] and variables Z are the intermediate variables
introduced in the CNF conversion. Having many such intermediate variables
introduced by Tseitin transformation for each internal gate output of the logic
circuit may degrade QBF solving performance.

Fig. 1. (a) A logic circuit implementing function (x ∧ y) ∨ z. (b) An AIG representing
the circuit in (a), with each circle representing an AND gate, and a bubble on an edge
representing an inverter.

The minimization procedure represents the transition relation in terms of an
and-inverter graph (AIG) [13], which consists of 2-input AND gates and invert-
ers. Figure 1(b) shows an example of AIG of the circuit in Fig. 1(a), where a
circle represents a 2-input AND gate and a bubble on an edge represents an
inverter. AIGs allow compact representation of Boolean circuits and are widely
used in logic synthesis and verification [7]. As shown in Table 1, since the number
of gates in the minimized circuit (AIG) is about three times the number |T | of
transitions, the introduced extra variables will be more than those of the on-set
approach. To be seen in the experiments in Sect. 5, the naive on-set representa-
tion of the transition relation, which corresponds to a circuit consisting of |T |
multi-input AND gates and 1 multi-input OR gate, has only |T | intermediate
variables and sometimes makes QBF solving more efficient.

It has been observed that a QBF and its negation often exhibit different
solving characteristics [1]. Negating Formula (2) through Tseintin transformation
yields

∀X,∃Y ,∃S,∃S∗,∃Z.ψ, (4)

where ψ is a CNF formula converting from the circuit representing
¬[Δ(n)(X,Y ,S)∧Δ(n)(X,Y ,S∗) → (sn = s∗n)] and variables Z are the inter-
mediate variables by the Tseitin conversion. Observe that Formula (4) has only
two quantification levels, in contrast to the three quantification levels of For-
mula (3). The experimental comparison will be shown in Sect. 5.
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5 Experimental Results

The proposed QBF method is tested on a Linux machine with Intel Xeon E5-
2630 CPU (2.3 GHz) and 200 GB RAM. Several state-of-the-art QBF solvers are
tested and compared, including DepQBF [12], RAReQS [6], QELL [17], and the
2QBF solver in Berkeley ABC [2,3]. We randomly generated 25 test cases by the
tool FSMTest-1.0 [15] for performance evaluation.3 Binary encoding is applied,
and for input encoding, all the codes are used as discussed in Sect. 4.1. Circuit
minimization is also applied to minimize the transition relation of each case.
Then Tseitin transformation is applied to convert the formulas into PCNF for
DepQBF, RAReQS, and QELL. For each case, its potential homing sequences
of length k, for k = 1, . . . , 1023, are tested under a timeout limit of 7200 s.
In the experiments, we find a homing sequence by iteratively increasing the
length k by one and solving the corresponding formula. This searching strategy
ensures that the derived homing sequence is of the minimum length. For the cases
where no-homing sequence is found, this searching strategy also guarantees that
there exists no homing sequence of length up to the longest length k successfully
checked before timeout. Note that one may exploit Proposition 1 to have a binary
search-like strategy starting with some k > 1. If it finds a homing sequence under
k, one can decrease k to look for a shorter homing sequence. Otherwise, one can
increase k by some number to look for a longer homing sequence.

Table 2 shows the statistics of different QBF solvers on solving the 25 test cases.
The number of states, and the sizes of input and output alphabets of each case are
listed in Column “|Q|/|I|/|O|”. For each solver, Columns “result” show the final
answer, which is one of the three outcomes: “SAT” indicating homing sequence
found, “UNSAT” indicating no homing sequence exists, and “TO” indicating time-
out on testing homing sequence existence under a length greater than the number
reported in Columns “len”. Columns “time” show the total solving time (in sec-
onds) of each solver up to the length reported in Columns “len”. Columns “len”
show the longest sequence length successfully checked before termination, which is
the length of the found homing sequence for the SAT case, the length upper bound
for the UNSAT case, and the last verified length for the TO case.

3 We note that the process of FSM generation can be seen as a simple task. However,
deriving an FSM with the corresponding properties such as observability, degree of
non-determinism, etc., makes this task more complex. In the FSM generation process
in [15], a machine that is not observable was automatically dropped to generate
another machine with the same cardinality of input/output alphabet and the same
number of states, which is observable. Note that our QBF formulation is not limited
to observable NFSMs. We experimented with observable FSMs only as even in the
observable case the exponential upper bound on the length of homing sequence is
known to be attainable. On the other hand, for simplicity, the number of outputs was
chosen to be equal to the number of FSM inputs. In total, we generated 25 machines
for which the number of inputs varied from 2 to 10 and the number of states was
in the range from 5 to 20, correspondingly. Note that, in most of the cases, neither
the number of states nor the number of inputs can be represented by an appropriate
power of two. The latter allows to better experiment with our heuristics proposed
for input/state encoding.
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Table 2. Performance comparison of different QBF solvers

DepQBF RAReQS QELL ABC

Case |Q|/|I|/|O| Result Time Len Result Time Len Result Time Len Result Time Len

0 5/2/2 SAT 0.07 3 TO 7200 2 SAT 0.04 3 SAT 0.28 3

1 5/2/2 TO 7200 560 TO 7200 2 TO 7200 70 TO 7200 53

2 /2/2 SAT 11.32 5 TO 7200 2 SAT 0.15 5 SAT 0.41 5

3 5/2/2 TO 7200 9 TO 7200 2 TO 7200 133 UNSAT 5503 1023

4 5/2/2 TO 7200 7 TO 7200 2 TO 7200 13 TO 7200 13

5 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 TO 7200 6

6 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 SAT 818 6

7 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 TO 7200 6

8 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 SAT 5293 7

9 10/5/5 TO 7200 4 TO 7200 1 SAT 1122 5 SAT 30.18 5

10 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

11 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

12 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

13 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

14 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

15 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

16 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

17 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

18 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

19 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

20 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

21 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

22 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

23 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

24 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

As can be seen from Table 2, most cases are reported timeout for each solver,
with no homing sequence found within length 6 for the 10-state cases to length
4 for the 20-state cases. We observed that for the cases with 5 states, each solver
seems to show its own strength. DepQBF performs very well on case 1; ABC
performs well on case 3; QELL yields a more balanced result compared to the
other solvers. In overall performance, ABC outperforms other solvers, with at
least one more length verified in each of the larger cases. The only one UNSAT
case, reported by ABC, has no homing sequence within length upper bound 1023,
and this is in fact the theoretical upper bound of shortest homing sequence [10]
for a 5-state NFSM. The outstanding performance of ABC is not surprising as
the homing sequence QBFs favor a circuit-based solver due to its natural circuit
representation of transition relation.

Note that although all solvers timed out on all the cases with 13 and more
states, the scalability of the proposed method can still be seen through the
longest lengths that successfully verified before timeout in these cases from
Table 2. For most of the cases, the successfully checked lengths seem to be
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small. It suggests that computing homing sequence for NFSM is challenging.
In fact, there are exponentially many input sequences of a given length, and for
a NFSM the problem of checking whether an input sequence is homing is known
to belong to the PSPACE complexity class [9]. The complexity of checking if a
given sequence is homing for nondeterministic machine is “hidden” in the costly
operation of an i-successor [9] of a given state subset. Moreover, the higher is
the nondeterminism degree of the machine, the slower is the check that for each
state pair and each common output response at these states, the final state is
unique. The latter makes it unpromising to directly apply any brute force search
or even truncated successor tree approach in a large scale. In this paper, we
discuss possible heuristics how this complexity can be reduced via the usage of
FSM scalable representations and corresponding QBF solvers.

Table 3. Performance comparison under different formula construction methods

DepQBF RAReQS QELL

Case |Q| m o m+c o+c o+b m o m+c o+c o+b m o m+c o+c o+b

1 5 560 14 1023 22 14 2 5 20 20 5 70 25 19 19 25

3 5 9 14 21 22 14 2 6 20 20 6 133 38 19 19 39

11 13 3 2 6 6 2 1 2 6 6 2 4 5 5 6 5

13 13 3 2 6 6 2 1 2 6 6 2 4 5 5 6 5

21 20 2 2 4 4 2 1 2 4 5 2 3 4 4 4 4

23 20 2 2 4 4 2 1 2 4 5 2 3 4 4 4 4

As discussed in Sect. 4, there can be different options in formula generation.
Solver performance may also be affected by the chosen options, especially the
PCNF-based solvers, DepQBF, RAReQS, and QELL. In Table 3, we compare
solver performance in five different options of formula generation. Six test cases
in the above experiment are selected, including two small ones with 5 states,
two medium ones with 13 states, and two large ones with 20 states. The three
PCNF-based solvers, DepQBF, RAReQS and QELL are compared. Since the
2QBF solver in ABC takes an AIG as its input, it does not need Tseitin trans-
formation and the methods mentioned in Sect. 4 seem not affecting much the
ABC performance. So ABC is excluded in this comparison.

In Table 3, each entry shows the verified length before the timeout, Columns
“m” show the result of applying circuit minimization on transition relation with-
out complementing the formula. They are also the results shown in the above
experiment. Columns “o” show the results using the on-set of transition relation
without minimization and having no formula negation. Columns “m+c” show
the results using minimized circuits and applying formula negation. Columns
“o+c” show the results using the on-set of transition relation without minimiza-
tion, but with formula negation. Each of “m”, “o”, “m+c”, “o+c” uses all codes
for input and output encodings. On the other hand, Columns “o+b” do not use
all codes for encoding, and clauses are added to constrain inputs to legal code
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assignments. Both circuit minimization and formula negation are not applied in
Columns “o+b”.

It can be seen that for DepQBF, transition relation minimization is beneficial
in most cases. Also, formula negation substantially improves the performance,
with the verified lengths doubled within timeout, and even case 1 reached the
pre-specified upper bound 1023 before timeout (about 1542 s for solving case
(1). On the other hand, for RAReQS, using the onset of transition relation
without circuit minimization is better in most of the cases. Moreover, solving the
negated formula is also much faster than solving the original formula, with the
verified lengths increased to at least 2.5 times. As for QELL, transition relation
minimization or solving negated formula significantly improves the solving of
the 5-state cases, but the verified lengths slightly drops in the larger cases.
Comparing Column “o” and Column “o+b” in any of the three solvers, we
see that the ways of handling unused codes in input encoding seem not having
notable effects on the solver performance.

6 Conclusions

We have formulated the problem of finding preset homing sequence of an unini-
tialized NFSM as QBF solving. Different implementation issues in formula con-
struction have been discussed. Experiments have been done comparing differ-
ent QBF solvers on existence checking and derivation of homing sequences for
NFSMs. The effects of circuit minimization and formula negation have been stud-
ied. The results have suggested that circuit-based QBF solver ABC is the most
powerful one in our applications, while other solvers may not be as effective due
to the Tseitin transformation overhead. On the other hand, for PCNF-based
solvers, complementing Formula (2), which reduces the number of quantifica-
tion levels, tends to improve solving efficiency. Moreover, different PCNF-based
solvers may have their preferred encoding methods. We believe that the app-
roach proposed in the paper should outperform the classical ones, based on the
derivation of the truncated successor tree, but the comparison remains to be
done.

For future work, we plan to conduct experiments comparing our approach
against the classical methods. We will extend our formulation to finding adaptive
homing sequences and to consider initialized NFSMs under partial observability.
Moreover, it would be interesting to study how our proposed approach performs
on ‘hard’ FSMs that are known to have the homing sequence but of an expo-
nential length, i.e., to stress-test the QBF solvers over the machines for which
the exponential upper bound is reachable. We therefore plan to implement the
derivation of such machines, using for example an algorithm given in [10].
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