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Abstract. The increasing prevalence of the microservice paradigm cre-
ates a new demand for low-overhead virtualization techniques. Com-
plementing containerization, unikernels are emerging as alternative
approaches. With both techniques undergoing rapid improvements, the
current landscape of lightweight virtualization approaches presents a con-
fusing scenery, complicating the task of choosing a suited technology for
an intended purpose. This work provides a comprehensive performance
comparison covering containers, unikernels, whole-system virtualization,
native hardware, and combinations thereof. Representing common work-
loads in microservice-based applications, we assess application perfor-
mance using HTTP servers and a key-value store. With the microservice
deployment paradigm in mind, we evaluate further characteristics such
as startup time, image size, network latency, and memory footprint.

1 Introduction

With the increasing pervasiveness of the cloud computing paradigm for all sorts
of applications, low-overhead virtualization techniques are becoming indispens-
able. In particular, the microservice architectural paradigm, where small encap-
sulated services are developed, operated and maintained by separate teams,
require easy-to-use and disposable machine images. Ideally, such infrastructure
should allow for fast provisioning and efficient operation.

Approaches to lightweight virtualization roughly fall into the categories of
container virtualization and unikernels. Both have been gaining notable momen-
tum recently (see [9,21] and Fig. 1). As more and more virtualization techniques
are being introduced and discussed, making a choice between them is getting
harder. Published performance measurements thus far either have a strong focus
on throughput and execution time [2,6,27,31] – not analyzing startup latency
and other system metrics in depth – or focus on highlighting the strengths of
one particular approach without comparing it to a broad range of alternative
unikernels and container technologies [3,6,9,16,19,27].

We close this gap by presenting an extensive performance analysis of light-
weight virtualization strategies, which takes into account a broad spectrum
both of investigated technologies and measured metrics. Our evaluation includes
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Fig. 1. The relevance of Docker and unikernels in the research community is indicated
by the number of results on Google Scholar (as of May 15, 2017).

containers (Docker, LXD), unikernels (Rumprun, OSv and MirageOS ), whole-
system virtualization, native hardware, and certain combinations thereof. While
previous work has laid a strong focus on high performance computing (HPC)
applications (see Sect. 3), our goal is to evaluate metrics that are applicable to
cloud applications. For this purpose, we measure application throughput per-
formance using HTTP servers and a key-value store. Additionally, we provide
further metrics, such as startup time, image size, network latency, and mem-
ory footprint. To facilitate full repeatability of our results, all test setups used
throughout this paper have been made available online1.

The remainder of the paper is organized as follows: Sect. 2 provides back-
ground about the employed virtualization approaches. Section 3 reviews related
work that deals with quantifying the performance impact of lightweight virtual-
ization approaches. Afterwards, Sect. 4 refines the scope of this work. Section 5
then documents the benchmark procedure yielding the results presented in
Sect. 6. Finally, Sect. 7 concludes this work with final remarks.

2 Background

“Traditional”, whole-system virtualization introduces performance and mem-
ory overhead, incurred by the hypervisor or virtual machine manager (VMM).
This problem has been addressed by introducing paravirtualization (PV) and
hardware-assisted virtualization (HVM). Still, the additional layer of indirec-
tion necessitates further context switches, which hurt I/O performance [9]. Even
though techniques such as kernel samepage merging (KSM) [1] have managed to
reduce memory demands, they do not provide an ultimate remedy as they dilute
the level of isolation among virtual machines [12].

This work focuses on lightweight virtualization approaches, which, address-
ing both issues, have gained notable momentum both in the research community
and in industry. Figure 2 illustrates how these approaches aim at supporting the
deployment of applications or operating system images while eluding the over-
head incurred by running a full-blown operating system on top of a hypervisor.
With containers and unikernels constituting the two major families of light-
weight virtualization approaches, the main characteristics and two representa-
tives of each family are introduced hereafter.

1 https://github.com/plauth/lightweight-vm-performance.

https://github.com/plauth/lightweight-vm-performance
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Fig. 2. Illustrated comparison of the software stack complexity of various deployment
strategies, including native setups, virtual machines, containers, containers within vir-
tual machines and unikernels.

2.1 Container (OS-Level Virtualization)

Containers are based on the observation that the entire kernel induces overly
much resource overhead for merely isolating and packaging small applications.
Here, we distinguish two classes of container virtualization approaches: appli-
cation and OS-oriented containers. For application-oriented containers, single
applications constitute the units of deployment. For OS-oriented containers, the
entire user space of the operating system is reproduced. Currently, with LXD, the
latter approach is becoming more prominent again, as it allows for the creation
of virtual machine (VM)-like behavior without the overhead of a hypervisor.
In the following paragraphs, we discuss the containerization technologies under
investigation.

Docker. Among the application-oriented containers, the open source project
Docker [7] currently is the most popular approach. It relies on Linux kernel
features, such as namespaces and control groups, to isolate independent contain-
ers running on the same instance of the operating system. A Docker container
encapsulates an application as well as its software dependencies; it can be run
on different Linux machines with the Docker engine.

Apart from providing basic isolation and closer-to-native performance than
whole-system virtualization, Docker containerization has the advantages that
pre-built Docker containers can be shared easily, and that the technology can
be integrated into various popular Infrastructure as a Service (IaaS) solutions
such as Amazon web services (AWS).
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LXD. The Linux-based container solution LXD [5] builds up upon the LXC
(Linux container) [4] interface to Linux containerization features. LXD uses the
LXC library for providing low-overhead operating system containers. In addition
to advanced container creation and management features, LXD offers integration
into the OpenStack Nova compute component [29].

2.2 Unikernel (Hypervisor Virtualization)

Unikernels are a new take on the library operating system concept, provid-
ing merely a thin layer of protection and multiplexing facilities for hardware
resources whereas hardware support is left to employed libraries and the applica-
tion itself. Whereas library operating systems (e.g., Exokernel [8]) had to struggle
with having to support real hardware, unikernels avoid this burden by targeting
only virtual hardware interfaces provided by hypervisors or VMMs [20]. With
the absence of many abstraction mechanisms present in traditional operating
systems, the unikernel community claims to achieve a higher degree of whole-
system optimization while reducing startup times and the VM footprint [19,21].

Rumprun. The Rumprun unikernel is based on the rump kernel project, which
is a strongly modularized version of the NetBSD kernel that was built to demon-
strate the anykernel concept [14]. With the goal of simplified driver development
in mind, the anykernel concept boils down to enabling a combination of mono-
lithic kernels, where drivers are executed in the kernel, and microkernel-oriented
user space drivers that can be executed on top of a rump kernel. One of the
major features of the Rumprun unikernel is that it supports running existing
and unmodified POSIX software [15], as long as it does not require calls to
fork() or exec().

OSv. The OSv unikernel has been designed specifically to replace general-
purpose operating systems such as Linux in cloud-based VMs. Similarly to
Rumprun, OSv supports running existing and unmodified POSIX software, as
long as certain limitations are considered [16]. However, OSv provides additional
APIs for exploiting capabilities of the underlying hypervisor, such as a zero copy
API intended to replace the socket API to provide more efficient means of com-
munication among OSv -based VMs.

MirageOS. Being developed from scratch, the MirageOS unikernel resembles
a puristic, clean-slated approach. MirageOS builds up on top of the Mini-OS
kernel from the Xen project and only supports software written in the OCaml
programming language [21]. Denying any compatibility with existing POSIX-
compatible software, the static type system and the strong runtime safety capa-
bilities of OCaml lead to a high level of software robustness [20].
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3 Related Work

An overview of publications about performance measurements of lightweight vir-
tualization techniques from the last few years are presented in Table 1. Previous
research has measured selected performance properties of lightweight virtualiza-
tion techniques, mostly in comparison with a traditional whole-system virtual-
ization approach. However, we are not aware of any comprehensive analysis of
up-to-date container versus unikernel technologies.

Felter et al. [9] have presented a comprehensive performance comparison
between Docker containers and the KVM hypervisor [17]. Their results from var-
ious compute-intensive as well as I/O-intensive programs indicate that “Docker
equals or exceeds KVM performance in every case tested”. For I/O-intensive
workloads, both technologies introduce significant overhead, while the CPU and
memory performance is hardly affected. Mao et al. [22] have studied the startup
time of virtual machines for the major cloud providers Amazon EC2, Windows
Azure, and Rackspace. Among different influencing factors, the image size was
shown to have a significant impact on the startup performance. Kivity et al. [16]
focus on the performance of OSv in comparison to whole-system virtualization
with KVM. Both micro- and macro-benchmarks indicate that OSv offers better
throughput, especially for memory-intensive workloads.

Table 1. Related work on performance measurements of lightweight virtualization
approaches. Studies printed in gray indicate a HPC context.
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4 Scope of this Work

Here, we present an extensive performance evaluation of containers (Docker,
LXD), unikernels (Rumprun, OSv and MirageOS ), and whole-system virtual-
ization. Related work has focused on subsets of the approaches we consider, but
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we are not aware of any comprehensive analysis of up-to-date container versus
unikernel technologies.

This paper extends our work published in [26], providing commensurable net-
work stack parameters for all tested approaches and measurements for additional
properties such as startup time, image size, and network latency. Furthermore,
Xen and MirageOS have been included as additional hypervisor and unikernel
approaches. Startup time is a relevant metric in scenarios, where the infrastruc-
ture is booted on demand to process certain requests. Requirements regard-
ing the infrastructure and runtime environment are getting more ad hoc, may
change spontaneously, and call for rapid just-in-time deployment and reactive
approaches. Such scenarios are becoming more common with the microservice
development pattern.

Our research questions are the following:

– How fast are containers, unikernels, and whole-system virtualization when
running different workloads? Are the results from related work confirmed in
our test cases?

– What is the most suitable virtualization technology for on-demand provision-
ing scenarios?

– What is the impact of the virtualization technology on general system prop-
erties such as image size, network latency and memory footprint?

5 Benchmark Procedure

This section provides a description of the benchmark methodologies applied
within this work. All tests were performed on an HPE ProLiant m710p server
cartridge [11] with the detailed specifications denoted in Table 2. Where applica-
ble, all approaches were evaluated using Xen, KVM and native hardware to
evaluate the performance impact of the employed virtualization approach. For
container-based approaches, we also distinguish between native and virtualized
hosts, where the latter represent the common practice for deploying containers
on top of IaaS-based virtual machines. All configuration files, custom bench-
marking utilities as well as modifications to existing utilities are provided online
(see Footnote 1).

Table 2. Specifications of the test systems.

Server model HPE ProLiant m710p Server cartridge

Processor Intel Xeon E3-1284L v4 (Broadwell)

Memory 4 × 8GB PC3L-12800 (SODIMM)

NIC Mellanox Connect-X3 Pro (Dual 10GbE)

Operating system Ubuntu Linux 16.04.1 LTS
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5.1 General Properties

Startup Time. To avoid potential confounding variables, startup time is mea-
sured irrespectively from the application type. Referring to the test procedure
suggested by Nickoloff [25], our test set-up is composed of a minimal application
which sends a UDP packet containing a single character to a predefined host and
a counterpart application listening for said UDP packet. The listening applica-
tion is executed on the virtualization host and issues the startup command for
the corresponding container or unikernel VM and measures the time until the
UDP packet is received.

Image Size. In practice, image size strongly influences startup time [22], as
images have to be transported over potentially slow networks. Hence, the even-
tual image sizes are reported for all examined technologies. To avoid skewed
readouts caused by sparse image files, the actual disk utilization is retrieved
using the du command line utility.

Network Latency. Since network latency may be a decisive factor in latency-
sensitive use cases such as network function virtualization (NFV) [23], the net-
work round-trip time is measured between a dedicated host and the test object
using the ping command line utility.

Memory Footprint. Reducing the memory footprint is one of the main objec-
tives of lightweight virtualization approaches. For native and LXD-based exe-
cution, memory consumption was measured using the htop command line util-
ity. In the case of Docker, the docker ps command line facility was used to
retrieve memory consumption measurements. As the memory footprint of VMs
and unikernels is defined statically at the time of their instantiation, VM-sizing
must be chosen carefully. Hence, we identified the least amount of memory that
did not degrade performance by testing different values in steps of 8 MiB.

5.2 Application Performance

Representing common workloads of cloud-hosted applications, we picked HTTP
servers and key-value stores as exemplary applications. As these I/O-intensive
use cases involve a large number of both concurrent clients and requests, the
network stack considerably contributes to the overall application performance.
Hence, in order to eliminate an unfavorable default configuration of the net-
work stack as a confounding variable, we modified the configuration on Linux,
Rumprun and OSv. Since many best practices guides cover the subject of tuning
network performance on Linux, we employed the recommendations from [30],
resulting in the configuration denoted in Table 3.

Based on this model, we modified the configuration parameters of both
Rumprun and OSv to correspond to the Linux-based settings [28]. The resulting
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Table 3. Optimized settings for the Linux network stack.

Path Parameter Value

/etc/sysctl.conf fs.file-max 20000

/etc/sysctl.conf net.core.somaxconn 1024

/etc/sysctl.conf net.ipv4.ip local port range 1024 65535

/etc/sysctl.conf net.ipv4.tcp tw reuse 1

/etc/sysctl.conf net.ipv4.tcp keepalive time 60

/etc/sysctl.conf net.ipv4.tcp keepalive intvl 60

/etc/security/limits.conf nofile (soft/hard) 20000

configuration for Rumprun is specified in Table 4, and the corresponding con-
figuration for OSv is documented in Table 5. Currently, there is no mechanism
in Rumprun to permanently modify the values of the ulimit parameter. As a
workaround, the Rumprun sysproxy facility has be activated by passing the
parameter -e RUMPRUN SYSPROXY=tcp://0:12345 to the rumprun command-
line utility upon start. Using the rumpctrl utility, the configuration values of
the ulimit parameter have to be changed remotely, as exemplified in Listing 1.1.

1 export RUMP_SERVER=tcp://[IP]:12345
2 . rumpctrl.sh
3 sysctl -w proc.0.rlimit.descriptors.soft=200000
4 sysctl -w proc.0.rlimit.descriptors.hard=200000
5 sysctl -w proc.1.rlimit.descriptors.soft=200000
6 sysctl -w proc.1.rlimit.descriptors.hard=200000
7 sysctl -w proc.2.rlimit.descriptors.hard=200000
8 sysctl -w proc.2.rlimit.descriptors.soft=200000
9 rumpctrl_unload

Listing 1.1. The ulimit values of Rumprun have to be changed remotely using the
sysproxy facility and the associated rumpctrl utility.

Table 4. Optimized settings for the Rumprun network stack.

Path Parameter Value

./sys/conf/param.c MAXFILES 20000

./sys/netinet/in.h IPPORT ANONMIN 1024

./sys/netinet/in.h IPPORT ANONMAX 65535

./sys/netinet/tcp timer.h TCPTV KEEP INIT 30*PR SLOWHZ

./sys/netinet/tcp timer.h TCPTV KEEPINTV 30*PR SLOWHZ

./sys/sys/socket.h SOMAXCONN 1024
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Table 5. Optimized settings for the OSv network stack.

Path Parameter Value

./include/osv/file.h FDMAX 0x30D40

./libc/libc.cc RLIMIT NOFILE 20000

./bsd/sys/netinet/in.h IPPORT EPHEMERALFIRST 1024

./bsd/sys/netinet/in.h IPPORT EPHEMERALLAST 65535

./bsd/sys/netinet/in.h IPPORT HIFIRSTAUTO 1024

./bsd/sys/netinet/in.h IPPORT HILASTAUTO 65535

./bsd/sys/netinet/tcp timer.h TCPTV KEEP INIT 60*hz

./bsd/sys/netinet/tcp timer.h TCPTV KEEPINTV 60*hz

./bsd/sys/sys/socket.h SOMAXCONN 1024

./include/api/sys/socket.h SOMAXCONN 1024

Static HTTP Server. We use the Nginx HTTP server (version 1.8.0) to eval-
uate the HTTP performance for static content, as it is available on all tested
platforms with the exception of OSv and MirageOS. As no port of Nginx exists
for MirageOS, we had to trade in the aspect of full commensurability with Nginx
and use the conduit server code example [24] in order not to exclude MirageOS
from the HTTP server discipline. Regarding OSv however, we refrain from run-
ning HTTP benchmarks due to the lacking availability of an adequate HTTP
server implementation.

Our measurement procedure employs the benchmarking tool weighttp [18]
and the abc wrapper utility [10] for automated benchmark runs and varying
connection count parameters. The abc utility has been slightly modified to report
standard deviation values in addition to average throughput values for repeated
measurements. The benchmark utility is executed on a dedicated host to avoid
unsolicited interactions between the HTTP server and the benchmark utility. As
static content, we use our institute website’s favicon2. We measured the HTTP
performance ranging from 0 to 1000 concurrent connections, with range steps of
100 and TCP keepalive being enabled throughout all measurements.

Key-Value Store. In our second application benchmark discipline, we use
Redis (version 3.0.1) as a key-value store. Except for MirageOS, Redis is avail-
able on all tested platforms. In order to rule out disk performance as a potential
bottleneck, we disabled any persistence mechanisms in the configuration files
and operate Redis in a cache-only mode of operation. For executing performance
benchmarks, we use the redis-benchmark utility, which is included in the Redis
distribution. The benchmark utility is executed on a separate host to repre-
sent real-world client-server conditions more accurately and to avoid unsolicited
interactions between the benchmark utility and the Redis server. We measured

2 http://hpi.de/favicon.ico.

http://hpi.de/favicon.ico
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the performance of GET and SET operations ranging from 0 to 1000 concur-
rent connections, with range steps of 100 and both TCP keepalive and pipelining
being enabled throughout all measurements. The CSV-formatted output of redis-
benchmark was aggregated to yield average values and standard deviation using
a simple python script.

6 Results and Discussion

Here, we provide and discuss the results obtained from the benchmark procedure
elaborated in Sect. 5. All values are expressed as mean±SD (n = 30).

6.1 General Properties

Startup Time. The measurements presented in Fig. 3(a) illustrate that both
unikernels and containers can achieve much faster startup times compared
to whole-system virtualization using Ubuntu Linux. The distinct differences
between LXD and Docker demonstrate, that a large portion of the startup time
of a Linux system is not caused by the kernel itself, but that it can be traced
back to the services launched upon startup.
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Fig. 3. A logarithmic scale is used to accommodate a wide range of values. (a) Startup
time in seconds as measured using the procedure documented in [25]. (b) Image size
in MiB as reported by the du utility. (c) Round-trip time in milliseconds as measured
from a dedicated host.
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ImageSize. The results presented in Fig. 3(b) indicate that container approaches
undercut the image size of whole-system virtualization roughly by an order of mag-
nitude, whereas unikernels reduce image sizes by one (Rumprun and OSv) or two
(MirageOS ) additional orders ofmagnitudes compared to containers.The substan-
tial reduction of image sizes can lead to a considerable advantage in IaaS scenarios,
where image size often correlates with instantiation time [22].

Network Latency. The measurements presented in Fig. 3(c) indicate similar
response times for Rumprun, OSv, and the container-based approaches. However,
the choice of the hypervisor strongly affects the round-trip time performance.
Even though para-virtualized network devices were used for both Xen and KVM,
the latter yields much faster round-trip times for all tested guest systems.

6.2 Application Performance

For a statistically meaningful evaluation, an ANOVA and a post-hoc comparison
using the Tukey method were applied. For the hypervisor-based approaches using
both Xen and KVM, the choice of the hypervisor had no statistically significant
effect on application performance. Hence, only the results for KVM are plotted
to avoid visual clutter.

Static HTTP Server. The ANOVA test revealed a significant impact of
the lightweight virtualization technique on the HTTP server performance (p <
0.0001, F (9, 2970) = 3921). Containers introduce a significant amount of over-
head compared to native execution (p < 0.0001), both in native (see Fig. 4(a))
and virtualized environments (see Fig. 4(b)). A likely cause for this overhead
is that all traffic has to go through a NAT in common configurations for both
container-based approaches.

On the side of unikernels, MirageOS is running out of competition, as the
employed conduit server can not be compared with a heavily optimized HTTP-
server such as Nginx. For Rumprun however, it is surprising to see a similar
performance compared to containers. Only for 600 concurrent clients and more,
slight but statistically significant performance improvements can be observed for
Rumprun compared to containers (p < 0.0001). With HTTP-servers heavily rely-
ing on the performance of the operating systems network stack, it can be assumed
that the Linux networking stack has undergone massive optimization efforts that
the NetBSD network stack can hardly compete with. To verify this hypothesis,
we performed the same HTTP benchmark procedure using NetBSD 7.0.1 in
a virtual machine. Here, Rumprun performed distinctly better than NetBSD
(data not shown), which indicates the potential of the unikernel-concept. With
further optimizations of the network stack, Rumprun might achieve similar or
even better performance than a regular Linux-based virtual machine.

In terms of memory footprint, unikernels manage to undercut the demands of a
full-blown Linux instance (see Fig. 5(a)). However, containers still can get by with
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the least amount of memory. The major advantage of containers remains the pos-
sibility of dynamic memory allocation, whereas virtual machines are restricted to
predefining the amount of allocated memory at the time of instantiation. Still,
MirageOS demonstrates that a puristic approach can yield distinctly reduced
memory footprints, even though sophisticated porting efforts are necessary.

Key-ValueStore. TheANOVAtest revealed a significant performance impact of
the lightweight virtualization technique (p < 0.0001, F (7, 7920) = 4099). As illus-
trated in Fig. 6, the key-value store exhibits similar results regarding container-
based approaches and whole-system virtualization: Regardless of native or vir-
tualized deployments, containers come with a significant amount of overhead
(p < 0.0001). In contrast, Rumprun and OSv offer slight but nevertheless sig-
nificant performance improvements compared to Linux under many conditions.
Regarding memory consumption (see 5(b)), containers still offer the highest degree
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Fig. 5. The memory footprints of the static HTTP server scenario (a) and the Key-
Value Store scenario (b) were measured for each virtualization technique.
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of flexibility. While Rumprun still undercuts the memory footprint of Linux, OSv
required distinctly more memory in order to withstand the benchmark.
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Fig. 6. Throughput of Redis (version 3.0.1) was evaluated on native hardware (a) and
in virtualized environments. (b) The plotted values show the throughput for GET
requests as retrieved through the redis-benchmark utility.

7 Conclusion

Performance evaluations of lightweight virtualization techniques thus far have
mostly dealt with application performance and neglected relevant system prop-
erties such as startup latency, image size, network latency and memory foot-
print. Furthermore, many of these studies focused on highlighting the strengths
of one particular approach without comparing it to a broad range of alterna-
tive technologies. To take remedial action, we present an extensive performance
evaluation of containers, unikernels, and whole-system virtualization, focusing
on metrics that are applicable to cloud applications.

Regarding application throughput, most unikernels performed at least
equally well as or even better than containers. We also demonstrated that con-
tainers are not spared from overhead regarding network performance, which
is why virtual machines or unikernels may be preferable in cases where raw
throughput matters. Even though Docker can achieve the shortest startup times
considering the raw numbers, unikernels are competitive due to tiny image sizes
and much shorter startup times than full virtual machines, especially in cases
where the image has to be transferred to the compute host first. These are
just some aspects demonstrating that, while containers have already reached a
sound level of maturity, unikernels are on the verge of becoming a viable alter-
native. Even though we did not see unikernels outperforming a virtualized Linux
instance, our brief comparison between NetBSD and Rumprun also suggested
that unikernels have the potential of outperforming their full-grown operating
system relatives.
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