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Abstract. In a multi-party business process, the choreography defines
the conversational protocol among the parties, so that the visibility of the
parties’ private processes is limited to the set of operations required to
respect such a protocol. Especially in scenarios where physical resources
are exchanged, knowing how a resource owned by a party is managed in
the premises of another party is not possible. Thus, possible misalignments
can be detected too late. At the same time, IoT is increasingly adopted
to enact business processes in many domains: e.g., logistics, manufactur-
ing, healthcare. As, with IoT, smart devices can physically flow through
the different parties involved in a process, their sensing capabilities can
be exploited to improve the process compliance checking. With this work
we propose an approach for compliance checking that mixes commitments
and smart devices. Commitments, declaratively defining mutual contrac-
tual relationships between parties, drive the configuration of smart devices
that, flowing along with the process flow, check their satisfaction and, in
case of misalignment, timely inform the involved parties.

Keywords: Multi-party process compliance · Timed commitments ·
BPMN choreography model · IoT

1 Introduction

In a multi-party business process, to properly achieve the final common goal, the
involved participants agree on a process choreography which must be respected
when the process is being executed. This requires that the participants enforce
their services with respect to the agreed protocol [10]. To this aim, IoT is attract-
ing more and more interest of researchers and practitioners as it can improve the
service monitoring capabilities. Indeed, smart devices are currently adopted in
organizations to analyze the environment in which the service is operating, by
equipping them with sensors able to measure some physical phenomenon (e.g.,
temperature, presence) accurately and continuously to reduce the time-to-repair
in case of error. As long as the objective of monitoring is related to its internal
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activities, a participant has total control over it. Conversely, in multi-party busi-
ness processes, an interaction with the other participants means to consume a
service offered by an external party and the visibility of what is happening inside
the boundary of such external partners is limited to the information that partner
offers. This is typical, for instance, in the logistic domain: e.g., a manufacturer
gives their products to a courier that promises to deliver them to the final cus-
tomer but the information about the status of the goods is usually limited to
the position with a very coarse-grained (e.g., the city of the last deposit).

Based on this scenario, to improve the compliance checking of a multi-party
business process, in this work we assume to couple smart devices to all the phys-
ical resources transferred among the different participants. In this way, as the
smart device could embed several sensors, the owner of the resources can have a
finer-grained data about the status regardless of the participant who is managing
them.1 To support this envisioned scenario, the goal of this work is to propose
an approach to improve the definition and the monitoring of requirements that
holds between participants in multi-party business processes. The design of the
process takes advantage of an extended BPMN choreography meta-model able
to embed social commitments. The resulting choreographies make explicit which
conditions/properties shall be brought during their execution. Moreover, com-
mitments explicitly account for the mutual promises/obligations arising when
multiple parties interact. The explicit definition of a timed commitment lifecy-
cle proposed in this paper that, to the best of our knowledge, has never being
analysed in the literature, allows the commitments to be directly incorporated
into a smart device. Thus, it is possible to track of the progression of the system
and to check the compliance between occurring events affecting the state of the
commitments of interest and the expected lifecycle.

The rest of the paper is organized as follows. Section 2, using a motivating
example taken from the logistic domain, discusses the characteristics and the
challenges in monitoring a multi-party business processes. Section 3 introduces
the approach describing how the commitments are adopted and extended, as
well as integrated in a BPMN choreography model. Section 4 provides the for-
malization of the commitments and their lifecycle validated by some example
taken from our running case study. Finally, Sect. 5 discusses the related work,
while Sect. 6 conclude the paper outlining possible future work.

2 Motivation

To better motivate the proposed approach, the choreography diagram referring
to the logistic domain is reported in Fig. 1. This sample process is enacted by
Sea.Co., a seafood company. Every time a customer submits an order, which
consists of a list of fishes where the quantity for each item and the delivery
date are specified. A negotiation phase with the customer checks the feasibility
of the delivery date, possibly shifting it to a date where the delivery can be
1 Due to the technical nature of the proposed solution, the economical aspects are not

yet considered in this paper.
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Fig. 1. Running example: BPMN Choreography diagram.

guaranteed, and a contract is finally signed by the two parties. At this point,
the Sea.Co. organizes the actual delivery, in particular: (i) selecting the fish
warehouses (among the various that have the required food units), (ii) from each
warehouses a package is shipped to the customer, (iii) splitting the delivery of
each package into phases each of them managed by a courier, (iv) determining
which transportation modes are involved, (v) ultimately defining a timetable,
compatible with the expected delivery date.

Based on this information, several shipments will leave from the selected
warehouses to the customer and, according to the defined plan, each delivery
could consist of several steps, possibly involving different couriers. Yet, each
courier is responsible for a specific phase of the shipment that lasts from the
courier premises to the consignee premises. When the consignee corresponds
to the final customer, the shipment of the related portion of the order can be
considered concluded and an acknowledgment is sent to Sea.Co. Conversely,
when the consignee refers to the courier which has to perform the next step in
the chain, the same process is recursively repeated. On this basis, each shipment
corresponds to different process instances that could differ in terms of activities
performed, resources (e.g., trucks) involved, operating actors (e.g., couriers).

As the compliance checking for these internal processes has been extensively
studied in the literature [10], the goal of this work is to check the compliance of
the choreography: i.e., to check if all the actors operate correctly with respect
to the other actors. In fact, due to the complexity of the delivery, deviations
to the plan may occur. For example, in case of unexpected traffic, some phase
might be dynamically rearranged (e.g., changing the route and/or the trans-
portation mode). This, in turn, may create a ripple effect, requiring to conse-
quently rearrange one or more consequent phases, so as to guarantee that the
final delivery date is respected. On the other hand, the contract established
between the Sea.Co. and the customer fixes a series of constraints (or, to be
more precise, commitments) that the involved parties have to, or should, honor
no matter how the process is dynamically rearranged. Now, the question is:
“how can the Sea.Co. and the customer check the compliance of the process
that is being executed?”. Generally speaking, this question can be reformulated
as: “how can every actor involved in a multi-party business process be enabled
to check if the other actors are behaving correctly with respect to the initial
agreement?”
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Fig. 2. Centralized monitoring

To address this question, centralized solutions [14] are available (see Fig. 2).
In addition to the infrastructure enabling the execution of the process based on
the exchange of messages, a central monitoring node is responsible to receive all
the updates and to inform about the process instance execution, as well as to
identify possible deviations with respect to the expected behavior (defined by
the process model). Although the deviation detection can be not that complex
to implement as all the needed information are known, the central node needs
to know in advance which will be the entity that will publish or subscribe to
the information about the status of the process. Moreover, each entity needs
to support the protocols adopted for the communication and if a new entity
will be included in the process to manage a deviation, it must adhere to these
protocols. For instance, when Courier2 realizes the refrigerator on the van has
broken, it decides to involve Courier3 to deliver the fish a safe-mode and, to
make the centralized approach working, late binding mechanisms are required
to make this new actor connected to the monitoring system.

The approach presented in this paper aims to overcome to this limitation
extending the usage of smart devices not only to monitor how the tasks operat-
ing on a resource are behaving, but also which are the status of the resources.
As the resources should move among the participants following what modeled
in the choreography, monitoring if the status of the resources give some clue on
how the process choreography evolves (see Fig. 3). The adoption of this approach
gives two types of advantages. On the one side, instead of leaving to the involved
parties the burden of communicating the status of the process instance, auto-
nomic systems implemented on smart devices are paired to the shipping goods
to continuously monitor them and, when requested, to inform about the status
of the package. Such smart devices are configured by the owner of the goods, i.e.,
the Sea.Co. company in our realistic scenario, before leaving the warehouses.

Moreover, smart devices are responsible not only to sense the environment
in which they are immersed, but they are also configured to host portions of the
process model which include the commitments stating how, when, and where
the smart device should be managed. This, in turn, allows to timely identify
possible deviations and establish new, compensating commitments to handle
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Fig. 3. IoT-based monitoring architecture.

which mutual obligations shall be fulfilled when a deviation is detected. In this
way, the knowledge about the status of the process should not be a privilege
only of the owner of the smart device, but it can be made available to all the
parties2.

3 Commitments in Multi-party Business Processes

In our approach we advocate the use of (social) commitments [4,5,16] as a way for
specifying the conditions under which the multi-party business process should be
executed. This section briefly introduces commitments and their lifecycle (also
called commitment machine in the literature), and then provides an informal
description of how commitments are used in our approach; a more formal defin-
ition of commitments, and how they can be managed, is introduced in the next
section. The modeled commitments will be used to configure the smart devices,
so as to make them able to check if actual instantiations of those commitments
are indeed satisfied or not. To informally describe what is a commitment and
how it can be useful for our purposes, we adopt the graphical notation intro-
duced in [16] (see Fig. 4). More specifically, a commitment involves two actors:
the debtor, who is willing to offer a service under certain circumstances, and
a creditor, who takes advantage of this service. Antecedent and consequent are
two logic expressions which define under which conditions the service must be
provided and consumed. Focusing on the lifecycle, a commitment is initially null
and needs to be created. Once created, if the antecedent does holds it goes to a
detached state, otherwise in the conditional one. The latter represents a state in
which the commitment exists but is not yet active, as the antecedent still needs

2 For the sake of simplicity, this paper does not address privacy issues. These are
aspects that definitely need to be investigated in future work.
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Fig. 4. Commitment notation (left) and lifecycle (right) [16].

to become true and consequently trigger the actual obligation of the debtor to
make the consequent true as well. This is what happens in the detached state.
When the consequent holds, then the commitment is declared as satisfied ; it also
might happen that the commitment is released or – only if it is in the condi-
tional state – canceled. The operations are under the responsibility of the cred-
itor and debtor of the commitment, and may be employed to flexibly evolve the
multi-party interaction. Such a flexibility distinguishes social commitments from
normative (in particular, deontic) approaches where obligations are considered
in a rigid, immutable way. Timeouts can be also attached to the antecedent and
consequent to force their validity for a period of time. Indeed, if the antecedent
timeout expires then also the commitment is declared as expired. Conversely,
if the consequent timeout expires then the commitment is declared as violated
as the debtor was not able to perform what it has been promised although the
pre-condition for its fulfillment (i.e., the antecedent) were holding.

3.1 Commitment Templates

As well-exemplified in this survey [15], commitments are typically used to
declaratively capture (business) interactions, abstracting away from control-flow
details. In this light, commitment-based approaches are usually considered com-
plementary to activity-/flow-centric ones. The first distinctive feature of our con-
tribution is to establish a synergy between these two paradigms. To do so, we
propose an extension of commitments to make them attachable to BPMN chore-
ography models, and in particular to choreography activities. In this way, the
choreography takes care of the flow-related constraints, whereas commitments
focus on the contractual nature of the collaboration. Specifically, a choreography
activity provides the context of existence for certain commitments. This means
that, at runtime, whenever an instance for such an activity is executed, corre-
sponding instances for those commitments are created and evolved in accordance
with the course of execution. In other words, the lifecycle of choreography activ-
ities becomes connected to that of its attached commitments. More details on
this aspect, which to the best of our knowledge has never been explored in the
past, are given in Sect. 4.1.
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Fig. 5. Types of commitments.

In particular, we introduce four types of commitments classified along two
orthogonal dimensions (related shapes are shown in Fig. 5):

• Importance: we distinguish between hard (solid line) and soft commitments
(dashed lines). In the former case the consequent must be valid to consider
the commitment fulfilled. In the latter case, the creditor is expecting that the
debtor will do its best to fulfill the commitment. This distinction provides the
basis for a fine-grained handling of commitment violations and corresponding
compensations.

• Time of validity: the linkage between commitments and choreography activi-
ties calls for a distinction between persisting (cycle icon decoration) and goal
commitment (target icon decoration). In the former case, the consequent must
be valid during the execution of its target activity, possibly even spanning its
entire execution. In the latter case, the consequent must become valid when
the activity completes.

To discuss our extension more formally, we introduce the concept of commit-
ment template: a schema for a multitude of “ground” commitments reflecting the
same contractual relationship, but instantiated on different activity instances,
that is, possibly different actual participants and/or timestamps and/or targeted
objects. This reflects the dual nature of commitments: at design time, as mod-
eling abstractions to capture “types” of business relationships, and at runtime,
as computational abstractions to track the evolution of “instances” of such rela-
tionships. The importance of this duality has been increasingly recognized in the
literature, constituting an interesting point of departure from standard logical
approaches to commitments [4,6,12].

In our setting, the notion of commitment template is used to extend the
standard BPMN choreography meta-model, as depicted in Fig. 6. Concretizing
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Fig. 6. Commitment-aware extension of the BPMN choreography metamodel



186 M. Montali and P. Plebani

what discussed above, the entity type CommitmentTemplate captures a com-
mitment template by declaring its target ChoreographyActivity. Among the
Participant (types) referenced by the choreography activity, two are selected
as debtor and creditor of the commitment template. This induces the constraint
that, at runtime, each instance of the commitment template will relate a debtor
d and a creditor c, with the constraint that d and c participates to the activity
playing the corresponding roles attached to the commitment template. Consider,
e.g., a template established between a Warehouse and a Courier in the context of
the choreography activity start transport. At runtime, commitment instances
for that template will be created and evolved by relating actual couriers and
warehouses, in turn involved in the execution of instances of start transport.
Alongside CommitmentTemplate, we also extend the choreography meta-model
with the notion of SmartObjType, which models a type of smart object that
may exist in the system. It is then possible to (optionally) declare the focus of a
commitment template, relating it to a smart object type. This association has a
twofold nature: on the one hand, it explicitly tracks whether the reason/subject
of a commitment corresponds to a physical (smart) object; on the other hand, it
provides a context for querying the characteristics/data of such an object. This,
in turn, provides the basis for defining the antecedent and consequent of the com-
mitment template. Additionally, a commitment template comes with a number
of attributes (cf. Fig. 6). We review them one by one. The strength of a com-
mitment template indicates whether the commitment is hard or soft, whereas
the type indicates whether the template has a goal or persistence nature. Such
two attributes determine the graphical appearance of commitment templates, as
specified in Fig. 5. The two attributes CondA and CondC respectively identify the
antecedent and consequent conditions of the commitment template. Such condi-
tions may be concretely specified in different query languages, possibly expressed
over the attributes/properties of a smart object type. Such query languages may
range from standard SQL when commitments insist over relational data (such
as, e.g., in the case of [6,12]), to query languages over dynamically evolving data
such as the CQL continuous query language or proprietary languages to query
sensor data provided by smart objects. For the sake of generality, we abstract
away from the specific query language at hand. The remaining attributes are
used to express quantitative temporal constraints on the commitment template.
These are used to refine the representation of the antecedent and consequent,
defining relative temporal windows within which they are checked. Specifically,
minA and maxA respectively denote the minimum and maximum delay within
which the antecedent condition has to be achieved so as to detach the com-
mitment. The reference point for these two extremes is the time at which the
commitment is created, which coincides with the starting time of an instance
of its target activity starts.3 Similarly, minC and maxC respectively denote the
minimum and maximum timestamp within which the consequent condition has
to be achieved or maintained so as to declare the commitment as satisfied. For

3 Absolute temporal constraints can be seamlessly realized as syntactic sugar, schedul-
ing the execution of the target activity at a fixed time.
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the minC-maxC time window, two reference points may be selected: the creation
time or the detach time. This is specified through the refC attribute. The latter
choice is particularly relevant when the time window associated to the consequent
has to be determined depending on the exact moment when the commitment
was detached, i.e., the moment where a “conditional” obligation turned into an
actual one. In the spirit of [13], for goal commitments minC represents the mini-
mal delay at which the goal has to be achieved, while maxC captures the deadline
of the goal; for persistence commitments, instead, the time window delimited by
minC and maxC is the interval within which the consequent is expected to hold.
Differently from [13], though, the achievement/maintenance of the commitment
consequent are bound to that of its target activity. In this light, goal commit-
ments implicitly impose temporal constraints on when an activity is expected
to end, whereas persistence commitments may be released by the completion of
an activity.

3.2 Modeling Commitments

The proposed extension of the BPMN choreography metamodel enables the dec-
oration choreography activities with commitments. Thus, a process designer can
specify not only the conversation among the parties, but also which are the con-
tractual obligations and their characteristics. By connecting the commitments
to a BPMN Choreography model we link the lifecycle of commitments to the
lifecycle of the activities. Referring to the example shown in Fig. 7, there is a
goal commitment in which the Sea.co. is the debtor, while the consignee is the
creditor. As the commitment is attached to the whole activity, and no explicit
antecedent is included in the commitment, then the commitment becomes imme-
diately detached when the activity starts. This shows one of the benefits obtained
through the commitment-activity linkage. Being a goal commitment, we are
expecting that the consequent becomes true when the activity ends. In more
details, the diagram is stating that the fish has to be delivered within 25 days.
This can be obtained by setting minC = 0 and maxC = 25d for the commitment
template, with reference point the detach time (which, in this case, coincides
with the creation time). As said, in this case the antecedent is implicitly linked
to when the activity starts. Similarly, the validity of the commitment is related
to the termination of the activity. Thus, if the commitment consequent (i.e.,
fish delivery) is achieved when the activity ends, then it will be considered as
satisfied, otherwise it will be considered violated. This implicitly sets a deadline
on the handle order activity, since whenever it takes more than 25 days, then
the commitment becomes violated.

In the same process, the warehouse and the first courier agrees on another com-
mitment. In this case, being a soft commitment, the start transport activity should
possibly be executed in 5 days. Similarly to the previous case, this goal commit-
ment moves to the detached state when the fish is ready to leave the warehouse,
while it can be considered satisfied if the consequent is verified, i.e., when the food
is on board of the first courier. This latter condition can be specified by querying
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Fig. 7. Example of hard/goal and soft/goal of commitments.

a positioning sensor for the smart device attached to the food container, or by
simply checking when the start transport activity completes.

When the antecedent is specified, like the case in Fig. 8, the activation of the
commitment occurs when the activity starts and the antecedent becomes true
(maybe at a later time). In our running example, this occurs when the courier
responsible of a transportation phase signals that the refrigerator used to trans-
port the fish is broken. If multiple couriers are involved in the SeaCo-to-customer
transportation, each one will be attached to an instance of the multimodal trans-
port activity, and in turn to an instance of such a commitment template. When
the refrigerator of a courier gets broken, a corresponding instance of such a com-
mitment is detached and, contrarily from the previous cases, starts monitoring
the maintenance of a property related to the fish temperature, being a persisting
commitment. In particular, the consequent in this case is not expected to hold
when the multimodal transport activity ends, but for the whole time window
that spans from detach moment, to that marking the completion of the activity.
This means that, while the multimodal transport activity is under execution,

Fig. 8. Example of hard, persisting commitment.
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as soon as the fish temperature reaches 5 ◦C, the commitment instance will
become violated. Also in the case, we may declare that the commitment tem-
plate focuses on a type of smart object that is attached to a fish container, and is
equipped with a sensor providing timely information about the fish temperature.

4 Tracking Commitments

When the commitments are applied to a physical resource that is exchanged
among the parties, we propose to use smart devices to monitor if the resource is
managed according to the defined commitments. When doing this, we need to
be sure that the smart device is able to understand if the actors that are man-
aging the resources are respecting the defined obligations. Before entering into
the details of the timed-commitment lifecycle which puts the formal basis for
managing the evolution of a commitment (that has been informally introduced
in the previous section), it is fundamental to clarify how, starting from a BPMN
Choreography model extended with commitments, is possible to derive the asso-
ciations between smart devices and commitments to be tracked. Assuming that
for each resource to be monitored one smart device is used, the configuration of
the smart device DR related to a resource R requires to perform the following
steps:

• Identification of relevant activities: being A the set of Choreography
Activity, AR ∈ A corresponds the subset of ChoreographyActivity for
which the resource is either the receiving or the sending message.

• Identification of relevant commitments: being C the set of Commitment
Template, CR ∈ C corresponds to the subset CommitmentTemplate for which
the debtor or the creditor refers to one of the Participant in AR.

Being CR the commitments to be tracked by the smart devices DR, we assume
that the smart device supports the needed capabilities to check the antecedent
and the consequent of these commitments: e.g., the smart device monitoring a
fish package will have a sensor for temperature on-board, and it is able to recog-
nize (manually or automatically) when an activity starts or ends. Once deployed
on a smart device, the tracking of a commitment is possible by considering the
evolution of a commitment template as expressed by the timed commitment
lifecycle formalized in the next section.

4.1 Timed Commitment Lifecycle

Consider a specific commitment template, indicating its target activity and
debtor/creditor types, and providing values for its various attributes. At a given
time, an instance of such a commitment can be in one of the states depicted
in its commitment lifecycle (cf. Fig. 4). We now formally ground this abstract
lifecycle, indicating when, and how, a transition between states occur. More
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Fig. 9. Formalization of the timed commitment lifecycle with a target activity; tick
denotes an arbitrary event, just used to inform the commitment machine about the
current time.

specifically, a transition occurs in response to events, possibly depending on
the validity of the commitment antecedent/consequent. We consider three types
of events. First, we have activity-related events, i.e., the start and end of (an
instance of) the choreography activity targeted by the commitment. Second,
we have explicit commitment manipulation events, used to suspend, release,
reactivate, or cancel a commitment instance. Interestingly, such events may
actually be automatically generated in response to events issued on the activity
lifecycle. For example, the designer may decide that whenever a choreography
activity instance is suspended, then all commitment instances attached to it
will be suspended, too. This is just an example of the benefits of our approach.
Third, Tick events, represents the current time flowing. These events are useful
to communicate the new current time to the commitment lifecycle, and in turn
evaluate the quantitative temporal conditions attached to it [4]. Ticks may be
internally generated, or communicated from the external environment, based on
who is aware of the flow of time.

With these events at hand, we devise the timed commitment lifecycle of
Fig. 9, where the keyword this refers to the specific commitment template of
interest, function ct() returns the time associated to the currently processed
event, while tc and td get respectively assigned the time at which the commitment
is created or detached. Our approach formalizes the abstract diagram of Fig. 4
with concrete, testable transitions, employing the following macros4:
4 The commitment machine we propose enriches standard commitment machines from

the literature, adding temporal conditions on transitions. It is worth noting that, as
usual in the commitment literature, the interpretation of such different states, and
the corresponding set up of reactions, sanctions, and countermeasures, has to be
handled in a domain-specific way on top of the commitment machine, not within the
machine itself.
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• BeforeAWin = ct() ≤ tc + this.minA checks that the current time is before
the antecedent time window.

• InAWin = ct() > tc + this.minA ∧ ct() ≤ tc + this.maxA checks that the
current time falls within the antecedent time window.

• AfterAWin = ct() ≥ tc + this.maxA checks that the current time is after the
antecedent time window.

• BeforeCWin, InCWin and AfterCWin reconstruct the previous three macros
for the consequent time window. The additional complication, here, is that
the reference point depends on the this.refC attribute. E.g., InCWin is
formalized as:

{
ct() > tc + this.minC ∧ ct() ≤ tc + this.maxC if this.refC = creation

ct() > td + this.minC ∧ ct() ≤ td + this.maxC if this.refC = detach and td �= null

• CondAHolds and CondCHolds are respectively true if this.condA and
this.condC hold at time ct().

We briefly comment on the formalization. Call active a commitment (instance)
that is either conditional or detached. A commitment instance becomes active
when an instance of its target activity starts. Specifically, the commitment
instance becomes conditional or detached depending on whether its antecedent
condition evaluates to true at the creation time, and its antecedent time win-
dow has a minimum displacement of 0 (minA = 0). A conditional commitment
instance becomes:

• Expired as soon as the deadline of its antecedent time window, calculated
w.r.t. its creation time, is over.

• Terminated if its target activity instance ends (marking the fact that the
commitment instance never required an actual obligation to be fulfilled).

• Detached when, within its associated antecedent time window (calculated
w.r.t. the creation time), its antecedent condition evaluates to true.

The explicit cancellation of an active commitment instance has the effect of ter-
minating or violating the commitment instance, depending on whether it has
been detached or not. The other transitions of an active commitment instance
depend on whether it has a goal or persistence nature. In the first case, it
becomes:

• Violated as soon as the consequent time window (calculated w.r.t. the creation
or detach time depending on the refC attribute) expires, witnessing that
the target activity instance has not completed on time. If the commitment
instance is detached, also a premature completion of the activity instance
leads to violation.
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• Satisfied if its corresponding activity instance completes on time, and in a
moment in which the consequent condition holds.

Conversely, in the latter case, it becomes:

• Violated when, during the consequent time window, the consequent condi-
tion becomes false, thus witnessing that the promised condition has not been
maintained.

• Satisfied as soon as the consequent time window passes or its corresponding
activity instance is completed, witnessing that the consequent condition has
been continuously maintained until this time point.

Notice the complementary behavior of goal vs. persistence commitments in
Fig. 9, when the commitment is detached. A goal commitment is satisfied if
its target activity is completed at a time that falls within the consequent time
window, and at which the consequent holds; it is instead violated if the deadline
of the consequent time window expires while the commitment is still in the
detached state. Contrariwise, a persistence commitment is violated during the
consequent time window as soon as the consequent is not maintained anymore,
whereas it gets automatically satisfied if the commitment is still detached when
the consequent time window expires.

4.2 Implementation

The lifecycle presented in the previous section can be directly used as an actual
computational artifact during the system execution, tracking the evolution of
commitment instances as new events occur. When the commitment instance
resides on a smart object, checking the antecedent/consequent amounts to issue
the corresponding query on the data maintained the object, and/or retrieved
through its sensors. The actual implementation obviously depends on the spe-
cific programming language of choice, and the computational resources available.
To show the feasibility of the implementation, we have encoded the different
transition rules of the lifecycle in the (Reactive) Event Calculus (REC) [3], a
logic-based calculus of events that has been already used to formalize and moni-
tor business constraints [13] and timed commitments [4]. The query language to
express commitment conditions is in this case natively provided by REC itself.

The complete formalization in REC, together with the encoding of our case
study (cf. Sect. 3.2) and its embedding into a monitoring test application, can
be downloaded from http://tinyurl.com/kd8wtre. Figure 10 shows the result pro-
duced by REC on a hypothetical partial run of our case study.

http://tinyurl.com/kd8wtre
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Fig. 10. Monitoring timed commitment instances in REC.

5 Related Work

Checking the compliance of a business process requires to verify that the execu-
tion of a process is respecting what has been conceived by the process designer.
In the literature, there are several approaches and solutions able to cope with
this issue and [10] organizes them in a systematic literature review. Among the
dimensions of analysis, the survey discusses the compliance monitoring function-
ality that a monitoring system should support and in particular the importance
of considering time, data, and resources in the constraints. Going towards this
direction, and similarly to [2] where collaborative processes modeled with BPMN
has been extended to include monitoring instructions, our approach extends the
BPMN choreography model to attach commitments where constraints on time,
data, and resources are possible to be defined.

Focusing more on the peculiarities of cross-organizational processes, [9] has
identified some research challenges among which there is the need to model
cross-organizational compliance rules. To this aim, we rely on commitments [15],
exploited in [16] to model the interaction among several participants inspired by
the agent-based system literature, and translated into automaton as suggested
in [7,12]. At the same time, [8] focuses on the way in which the compliance rules
are specified and verify if there are not conflicts between them. Even though
approaches for monitoring timed extensions of commitments have been already
proposed in the past [5,15,16], the explicit definition of a timed commitment life-
cycle proposed in this paper, to the best of our knowledge, has never been devised.
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Once the constraints are modeled, their verification can be done a-posteriori,
through log analysis [1], or at run-time [11]. Our approach is close to the second
case and, as a element of novelty, we assume to exploit smart devices to perform
the compliance checking. Indeed, smart devices are now adopted to execute some
of the tasks composing a business process, as well as to monitor the status of
the resources manged in the process [17,18]. As their computational power is
getting more and more significant, we investigated the possibility to exploit this
capabilities.

6 Conclusions

In this work, we have introduced an approach for checking the compliance of
a multi-party business process by extending BPMN choreography model with
timed commitments. Classical commitments have been extended in this work to
consider hard and soft constraints as well as persisting and goal commitments.
The resulting enriched choreography model can be used to properly configure
smart devices that will be in charge of checking the validity of those commitments
due to the proposed lifecycle of extended commitments. Although this approach
is in its infancy, we can now check possible deviations of process instance in a
distributed way exploiting smart devices, inheriting the constraints defined at
design-time. Nevertheless, there are several limitations that need to be addressed
in future work. Firstly, although if the control-flow that can be defined for a
choreography model is more simple than what possible to express in a collab-
oration diagram, how to manage switches and loops is currently an open issue
that needs to be investigated. Furthermore, the proposed approach lives on the
assumption that the communication is always up, and the smart device is always
reachable. We will extend or approach to by considering reliability and commu-
nication failures.
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Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and
Action. LNCS, vol. 7360, pp. 123–146. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29414-3 8

http://dx.doi.org/10.1007/11575771_11
http://dx.doi.org/10.1007/978-3-642-29414-3_8
http://dx.doi.org/10.1007/978-3-642-29414-3_8


IoT-Based Compliance Checking of Multi-party Business Processes 195

4. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring social
commitments using the event calculus. J. Auton. Agents Multi-agent Syst. 27(1),
85–130 (2013)

5. Chopra, A.K., Singh, M.P.: Generalized commitment alignment. In: Proceedings
of the International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015)

6. Chopra, A.K., Singh, M.P.: Cupid: commitments in relational algebra. In: Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence. AAAI Press (2015)

7. Ferrario, R., Guarino, N.: Commitment-based modeling of service systems. In:
Snene, M. (ed.) IESS 2012. LNBIP, vol. 103, pp. 170–185. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28227-0 13

8. Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance
of cross-organizational business processes. In: Proceedings of the International Con-
ference on Business Process Management (BPM 2013) (2013)

9. Knuplesch, D., Reichert, M., Mangler, J., Rinderle-Ma, S., Fdhila, W.: Towards
compliance of cross-organizational processes and their changes. In: La Rosa, M.,
Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 649–661. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36285-9 65

10. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.: Com-
pliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015)

11. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol.
6896, pp. 132–147. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2 13

12. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware
commitment-based multiagent systems. In: Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2014)

13. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring business constraints with the event calculus. ACM TIST 5(1), 17 (2013)

14. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated
SLA monitoring for web services. In: Feridun, M., Kropf, P., Babin, G. (eds.)
DSOM 2002. LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002). doi:10.
1007/3-540-36110-3 6

15. Singh, M.P.: Commitments in multiagent systems: some history, some confusions,
some controversies, some prospects. In: The Goals of Cognition: Essays in Honor
of Cristiano Castelfranchi, pp. 601–626. College Publications (2012)

16. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Trans. Serv. Comput. 5(3), 305–318
(2012)

17. Thoma, M., Meyer, S., Sperner, K., Meissner, S., Braun, T.: On IoT-services:
survey, classification and enterprise integration. In: 2012 IEEE International Con-
ference on Green Computing and Communications (2012)

18. Tranquillini, S., Spieß, P., Daniel, F., Karnouskos, S., Casati, F., Oertel, N., Mot-
tola, L., Oppermann, F.J., Picco, G.P., Römer, K., Voigt, T.: Process-based design
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