
On Abstraction-Based Deadlock-Analysis
in Service-Oriented Systems with Recursion

Mandy Weißbach(B) and Wolf Zimmermann

Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06120 Halle, Germany

{mandy.weissbach,wolf.zimmermann}@informatik.uni-halle.de

Abstract. We examine deadlock analysis for service-oriented sys-
tems with unbound concurrency and unbound recursion. In particular,
abstraction-based approaches are considered, i.e., abstract behavior mod-
els are derived from service implementations and composed according to
the architecture of service-oriented systems. It turns out that there are
some limitations of Petri-net-based approaches, e.g., such as workflow
nets if deadlocks are analyzed. We show an example that ends in a dead-
lock if recursion is considered but on a Petri-net-based abstraction, it
may regularly end.

Keywords: Process rewrite systems · Deadlock · Workflow nets

1 Introduction

To reduce the risk of unintended behavior (e.g., deadlocks or livelocks [14]) of
service-oriented systems due to composition, many approaches are proposed,
e.g., protocol conformance checking [2,10,11] or deadlock analysis [13].

In this paper we focus on an abstraction-based approach for deadlock analysis
of service-oriented systems including concurrency and recursion.

Approaches, e.g., van der Aalst’s workflow nets [13] are Petri-net-based and
used to analyze deadlocks. They do not consider recursion, recursive callbacks
and synchronization. These approaches are refinement-based, i.e., the behavior
of a service is modeled as a workflow net and then refined to the service imple-
mentation. Workflow nets are used to check for the absence of deadlocks. In
contrast, we provide an abstraction-based approach, i.e., the behavior is auto-
matically abstracted from the service’s implementation using classical compiler
technologies [1] covering all kinds of programming concepts (synchronous and
asynchronous procedure calls, synchronization, cf. Table 1). Motivation for an
abstraction-based approach is that there are many services not developed accord-
ing to a refinement-based approach. Furthermore, even if they have been devel-
oped initially by a refinement-based approach, it is unlikely that programmers
consistently maintain the implementation and its abstraction.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 168–176, 2017.
DOI: 10.1007/978-3-319-67262-5 13

On Abstraction-Based Deadlock-Analysis in Service-Oriented Systems 169

In [15] it was shown that abstraction from recursion may lead to false pos-
itives for protocol conformance checking. In this work, we examine the same
question for deadlock analysis. We compare Petri-net-based abstractions with
abstractions including recursion. The behavior of recursive procedures and syn-
chronous procedure calls corresponds to the LIFO principle and requires there-
fore a stack [8] to trace the calling context. Process rewrite systems (PRSs) are
an extension of Petri nets by stacks [9] and therefore PRS allow to model the
behavior of (recursive) procedure calls, concurrency (fork), synchronization and
exception handling [6].

Furthermore, [6] shows that there is a correspondence between process alge-
braic expressions defined by an abstraction based on process-algebras and cactus
stacks (introduced as tree of stacks by [4]). Therefore, we focus on PRSs which
include pushdown systems as well as Petri nets. Checking reachability and dead-
locks remains decidable in process rewrite systems [9].
Our main results are:

– Each trace of a process rewrite system based abstraction corresponds step by
step to a trace of the corresponding Petri-net-based abstraction.

– A (reachable) deadlock in the process rewrite system based abstraction does
not necessarily correspond to a deadlock in the corresponding Petri-net-based
abstraction.

This paper is organized as follows: In Sect. 2 we introduce service-oriented sys-
tems, Mayr’s process rewrite systems according to [9] and we show the abstrac-
tion and composition process of a service-oriented system including unbound con-
currency and unbound recursion. Section 3 discusses the correspondence between
Petri net and process rewrite system abstractions. Furthermore, it shows that
reachable deadlocks in the process rewrite system based abstraction do not corre-
spond to deadlocks in the corresponding Petri-net-based abstraction. Section 4
discusses the related work and Sect. 5 concludes with a short overview of the
results and gives an outlook.

2 Foundations

2.1 Services and Service-Oriented Systems

A service-oriented system is composed by two or more services which communi-
cate over a required and provided interface, cf. Fig. 1. We assume that a service
A is an implementation with a provided interfaces IA, where an interface is a
set of procedure signatures. The required interface Rs of service S is the set of
procedures of other services called by S, cf. Fig. 1. It is possible that a service
calls a procedure of other services, e.g., service S calls the required procedure a
of service A provided by the provided interface IA.

Procedures of an interface can be either called synchronously (procedure a of
interface IA) or asynchronously (procedure b of interface IB). If a synchronous
procedure is called, it blocks the caller until the callee has been completed. If an

170 M. Weißbach and W. Zimmermann

AI
BI

DI

CI

RD

();asyncvoid c

Interface IC {

}

();avoid

r :c

i :c

i :d
r :d

i :b
r :b

void main(){

return;

}

q :0

q :1

call a
SRService S Service A RA

Service B

Service C

Service D
Interface {I

();
D

dvoid }

Interface {I

();asyncvoid
B

b }

}
Interface IA {

Bimplements I

Cimplements I

implements ID

Aimplements I

void d(){

}
 call a
return

void c(){
//something no sync/ no call

return; }

void b(){
//something no sync/ no call

return; }

void a(){

else
 call c
if e2

if e3
 sync b
else

}return

if e1
 call b

 call d

 sync c

i :

r :a

a

a1

a2

a3

a4

a5

a6

a7

q :

q :
q :
q :
q :
q :

q :

Fig. 1. A service-oriented system with services S, A, B, C and D. Service S acts as a
client. Procedure b, c are asynchronous and a, d synchronous procedures.

e → e′

e ⇒ e′ (R)
e ⇒ e′

e.s ⇒ e′.s
(S)

e ⇒ e′ e′ ⇒ e′′

e ⇒ e′′ (T)

e ⇒ e′

e ‖ s ⇒ e′ ‖ s
(P1)

e ⇒ e′

e ‖ s ⇒ e′ ‖ s
(P2)

u ⇒ u
(L)

e, e′, e′′, s ∈ PEX (Q)

Fig. 2. Inference rules for the definition of the derivation relation in a PRS

asynchronous procedure is called then the callee and the caller continue their exe-
cution in parallel. They are either synchronized by an explicit statement (sync,
program point qa6 of service A) on the caller site or when both, caller and callee
reach their return statement, cf. Fig. 1 ra of service A.

2.2 Process Rewrite Systems

Mayr presented a unified view of Petri nets and several simple process algebras
by representing them as subclasses of the general rewriting formalism Process
Rewrite Systems [9]. It is based on rewrite rules on process-algebraic expressions.
The set PEX (Q) of process-algebraic expressions over a finite set Q (atomic
processes) is the smallest set satisfying:

(i) Q ⊆ PEX (Q),
(ii) If e, e′ ∈ PEX (Q), then e.e′ ∈ PEX (Q) and e ‖ e′ ∈ PEX (Q)

(sequential and parallel composition, respectively).

The parallel composition is associative and commutative. The sequential
composition is associative but not commutative.

On Abstraction-Based Deadlock-Analysis in Service-Oriented Systems 171

Table 1. Control-flow abstractions to (G,G)-PRS and (P,P)-PRS

Control Structure Abstraction Control Structure Abstraction

qi : assignment;
qj : · · ·

(G,G)
qi → qj
(P,P)
qi → qj

Synchronization
qi : sync b;
qi+1 : · · ·
b{ · · ·
qj : return}

(G,G)
qi ‖ qj → qi+1
(P,P)
qi ‖ qj → qi+1

qi : while e{
qj : · · · }
qk : · · ·

(G,G)
qi → qj
qi → qk

(P,P)
qi → qj
qi → qk

Synchronous
procedure a
qi : call a;
qi+1 : · · ·
a{qj : · · ·
qk : return}

(G,G)
qi → qj .qi+1
qk.qi+1 → qi+1
(P,P)
qi → qj
qk → qi+1

qi if e{
qj · · ·
qk last

program point}
else{

ql · · ·
qm last

program point}
qn · · ·

(G,G)
qi → qj
qi → ql
qk → qn
qm → qn
(P,P)
qi → qj
qi → ql
qk → qn
qm → qn

Asynchronous
procedure b
a{ · · ·
qi call b;
qi+1 · · ·
qj return
} · · ·
b{
qk : · · ·
ql : return}

(G,G)
qi → qi+1 ‖ qk
qj ‖ ql → qj
(P,P)
qi → qi+1 ‖ qk
qj ‖ ql → qj

Definition 1 (Process Rewrite Systems). A process rewrite system (short:
PRS) is a tuple Π � (Q, q0,→, F) where

(i) Q is a finite set (atomic processes),
(ii) q0 ∈ Q (the initial state, an atomic process),
(iii) →⊆ PEX (Q) × PEX (Q) is a set of process-rewrite rules,
(iv) F ⊆ Q (the set of final processes).

The PRS Π defines a derivation relation ⇒⊆ PEX (Q) × PEX (Q) by the
inference rules in Fig. 2.

PRSs where no rule contains a sequential composition operator ((P,P)-PRS) are
equivalent to Petri nets [9]. Hence, the following definition applies to general
process rewrite systems ((G,G)-PRS) as well as to Petri nets.

Definition 2. Let Π = (Q, q0,→, F) be a PRS. A process algebraic expression
e ∈ PEX (Q) is reachable iff q0 ⇒ e. A reachable e ∈ PEX (Q) is a deadlock iff
there exists no e′ ∈ PEX (Q) \ F , e′ �= e such that e ⇒ e′.

2.3 Abstraction and Composition Process

Table 1 shows different control structures and their abstraction to (P,P)-PRS
and (G,G)-PRS. The main principle is that each statement corresponds to a
program point (which refers to a statement). The most important control struc-
tures are contained in Table 1, atomic statements, e.g., assignments, condition-
als, synchronous and asynchronous procedure calls and synchronizations. Loops

172 M. Weißbach and W. Zimmermann

Source Code of Fig. 1 (G,G)-PRS (P,P)-PRS

main{ q0 : call a
q1 : return; } q0 → ia.q1 q0 → ia

a{ia : if e1
qa1 : call b

else
qa2 : call c
qa3 : if e2
qa4 : call d
qa5 : if e3
qa6 : sync b

else
qa7 : sync c
ra : return}

ia → qa1, ia → qa2
qa1 → qa3 ‖ ib
ra ‖ rb → ra
qa2 → qa3 ‖ ic
ra ‖ rc → ra
qa3 → qa4, qa3 → qa5
qa4 → id.qa3
rd.qa5 → qa5
qa5 → qa6, qa5 → qa7
qa6 ‖ rb → ra
qa7 ‖ rc → ra
ra.q1 → q1, ra.rd → rd

ia → qa1 ia → qa2
qa1 → qa3 ‖ ib
ra ‖ rb → ra
qa2 → qa3 ‖ ic
ra ‖ rc → ra
qa3 → qa4, qa3 → qa5
qa4 → id
rd → qa5
qa5 → qa6, qa5 → qa7
qa6 ‖ rb → ra
qa7 ‖ rc → ra
ra → q1, ra → rd

b{ ib : calc(no call/sync)
rb : return} ib → rb ib → rb

c{ ic : calc(no call/sync)
rc : return} ic → rc ic → rc

d{ id : call a
rd : return} id → ia.rd id → ia

Fig. 3. Abstractions of the service-oriented system in Fig. 1

and case statements are abstracted similarly to conditionals. For service-oriented
abstractions, the control-flow abstraction rules can be applied to every services.
The main difference is that entry and exit points are n eeded for the first pro-
gram point and the return statement of the procedure of a required interface of
a service. These entry and exit points are identified upon composition with the
corresponding services implementing the required interface. This combination
yields to a PRS modeling an abstract behavior of the service-oriented system,
cf. [2]. An analogous idea is used in [13] for combining workflow nets to Petri
nets representing the behavior of the composed service-oriented system.

Example 1 (A Service-Oriented System and its Abstractions). The example in
Fig. 1 was introduced in Subsect. 2.1. Figure 3 shows the abstraction of the single
services using the entry points ia, ib, ic, id and the exit points ra, rb, rc, rd for
the initial program points and the program points of the return statements of
a, b, c, d, respectively. The final state of the PRS is q1. Figure 3 shows the resulting
abstractions for (G,G)-PRS and (P,P)-PRS, respectively.

3 Correspondence Between (G,G)-PRS and (P,P)-PRS
Abstractions

A run of process rewrite system Π = (Q, q0,→, F) is a sequence e0, . . . , en of
process-algebraic expressions such that ei ⇒ ei+1, i = 0, . . . , n − 1 where ei ⇒
ei+1 can be proven without using rules (T) and (L). Intuitively, this means that
exactly one PRS-rule is being applied in ei ⇒ ei+1 and the sequence e0, . . . , en

represents a step-wise execution of Π. Let S be a service-oriented system, ΠS �
(Q, q0,→Π , F) be the (G,G)-PRS abstraction of S and Π ′

S � (Q, q0,→Π′ , F) the
(P,P)-PRS abstraction of S, cf. Table 1. Note that the set of atomic processes

On Abstraction-Based Deadlock-Analysis in Service-Oriented Systems 173

applied rules (cf. Fig. 3)
(G,G)-PRS (P,P)-PRS (G,G)-PRS (P ,P)-PRS
q0 q0
ia.q1 ia q0 → ia.q1 q0 → ia
qa1.q1 qa1 ia → qa1 ia → qa1
(qa3 ‖ ib).q1 qa3 ‖ ib qa1 → qa3 ‖ ib qa1 → qa3 ‖ ib
(qa4 ‖ ib).q1 qa4 ‖ ib qa3 → qa4 qa3 → qa4
(qa4 ‖ rb).q1 qa4 ‖ rb ib → rb ib → rb
((id.qa5) ‖ q12).q1 id ‖ rb qa4 → id.qa5 qa4 → id
((ia.rd.qa5) ‖ rb).q1 ia ‖ rb id → ia.q16 id → ia
((qa2.rd.qa5) ‖ rb).q1 qa2 ‖ rb ia → qa2 ia → qa2
(((qa3 ‖ ic).rd.qa5) ‖ rb).q1 qa3 ‖ ic ‖ rb qa2 → qa3 ‖ ic qa2 → qa3 ‖ ic
(((qa3 ‖ rc).rd.qa5) ‖ rb).q1 qa3 ‖ rc ‖ rb ic → rc ic → rc
(((qa5 ‖ rc).rd.qa5) ‖ rb).q1 qa5 ‖ rc ‖ rb qa3 → qa5 qa3 → qa5
(((qa6 ‖ rc).rd.qa5) ‖ rb).q1 qa6 ‖ rc ‖ rb qa5 → qa6 qa5 → qa6

Fig. 4. Runs in the (G,G)-PRS and (P,P)-PRS abstractions of Fig. 3

and the initial state is by construction the same in both (G,G)- and (P,P)-PRS.
We show that each run of ΠS corresponds to a run in ΠS′ .

For this, we need to define an abstraction function α for process-algebraic
expressions of ΠS and Π ′

S . Since the PRS rules →Π′ do not contain the sequential
operator the same holds for all reachable expressions. Therefore, the abstraction
function α : PEX (Q) → PEX (Q) forgets the sequential composition, i.e., α is
inductively defined by

(i) α(q) � q for q ∈ Q ∪ {ε}
(ii) α(e1 ‖ e2) � α(e1) ‖ α(e2) for e1, e2 ∈ PEX (Q)
(iii) α(e1.e2) � α(e1) for e1, e2 ∈ PEX (Q)

Example 2 (Runs and Abstractions). The first two columns of Fig. 4 shows a run
of the (G,G)-PRS abstraction ΠS = (Q, q0,→Π , F) and a corresponding run of
the (P,P)-PRS abstraction Π ′

S = (Q, q0,→Π′ , F) of the service-oriented system
S in Example 1 (cf. Figs. 1 and 3). The process algebraic expressions in each row
corresponds, i.e., e′

i = α(ei) where ei is the first expression (contained in the run
in ΠS) of the i-th row and e′

i is second expression (contained in the run in Π ′
S)

of the i-th row. Furthermore, it holds →Π′= {α(e1) →Π′ α(e2) : e1 →Π e2}
Remark 1. A look at Table 1 shows that in general, →Π′= {α(e1) →Π′ α(e2) :
e1 →Π e2}, i.e., the rewrite rules of the (P,P)-PRS can be obtained from the
rewrite rules of the (G,G)-PRS by forgetting about the sequential composition.

Theorem 1 (Correspondence between Abstractions to (G,G)-PRS
and (P,P)-PRS). Let S be a service-oriented system, ΠS = (Q, q0,→Π , F)
be the abstraction of S to (G,G)-PRS according to Table 1, and Π ′

S = (Q, q0,
→Π′ , F) be the abstraction of S to (P,P)-PRS according to Table 1. If e ⇒Π e′

then α(e) ⇒ α(e′).

Proof. The proof is by induction on the number of applications of the inference
rules. Suppose e ⇒Π e′.

174 M. Weißbach and W. Zimmermann

Case 1: Rule (R) is being applied. Then e →Π e′ according to Remark 1 it is
α(e) →Π′ α(e′).

Case 2: Rule (S) has been applied. Then, e = e′′.s and e′ = ē.s for some
e′′, ē, s ∈ PEX (Q), and e′′ ⇒Π ē. By induction hypothesis, it holds
α(e′′) ⇒Π′ α(ē). Now, rule (S) can be applied to obtain α(e′′).s ⇒Π′ α(ē).s.
Thus α(e) ⇒Π′ α(e′) using property (iii) of the definition of α.

The cases where rules (P1), (P2), and (T) are applied are proven analogously to
Case 2.

Corollary 1. For each run e0, . . . , en of ΠS, the sequence α(e0), . . . , α(en) is a
run of Π ′

S.

Hence, each run in the PRS-abstraction corresponds to a run in the (P,P)-
PRS abstraction (which is equivalent to the Petri nets). Thus, the workflow nets
[13] lead to a coarser abstraction than using general PRS [6].

Now, we examine the deadlock situations. Expression e � (((qa6 ‖
rc).rd.qa5) ‖ rb).q1 is a deadlock because no PRS rule is applicable, cf. Fig. 4.
However, the corresponding (P,P)-PRS expression α(e) = qa6 ‖ rc ‖ rb is not a
deadlock. Since ‖ is associative and commutative, it holds

qa6 ‖ rc ‖ rb
ass. and com. ‖

=⇒ qa6 ‖ rb ‖ rc
qa6‖rb→ra=⇒ ra ‖ rc

ra→rd=⇒ rd ‖ rc
rd→qa5=⇒

qa5 ‖ rc
qa5→qa7=⇒ qa7 ‖ rc

qa7‖rc→ra=⇒ ra
ra→q1=⇒ q1

Thus, the final state q1 is reached. However, there are alternatives leading to
a deadlock. For example the rules ra → rd and rd → qa5 could be applied to the
derivation ra. This can lead to the deadlock qa7.

4 Related Work

Van der Aalst [13] uses Petri-net-based analysis tool to verify business process
workflows. Recursion, e.g., recursive callbacks, is not considered.

In [12] recursive Petri nets (rPNs) are used to model the planning of
autonomous agents which transport goods form location A to B. The model
of rPNs is used to model dynamic processes (e.g., agent’s request). Recursion in
our sense is not considered. Deadlocks can only arise when interactions between
agents (e.g., shared attributes) invalidates preconditions. Another refinement
based approach is described in [7]. Hicheur models healthcare processes based
on algebraic and recursive Petri nets [5]. Recursive Petri nets are used to model
by the main process called subprocesses. All these approaches use the ability of
rPNs to prune subtrees.

Bouajjani et al. [3] work is the closest to ours. They discuss the abstraction-
based analysis of recursive parallel programs based on recursive vector addition
systems. They explore decidability of reachability for recursively parallel pro-
grams. It seems that their model is slightly more general as there are situations
where the reachability problem becomes undecidable.

On Abstraction-Based Deadlock-Analysis in Service-Oriented Systems 175

To our knowledge, abstraction-based deadlock analysis in service-oriented
systems including synchronous and asynchronous procedure calls (forking),
recursion and recursive callbacks and synchronization in the context of service-
oriented systems was not investigated before.

5 Conclusion

We examined two different abstractions from service-oriented systems S to gen-
eral (G,G)-PRS ΠS and to (P,P)-PRS Π ′ (which are equivalent to Petri nets).
We have shown that Π ′ is more abstract than Π (Theorem 1). However, there
is a reachable deadlock e in ΠS where the corresponding situation e′ in Π ′

S is
not necessarily a deadlock although each run q0 →ΠS

e1 →ΠS
· · · →ΠS

en in
the PRS ΠS has a corresponding run q0 →Π′

S
e′
1 →Π′

S
· · · →Π′

S
e′
n. To the best

of our knowledge, we are not aware on studies on abstraction-based deadlock
analysis of service-oriented systems taking into account unbound recursion and
unbound concurrency with synchronization.

The main result shows that the Petri net abstraction is too coarse. Further-
more, the example requires recursion. However, in our example the Petri net
abstraction Π ′

S the final state as well as a deadlock situation is reachable from
e′. Therefore, the example doesn’t provide a false positive (i.e., it erroneously
classifies the service-oriented system S deadlock-free) in the classical sense. Our
hypothesis, is that in the context of the paper, if a deadlock situation e in the
PRS abstraction ΠS of a service-oriented system S is reachable, then a deadlock
situation e′′ is reachable from the corresponding situation e′ in the Petri net
abstraction Π ′

S . It is an open question whether this hypothesis is true. However,
even it is true, the trace leading to a deadlock situation e′′ cannot be obtained
by execution of S. This may erroneously lead to classify the deadlock e′′ as a
false alarm.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (2006)

2. Both, A., Zimmermann, W.: Automatic protocol conformance checking of recur-
sive and parallel component-based systems. In: Chaudron, M.R.V., Szyperski, C.,
Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 163–179. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87891-9 11

3. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: ACM SIG-
PLAN Notices, vol. 47, pp. 203–214. ACM (2012)

4. Dahl, O.J., Nygaard, K.: Simula: an algol-based simulation language. Commun.
ACM 9, 671–678 (1966)

5. Haddad, S., Poitrenaud, D.: Modelling and analyzing systems with recursive petri
nets. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. The Springer
International Series in Engineering and Computer Science, vol. 569, pp. 449–458.
Springer, Boston (2000)

http://dx.doi.org/10.1007/978-3-540-87891-9_11

176 M. Weißbach and W. Zimmermann

6. Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. Serv. Oriented Comput. Appl. 8(4), 299–322 (2014)

7. Hicheur, A., Ben Dhieb, A., Barkaoui, K.: Modelling and analysis of flexible health-
care processes based on algebraic and recursive petri nets. In: Weber, J., Perseil, I.
(eds.) FHIES 2012. LNCS, vol. 7789, pp. 1–18. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39088-3 1

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory,
languages, and computation, 2nd edn. SIGACT News 32(1), 60–65 (2001).
http://doi.acm.org/10.1145/568438.568455

9. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1–2), 264–286 (2000)
10. Parizek, P., Plasil, F.: Modeling of component environment in presence of call-

backs and autonomous activities. In: Paige, R.F., Meyer, B. (eds.) TOOLS
EUROPE 2008. LNBIP, vol. 11, pp. 2–21. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-69824-1 2

11. Schmidt, H.W., Krämer, B.J., Poernomo, I., Reussner, R.: Predictable compo-
nent architectures using dependent finite state machines. In: Wirsing, M., Knapp,
A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 310–324. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24626-8 22

12. Seghrouchni, A.E.F., Haddad, S.: A recursive model for distributed planning. In:
Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS
1996), pp. 307–314 (1996)

13. Van Der Aalst, W.M.P.: Workflow verification: finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg
(2000). doi:10.1007/3-540-45594-9 11

14. Weißbach, M., Zimmermann, W.: Termination analysis of business process work-
flows. In: Proceedings of the 5th International Workshop on Enhanced Web Service
Technologies, pp. 18–25, WEWST 2010, NY, USA (2010). http://doi.acm.org/10.
1145/1883133.1883137

15. Zimmermann, W., Schaarschmidt, M.: Automatic checking of component protocols
in component-based systems. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, pp. 1–17. Springer, Heidelberg (2006). doi:10.1007/11821946 1

http://dx.doi.org/10.1007/978-3-642-39088-3_1
http://dx.doi.org/10.1007/978-3-642-39088-3_1
http://doi.acm.org/10.1145/568438.568455
http://dx.doi.org/10.1007/978-3-540-69824-1_2
http://dx.doi.org/10.1007/978-3-540-69824-1_2
http://dx.doi.org/10.1007/978-3-540-24626-8_22
http://dx.doi.org/10.1007/3-540-45594-9_11
http://doi.acm.org/10.1145/1883133.1883137
http://doi.acm.org/10.1145/1883133.1883137
http://dx.doi.org/10.1007/11821946_1

	On Abstraction-Based Deadlock-Analysis in Service-Oriented Systems with Recursion
	1 Introduction
	2 Foundations
	2.1 Services and Service-Oriented Systems
	2.2 Process Rewrite Systems
	2.3 Abstraction and Composition Process

	3 Correspondence Between (G,G)-PRS and (P,P)-PRS Abstractions
	4 Related Work
	5 Conclusion
	References

