
Chapter 11

A BEHAVIOR-BASED APPROACH
FOR MALWARE DETECTION

Rayan Mosli, Rui Li, Bo Yuan and Yin Pan

Abstract Malware is the fastest growing threat to information technology systems.
Although a single absolute solution for defeating malware is improba-
ble, a stacked arsenal against malicious software enhances the ability
to maintain security and privacy. This research attempts to reinforce
the anti-malware arsenal by studying a behavioral activity common to
software – the use of handles. The characteristics of handle usage by
benign and malicious software are extracted and exploited in an effort
to distinguish between the two classes. An automated malware detec-
tion mechanism is presented that utilizes memory forensics, information
retrieval and machine learning techniques. Experimentation with a mal-
ware dataset yields a malware detection rate of 91.4% with precision and
recall of 89.8% and 91.1%, respectively.

Keywords: Malware, memory forensics, machine learning, handles

1. Introduction
The threat of malware is growing. The proliferation of electronic

devices and the ever-increasing dependence on information technology
have led to malware becoming an attractive tool for conducting criminal
activities. Kaspersky Lab [10] reports that almost 250 million new and
unique malware instances were detected during the second quarter of
2016 alone. Although substantial, the report was only able to present
the amount of malware detected by anti-viral tools; it was not possible
to estimate the total number of malware instances in the wild.

Current malware detection approaches focus on extracting unique sig-
natures from captured malware samples and using the signatures in sub-
sequent sightings of the same malware. This detection strategy is fast
and has low false positive rates, but it is easily defeated by modifying

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XIII, IFIP AICT 511, pp. 187–201, 2017.
DOI: 10.1007/978-3-319-67208-3_11

187

188 ADVANCES IN DIGITAL FORENSICS XIII

the malware code via encryption or packing [15]. Another strategy is to
use a machine learning model to detect malware based on static malware
features [24]. Although this malware detection strategy is more robust
than signature-based detection, it can still be defeated [15].

The path to improving the detection of unknown malware started
with the shift from signature-based detection to behavior-based detec-
tion. Behavior-based detection, which focuses on the activities of mal-
ware when it infects a system, can be implemented in two ways. The
first involves extracting behavioral traits from the malware code stati-
cally; these traits are called malware semantics [6]. The second approach
involves running malware in a sandbox environment and dynamically
monitoring its behavior. System calls constitute an example of malware
behavior that can be monitored dynamically and subsequently leveraged
in malware detection [17, 21, 26]. Other behavioral features include file
activity [22], registry activity [1] and API calls [27]. Behavior-based de-
tection certainly improves the detection of unknown malware, but it is
often slow and resource intensive because it requires running the mal-
ware in a sandbox. Furthermore, false positives are often a concern due
to the misclassification of benign software that exhibits behavior similar
to malware.

Several researchers have applied memory forensics to capture artifacts
of malicious behavior that reside in memory [9, 23, 35, 36]. Memory
forensics involves the analysis of a memory dump to extract evidence
of malicious activity. An investigation using memory forensics has two
stages: (i) memory acquisition; and (ii) memory analysis. In the memory
acquisition stage, a digital forensic professional obtains a memory image
via an acquisition tool such as Memoryze or Winpmem. The memory
analysis stage attempts to find evidence of malicious activity using a tool
such as Volatility or Rekall. This research employs memory forensics to
extract information from memory images that is subsequently analyzed
to detect malware.

The malware detection approach discussed in this chapter focuses on
handles, abstraction pointers that are used to identify and access system
objects without knowing their exact locations in memory. A resource
such as a file, registry key or mutant requires a handle to be opened
before it can be accessed. The handle must be closed when the resource
is no longer required. Failing to release a handle may cause a handle leak,
which can result in reaching the upper limit on the number of handles
permitted by an application [29]. More than 30 resource object types can
be identified using handles. Whenever a process requires such a resource,
it must open a handle to the resource. The proposed approach uses the
number of handles opened by a process to determine if it is potentially

Mosli, Li, Yuan & Pan 189

malicious. After dynamically obtaining the handle data by running the
software in a sandbox, machine learning is used to discriminate between
benign and malicious uses of handles and to generalize handle usage
behavior to detect previously-unknown malware.

2. Related Work
Research in malware detection can be categorized according to how

malware analysis is conducted. Static analysis involves dissecting mal-
ware code and analyzing the instructions, imported libraries, metadata,
and program functionality and structure. However, challenges arise if
the malware is packed or encrypted. Nonetheless, this type of analy-
sis offers the advantage of observing all the execution flows of the code
regardless of the environment. Dynamic analysis, on the other hand,
involves running the malware in a sandbox and monitoring its behav-
ior. Although this analysis is not affected by encryption or packing, the
malware behavior might differ according to the runtime environment.

2.1 Static Analysis
Santos et al. [32] used opcode sequences to train a support vector

machine (SVM) classifier with a normalized polynomial kernel; features
were extracted using term frequency to count the occurrences of opcodes
in malware code. Saxe and Berlin [33] used byte entropy, portable ex-
ecutable (PE) imports and metadata to train deep neural networks to
detect malware with dropout to prevent overfitting. Markel and Bil-
zor [20] also used metadata as features; they trained and compared dif-
ferent classifiers and found that a decision tree classifier outperformed
naive Bayes and logistic regression classifiers on the particular data and
feature sets. Nath and Mehtre [24] studied the performance of machine
learning classifiers trained on static features; they concluded that us-
ing static features in malware detection faces several challenges such as
encryption and packing, k-ary code and multistage loaders.

2.2 Dynamic Analysis
Pirscoveanu et al. [27] used the Cuckoo automated malware analysis

tool to execute and monitor malware. They trained a random forest
classifier using behavioral features (DNS requests, accessed files, mu-
texes, registry keys and API calls) and used INetSim to simulate an
Internet connection for malware. Berlin et al. [3] used an n-gram bag of
words with a sliding window to extract malware behavioral features from
Windows audit logs and trained a logistic regression classifier on data
generated by running and monitoring malware samples using Cuckoo.

190 ADVANCES IN DIGITAL FORENSICS XIII

Mohaisen et al. [22] developed AMAL, a malware detection and classi-
fication system. AMAL comprises two subsystems: (i) AutoMal, which
runs malware samples and extracts features related to memory, filesys-
tem, registry and network activity; and (ii) MaLabel, which vectorizes
features and trains the classifiers. Park et al. [26] derived behavioral
graphs from malware samples by running them in a sandbox and mon-
itoring their system calls using Ether. They then created a graph for
each malware family by observing a common sub-graph for malware in-
stances belonging to the same family. In the detection phase, a matching
process is used to determine the maliciousness of a file and the malware
family to which it belongs (if the file is found to be malicious).

In a previous study, the authors of this chapter [23] examined registry
activity, imported DLLs and called APIs to determine their potential
as features for discriminating between benignware and malware. The
most distinguishing features were determined, following which, machine
learning models that utilize the features were trained to classify activ-
ity (processes) as benign or malicious. A detection rate of 96% was
achieved by training a support vector machine classifier through the op-
timization of a hinge loss function. The support vector machine classifier
was trained on registry activity data generated by software from both
classes.

The use of handles in malware detection is relatively uncommon.
Galal et al. [11] used handles to categorize different API calls according
to their actions; the APIs either created handles, passed handles as ar-
guments, released or closed handles or were handle-independent. Naval
et al. [25], however, explicitly ignored handles along with all system
call parameters. Park et al. [26] used handles to express dependencies
between different kernel objects and their attributes. This chapter dis-
cusses the potential of handles to provide insightful views of program
behavior based on the resources that are used. These insights are used
to train a model to distinguish between benign software and malicious
software based on the number of handles used for each resource.

3. Windows Handles and Objects
A handle is a pointer or reference to a Windows object [16]. Objects

are managed by the Windows object manager, which is in charge of cre-
ating, deleting, protecting and tracking objects [31]. Every EPROCESS
structure in memory contains a pointer in its ObjectTable member that
points to a handle table, which contains pointers to all open objects used
by the owning process. Each table has a TableCode that specifies the
base address of the table and the number of levels in the table. A handle

Mosli, Li, Yuan & Pan 191

table may contain up to three levels that, in theory, can carry up to 229

handles. When more than one level exists in a handle table, only the
last level points to objects. Otherwise, each entry in the preceding levels
points to other tables.

A table also contains a member that holds the number of handles in
the table. When a process calls an API such as CreateFile, a pointer
to the created file is added to the process handle table and the index
of the entry is returned. This index is the handle to the file, which is
used by the process whenever the file is accessed. The HandleCount
member of the handle table is incremented whenever a handle is added.
Each entry in the handle table contains a pointer to the object header
of the referenced object and a bit mask that expresses the access rights
provided to the owning process. A subset of objects allow handles to be
inherited by child processes from parent processes; an inherited handle
has a unique value, but it points to the same object as the parent handle.

More than 30 object types are referenced by handles; observing the
number of handles to each object type provides valuable insights into the
resources that are used. The handles used by a process can be enumer-
ated in several ways. One way is to do this programmatically by calling
NtQuerySystemInformation with SystemHandleInformation. Alter-
natively, the Sysinternals Handle command line tool displays handle
information about all processes, or about a single process if a process
id (PID) is specified by the user [30]. Another approach is to use the
Application Verifier tool from Microsoft to track process handle activity
from start to finish. The proposed approach uses the Volatility handles
plugin to extract handle information. This approach walks the handle
table for a given process and displays its content. The handles plugin
provides several options to filter the results: process id, EPROCESS
structure offset, object type and object name. The process id was used
to obtain the necessary data for processes known to be benign or mali-
cious. Figure 1 shows a portion of a Volatility handles plugin output.

4. Malware Detection Using Handles
This section discusses malware detection using handles. The steps

include collecting data, extracting features and training the machine
learning models.

4.1 Experimental Setup
The dataset comprised 3,130 malware samples from the VirusShare

malware repository [28]. Additionally, 1,157 benign software samples

192 ADVANCES IN DIGITAL FORENSICS XIII

Offset (V) Pid Handle Access Type Details
---------- ----- ------ --------- ---------- -------
0x891cfea8 3104 0x4 0x3 Directory KnownDlls
0x8439ff80 3104 0x8 0x100020 File \Device\HarddiskVolume2\Users\
 victim\AppData\Local\Temp
0x84335368 3104 0xc 0x100020 File \Device\HarddiskVolume2\Windows\
 winsxs\x86_microsoft.windows
0x8917fbd8 3104 0x10 0x20019 Key MACHINE\SYSTEM\CONTROLSET001\
 CONTROL\NLS\SORTING\VERSIONS
0x85e0b778 3104 0x14 0x1f0001 ALPC Port
0x95cf1db8 3104 0x18 0x1 Key \MACHINE|SYSTEM|CONTROLSET001\
 CONTROL\SESSION MANAGER

Figure 1. Output of the Volatility handles plugin.

were collected from various locations such as the Windows System32
directory and from software websites such as FileHippo.

The environment used for the analysis comprised a Ubuntu virtual
machine that hosted four Windows 7 SP1 virtual machines using Vir-
tualBox. The Ubuntu virtual machine was hosted on a Windows 10
machine using VMWare. Each Windows machine was set to have 1 GB
RAM and one core.

Cuckoo [8] was used to automate the analysis process on the Ubuntu
machine. The four Windows virtual machines were run concurrently,
each with an instance of benign or malicious software. During the anal-
ysis task, a memory dump was produced of each Windows virtual ma-
chine along with a report with content and behavioral information about
the sample. Furthermore, VirusTotal was used to scan each sample to
ensure that the sample was labeled correctly as benign or malicious, and
then determine the malware family to which it belonged. The majority
of the samples were Trojans, but worms, viruses, backdoors and adware
were also encountered. A portion of the dataset was classified as being
malware, but no consensus was reached by VirusTotal about the fam-
ilies to which all the samples belonged. These samples were included
in the malware dataset, but were labeled as unclassified instead of as a
malware family.

INetSim [14] was used to simulate an Internet connection to increase
the chances of the malware behaving correctly. However, due to their
anti-virtual-machine functionality, 668 malware samples terminated in-
stantly after being launched; this left 2,462 malware samples to be used
in the experiments. Although discarding malware with anti-virtual-
machine functionality from the dataset omits such behavior from the
classifiers, the increasing popularity of virtualization in the information
technology sector is making malware with anti-virtual-machine function-
ality less common [18].

Mosli, Li, Yuan & Pan 193

Handle data was extracted from the memory dumps of machines with
benignware or malware using Volatility. Every EPROCESS structure
in memory contains a pointer to a handle table specific to the owning
process. Volatility outputs the handle information by walking the handle
table of a specified process or of all processes if no process id was specified
when running the handles plugin [16]. The process ids used to filter
the results were provided by Cuckoo; the main process id in addition
to the process ids of spawned processes were included in the Cuckoo
report. The Volatility handles plugin outputs a table with six columns:
(i) virtual offset of the handle in memory; (ii) process id of the owning
process; (iii) handle offset in the process handle table; (iv) access granted
to each object with a handle; (v) type of object pointed to by the handle;
and (vi) details about the object, if available. All the Volatility results
were stored in text files, where each text file contained information about
the handles used by a single process.

4.2 Vectorizing the Handle Data
The term frequency-inverse document frequency (TF-IDF) [19] was

used to extract measurable features from the Volatility handles out-
put; the extraction and model training was implemented using scikit-
learn [5]. A vocabulary was created comprising the handle types to be
extracted from the handle text files. A list of all the possible terms in
the vocabulary was obtained from Schuster [34]. Subsequently, the term
frequency-inverse document frequency, which counts the occurrence of
each vocabulary term in each text file, and then weights the importance
of the term according to the number of times the term occurs across
all the documents, was computed for all the handles data. This yielded
a 3, 619 × 31 matrix, each row representing a sample and each column
representing a term. A total of 58,652 non-zero entries were present in
the matrix, making the matrix 52.28% dense. To avoid division by zero,
the smooth idf option was set to true; this option adds one document
to the corpus with every term in the vocabulary appearing once. Zero
entries appearing in the matrix were largely the result of ten terms that
did not appear in any document. These terms were discarded before
training the models, resulting in a 3, 619 × 21 matrix with a density of
77.17%.

4.3 Model Training
For evaluation purposes, the dataset was divided into two subsets, one

for training and one for testing. A total of 724 samples were used for
testing (20% of the dataset) and 2,895 samples were used for training.

194 ADVANCES IN DIGITAL FORENSICS XIII

A stratified split was used to generate the test set, which resulted in a
balanced representation of both classes.

Three machine learning models were compared: (i) k-nearest neigh-
bor (KNN) [2]; (ii) support vector machine (SVM) [7]; and (iii) random
forest [12]. The k-nearest neighbor approach classifies each data point
according to its neighbors; a number of options must be considered when
training this classifier, including the number of neighbors to be evalu-
ated and the method for assigning weights to the neighbors. The support
vector machine is a discriminative model that searches for a hyperplane
with maximum separation between the data points from different classes;
the hyperplane is then used to classify new data points according to the
side of the hyperplane where they fall. Random forest is an ensem-
ble approach that trains multiple decision trees and outputs a decision
according to the predictions of all the trees.

Accuracy, precision and recall were used as evaluation metrics for the
three machine learning models. The exhaustive grid search approach was
employed to determine the parameter values that produced the highest
detection rates for the models. To perform the exhaustive grid search,
a parameter space was created for each model that was populated with
the values to be searched. Table 1 lists the parameter values tested for
each machine learning model.

The k-nearest neighbor approach achieved the highest accuracy using
three neighbors, the ball tree algorithm to find neighbors and distances
as weights. In the case of the SVM, a radial basis function (RBF) kernel
gave the highest accuracy; the numbers of support vectors used were 527
for the benign class and 625 for the malicious class. The random forest
approach performed best with 25 decision trees. After determining the
best parameter values for each model, the precision and recall were cal-
culated to measure the model performance with regard to false positives
and false negatives. Table 2 summarizes the performance of the three
machine learning models.

Table 3 shows the confusion matrix for the random forest classifier
with the predicted and true labels.

5. Results and Analysis
Observations of the use of handles by benign and malicious soft-

ware can reveal their potential for helping discriminate between the two
classes. For example, section handles are used differently by benignware
and malware. A section is a region of memory that can be shared by
multiple processes. It is used by the Windows loader when loading a
module into process address space [4]. A section is also used for inter-

Mosli, Li, Yuan & Pan 195

Table 1. Exhaustive grid search parameter space.

Model Parameter Value

KNN Algorithm for finding neighbors Ball tree
KDtree
Brute force

Number of neighbors 3
4
5
6
7

Weights of neighbors Uniform
Distance

SVM Penalty term 1
0.75
0.50
0.25

Kernel type Linear
Polynomial
RBF
Sigmoid

Degree of polynomial 1
2

Random Forest Max feature split algorithm Auto
Square root
Logarithmic
None

Number of decision trees 5
10
15
20
25

Table 2. Performance of the KNN, SVM and random forest models.

Learning Model Accuracy Precision Recall

KNN 0.910 0.892 0.899
SVM 0.911 0.899 0.920
Random Forest 0.914 0.898 0.911

196 ADVANCES IN DIGITAL FORENSICS XIII

Table 3. Confusion matrix for the random forest classifier.

Predicted
0 1

T
ru

e 0 29.5% 3.1%
1 5.3% 61.8%

process communication (IPC), where a memory-mapped file is shared
by two or more processes. When used with malicious intent, sections
provide a means for injecting code into the address spaces of other pro-
cesses. The different usage of sections by benign and malicious software
explains the difference in the numbers of handles used by the two types
of software. In the experiments, the average number of section objects
used by benignware was 8.48 whereas the average number for malware
was 27.12. Therefore, when training the random forest classifier, section
features were at the top of the decision trees; this affected the largest
fraction of sample predictions.

The number of process handles used by software is another indica-
tor of maliciousness. A process handle is often obtained when a new
process is created using the CreateProcess function. Furthermore, a
handle to a process can also be retrieved by passing a process id to the
OpenProcess function. Malware uses process handles to gain access to
other victim processes with the goal of injecting, hollowing, terminating
or hooking [13]. In the experiments, the average number of process han-
dles used by legitimate software was 0.81 whereas the average number
used by malware was 2.43. Consequently, process handles became the
second most prominent term when training the random forest classifier.

Mutants are objects that can also help distinguish between benignware
and malware. Mutants are used for mutual exclusions; specifically, to
control access to shared system resources. A mutant handle is acquired
by calling the function OpenMutex and is released by calling the function
ReleaseMutex. Mutants are often used by legitimate software to avoid
conflicts between multiple threads. However, malware samples use them
to prevent the re-infection of already-infected resources, which could
result in undesirable results. In the experiments, the average number
of mutant objects used by benignware was 11.35 whereas the average
number used by malware was 21.84. Table 4 shows the use of handles
by benignware and malware.

To determine the effects of an imbalanced dataset (benignware: 1,157
and malware: 2,462) on the machine learning model, the experiments

Mosli, Li, Yuan & Pan 197

Table 4. Use of handles by benignware and malware.

Object Type Benignware Malware
Average Variance Average Variance

Desktop 1.92 3.73 1.85 0.54
Device 22.8 710.38 25.34 148.42
Directory 2.21 0.25 2.35 0.25
Event 70.58 7468.62 94.92 2516.89
File 22.80 710.44 25.34 148.42
IOCompletion 1.06 1.36 2.31 0.93
Job 0.01 0.01 0.38 0.23
Key 32.79 873.35 49.66 277.51
KeyedEvent 0.56 0.26 0.93 0.06
Mutant 11.35 227.5 21.84 97.71
Port 7.51 57.27 12.76 25.36
Process 0.81 61.78 2.43 16.71
Section 8.48 70.13 27.12 156.99
Semaphore 10.91 173.83 12.59 43.01
Thread 14.38 668.91 20.61 98.75
Timer 2.01 4.30 2.85 0.75
Token 0.45 6.63 0.09 0.94
WindowStation 2.01 0.01 2.01 0.01
WmiGuid 0.18 0.14 0.02 0.02

were performed multiple times with a balanced dataset. This was accom-
plished by randomly discarding malware samples to reduce the number
to 1,157. During each run, a different subset of malware samples was
discarded. The performance of the classifiers trained on the balanced
datasets was only slightly lower than the classifiers trained on the origi-
nal dataset. This leads to the conclusion that significant behavior from
the malware dataset can be captured using a smaller dataset.

6. Conclusions
This research has demonstrated that handles, which capture the be-

havioral activity of software, can be used to detect malware. Specifically,
malware uses resources differently from benignware and this fact can be
used to train classifiers to categorize processes as malicious or benign.
In the experiments, Cuckoo was used to automate the execution and
monitoring of malware and benignware and to dump memory images.
Volatility was used to extract the handle information from the mem-
ory dumps, which was then analyzed to determine the different uses of
handles by the two classes of software. Three machine learning models,

198 ADVANCES IN DIGITAL FORENSICS XIII

k-nearest neighbor, support vector machine and random forest, were
used to train the classifiers. Random forest outperformed the k-nearest
neighbor and support vector machine models with a detection rate of
91.4%, precision of 89.8% and recall of 91.1%.

The experimental results demonstrate the efficacy of using handles to
detect malware. However, the approach is reactive in that it is applied
after the system has been infected. Nevertheless, one use case for the
approach is as a second layer of defense if signature-based detection
fails. The second use case is in forensic investigations, where malware
detection and analysis are routinely performed. In fact, the approach
can be applied to alleviate the cumbersome task of detecting malware
in a large number of seized machines.

This research has focused on the types of objects referenced in handle
tables. Information provided in the access rights and details columns of
the Volatility handles plugin output was not considered. The details
column provides in-depth information about objects, such as the reg-
istry key accessed by the process and the file path to which a handle
is opened. File objects, in particular, may not be actual files – they
may be devices treated as files due to similar read and write operations.
Such granular details could significantly improve the performance of the
classifiers. This exploration is a topic of future research.

Another topic for future research is the identification of other behav-
ioral artifacts that may be used to distinguish malware from benign-
ware. Zaki and Humphrey [37], who studied kernel-level artifacts left
by rootkits, discovered that callbacks are more suspicious than other
artifacts such as SSDT hooks. Future research will investigate the use
of callbacks and other artifacts in developing classifiers with improved
malware detection rates, precision and recall.

References

[1] M. Aghaeikheirabady, S. Farshchi and H. Shirazi, A new approach
to malware detection by comparative analysis of data structures in
a memory image, Proceedings of the First International Congress
on Technology, Communication and Knowledge, 2014.

[2] N. Altman, An introduction to kernel and nearest-neighbor non-
parametric regression, The American Statistician, vol. 46(3), pp.
175–185, 1992.

[3] K. Berlin, D. Slater and J. Saxe, Malicious behavior detection using
Windows audit logs, Proceedings of the Eighth ACM Workshop on
Artificial Intelligence and Security, pp. 35–44, 2015.

Mosli, Li, Yuan & Pan 199

[4] B. Blunden, The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System, Jones and Bartlett Learning, Burlington,
Massachusetts, 2013.

[5] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O.
Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R.
Layton, J. VanderPlas, A. Joly, B. Holt and G. Varoquaux, API de-
sign for machine learning software: Experiences from the scikit-learn
Project, Proceedings of the European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Data-
bases Workshop: Languages for Data Mining and Machine Learn-
ing, pp. 108–122, 2013.

[6] M. Christodorescu, S. Jha, S. Seshia, D. Song and R. Bryant,
Semantics-aware malware detection, Proceedings of the IEEE Sym-
posium on Security and Privacy, pp. 32–46, 2005.

[7] C. Cortes and V. Vapnik, Support-vector networks, Machine Learn-
ing, vol. 20(3), pp. 273–297, 1995.

[8] Cuckoo Foundation, Cuckoo Sandbox (www.cuckoosandbox.org),
2016.

[9] B. Dolan-Gavitt, A. Srivastava, P. Traynor and J. Giffin, Robust
signatures for kernel data structures, Proceedings of the Sixteenth
ACM Conference on Computer and Communications Security, pp.
566–577, 2009.

[10] D. Emm, R. Unuchek, M. Garnaeva, A. Ivanov, D. Makrushin
and F. Sinitsyn, IT Threat Evolution in Q2 2016, Kaspersky Lab,
Moscow, Russia, 2016.

[11] H. Galal, Y. Mahdy and M. Atiea, Behavior-based features model
for malware detection, Journal of Computer Virology and Hacking
Techniques, vol. 12(2), pp. 59–67, 2016.

[12] T. Ho, The random subspace method for constructing decision
forests, IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 20(8), pp. 832–844, 1998.

[13] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel,
Pearson Education, Upper Saddle River, New Jersey, 2006.

[14] T. Hungenberg and M. Eckert, INetSim: Internet Services Simula-
tion Suite (www.inetsim.org), 2007.

200 ADVANCES IN DIGITAL FORENSICS XIII

[15] B. Klein and R. Peters, Defeating machine learning – What your
security vendor is not telling you, presented at Black Hat USA,
2015.

[16] M. Ligh, A. Case, J. Levy and A. Walters, The Art of Memory
Forensics: Detecting Malware and Threats in Windows, Linux and
Mac Memory, John Wiley and Sons, Indianapolis, Indiana, 2014.

[17] Y. Lin, Y. Lai, C. Lu, P. Hsu and C. Lee, Three-phase behavior-
based detection and classification of known and unknown malware,
Security and Communication Networks, vol. 8(11), pp. 2004–2015,
2015.

[18] J. Luttgens, M. Pepe and K. Mandia, Incident Response and Com-
puter Forensics, McGraw Hill Education, New York, 2014.

[19] C. Manning, P. Raghavan and H. Schutze, An Introduction to Infor-
mation Retrieval, Cambridge University Press, Cambridge, United
Kingdom, 2008.

[20] Z. Markel and M. Bilzor, Building a machine learning classifier for
malware detection, Proceedings of the Second Workshop on Anti-
Malware Testing Research, 2014.

[21] M. Masud, S. Sahib, M. Abdollah, S. Selamat and R. Yusof, Anal-
ysis of features selection and machine learning classifier in Android
malware detection, Proceedings of the International Conference on
Information Science and Applications, 2014.

[22] A. Mohaisen, O. Alrawi and M. Mohaisen, AMAL: High-fidelity,
behavior-based automated malware analysis and classification,
Computers and Security, vol. 52, pp. 251–266, 2015.

[23] R. Mosli, R. Li, B. Yuan and Y. Pan, Automated malware detection
using artifacts in forensic memory images, Proceedings of the IEEE
Symposium on Technologies for Homeland Security, 2016.

[24] H. Nath and B. Mehtre, Static malware analysis using machine
learning methods, Proceedings of the Second International Confer-
ence on Recent Trends in Computer Networks and Distributed Sys-
tems Security, pp. 440–450, 2014.

[25] S. Naval, V. Laxmi, M. Rajarajan, M. Gaur and M. Conti, Employ-
ing program semantics for malware detection, IEEE Transactions
on Information Forensics and Security, vol. 10(12), pp. 2591–2604,
2015.

[26] Y. Park, D. Reeves and M. Stamp, Deriving common malware
behavior through graph clustering, Computers and Security, vol.
39(B), pp. 419–430, 2013.

Mosli, Li, Yuan & Pan 201

[27] R. Pirscoveanu, S. Hansen, T. Larsen, M. Stevanovic, J. Pedersen
and A. Czech, Analysis of malware behavior: Type classification
using machine learning, Proceedings of the International Conference
on Cyber Situational Awareness, Data Analytics and Assessment,
2015.

[28] J. Roberts, VirusShare Project (virusshare.com), 2017.
[29] M. Russinovich, Pushing the limits of Windows: Handles, Mark’s

Blog (blogs.technet.microsoft.com/markrussinovich/2009/
09/29/pushing-the-limits-of-windows-handles), September
29, 2009.

[30] M. Russinovich, Sysinternals Suite, Microsoft TechNet, Redmond,
Washington (technet.microsoft.com/en-us/sysinternals/bb8
42062.aspx), 2017.

[31] M. Russinovich, D. Solomon and A. Ionescu, Windows Internals,
Microsoft Press, Redmond, Washington, 2012.

[32] I. Santos, F. Brezo, X. Ugarte-Pedrero and P. Bringas, Opcode se-
quences as representation of executables for data-mining-based un-
known malware detection, Information Sciences, vol. 231, pp. 64–
82, 2013.

[33] J. Saxe and K. Berlin, Deep neural network based malware detec-
tion using two dimensional binary program features, Proceedings
of the Tenth International Conference on Malicious and Unwanted
Software, pp. 11–20, 2015.

[34] A. Schuster, Enumerate Object Types, Computer Forensic Blog
(computer.forensikblog.de/en/2009/04/enumerate-object-t
ypes.html), April 7, 2009.

[35] J. Stuttgen and M. Cohen, Anti-forensic resilient memory acquisi-
tion, Digital Investigation, vol. 10(S), pp. S105–S115, 2013.

[36] T. Teller and A. Hayon, Enhancing automated malware analysis
machines with memory analysis, presented at Black Hat USA, 2014.

[37] A. Zaki and B. Humphrey, Unveiling the kernel: Rootkit discovery
using selective automated kernel memory differencing, presented at
the Virus Bulletin Conference, 2014.

	11 A BEHAVIOR-BASED APPROACH FOR MALWARE DETECTION
	1. Introduction
	2. Related Work
	2.1 Static Analysis
	2.2 Dynamic Analysis

	3. Windows Handles and Objects
	4. Malware Detection Using Handles
	4.1 Experimental Setup
	4.2 Vectorizing the Handle Data
	4.3 Model Training

	5. Results and Analysis
	6. Conclusions
	References

