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Abstract. This work presents a high-throughput and low-latency
matrix inversion design for linear pre-coders for massive multiple-input
multiple-output (MIMO) systems. Because of the large number of base
station (BS) antennas, as well as the multiple user terminals (UTs),
served in a massive MIMO system, the channel matrix dimensions
become large. Inversions of such large matrices using direct inversion
methods, such as those used in linear pre-coders, would entail prohibitive
complexity. To avoid such complexity, Neumann-series-based approxi-
mate inversion has been suggested for linear pre-coders in massive MIMO
systems. However the performance, complexity and convergence speed of
the Neumann series approach highly depends on the initial approxima-
tion of the inverse used as a starting point. In this work, we present a
novel initial approximation for the Neumann series, which facilitates the
parallel computation of the inverse and hence results in lower latency
for inversion as well as better accuracy when compared to the previous
approaches. A VLSI architecture of the proposed method is implemented
for the inversion of a 16 × 16 matrix in TSMC 65-nm technology. A
throughput of 0.54 M to 15 M matrix inversion per second is achieved
at a clock frequency of 460 MHz with a 117 K gate count.

Keywords: Zero forcing (ZF) pre-coder · Regularized zero forcing
(RZF) pre-coder · Neumann series · Massive MIMO · Matrix inversion

1 Introduction

Multiple-input and multiple-output (MIMO) systems have been adopted in mod-
ern wireless communication standards such as IEEE 802.11n, 4G, 3GPP Long
Term Evolution and WiMAX. Due to the ever-growing demand for higher data
rates without further increasing the communication bandwidth, novel transmis-
sion technologies are still an urgent need [1,3]. A potential technology for meet-
ing this demand is large-scale multi-user MIMO, or ‘massive MIMO’, a form
of multi-user multiple-antenna wireless technology which promises substantial
improvements in spectral efficiency and energy efficiency [1,3,4,10].
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In massive MIMO systems, a base station (BS) is equipped with a large
number of antennas (M), as compared to conventional MIMO systems, while
serving a relatively low number (K) of user terminals (UTs). This disparity in
number of service antennas to active user terminals helps in focusing energy into
ever smaller regions of space to bring huge improvements in throughput and
radiated energy efficiency. Other benefits of massive MIMO include extensive
use of inexpensive low-power components, reduced latency, simplification of the
MAC layer, and robustness against intentional jamming [2].

However, to enjoy the benefits of massive MIMO, an efficient linear pre-
coding scheme at the transmitter side is of paramount importance. Pre-coding is
a pre-processing technique that exploits channel state information (CSI) at the
transmitter to match the transmission to the instantaneous channel conditions
[13–17]. In particular, linear pre-coding is a simple and efficient method that can
reduce the complexity of a MIMO receiver.

Linear pre-coding includes zero-forcing (ZF), matched filter (MF) and regu-
larized zero forcing (RZF). It has been shown that when M >> K, the simplest
linear pre-coders are optimal and thermal noise, interference and channel estima-
tion errors vanish [3]. For such cases, simple linear pre-coders like ZF perform
exceptionally well, and sum rates of up to 98% of the (optimal) dirty paper
coding (DPC) are reported to have been achieved [4].

However, linear pre-coders like ZF and RZF involve channel inversion using
the pseudo-inverse of the channel, which involves inverting a K×K gram matrix
Z (Z = GGH for ZF and Z = (GHG+αI) for RZF ), where K is the number
of UTs and G is the propagation matrix. Exact matrix inversion methods, such
as LU decomposition, Cholesky decomposition and QR decomposition, require
cubic order complexity О (K3) [7]. Hence exact inversion methods cannot be
applied due to larger matrix dimensions in massive MIMO systems.

To reduce the matrix inversion complexity, the Neumann-series-based
approximate inverse [8,9] has been proposed for large matrices in massive MIMO
systems. As the ratio of the number of antennas at the BS to the number of UTs,
β = M/K, increases, Z becomes diagonally dominant [1]. Wu et al. [8] exploited
this diagonal dominance property and suggested using the diagonal elements of
matrix Z as an initial approximation (seed) for Neumann series expansion. This
method is termed the diagonal Neumann series (DNS) in the rest of this chapter
for easy reference.

However, for highly correlated channels or low β values, matrix Z may not
be very strongly diagonally dominant or perhaps not dominant at all. For such
cases, using only the diagonal elements as a seed will result in slow convergence of
the Neumann series. Since inversion accuracy is an important parameter, which
defines the suppression of the multi-user interference (MUI) in the downlink [9],
the DNS will require a greater number of Neumann series terms to achieve a
certain accuracy.

For scenarios with low β values or highly correlated channels, Prabhu et al.
[9] proposed to include some off-diagonal elements in addition to the diagonal
elements to form the initial approximation for the Neumann series. In particular,
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they used a tri-diagonal matrix as the seed. We call this method the tri-diagonal
Neumann series (TNS) for easy reference. Using the tri-diagonal matrix as a seed
in the Neumann series results in better convergence and superior performance
as compared to the DNS [8].

For the approximate inverse calculation of either the DNS or TNS, the inverse
of the seed matrix has to be calculated, and hence it should be easily invertible.
However using the TNS as seed matrix results in an increase in complexity for
calculating the inverse for the tri-diagonal matrix as compared to the DNS.
Prabhu et al. [9] proposed to use a modified Gauss-elimination-based algorithm
to obtain the inverse of the tri-diagonal matrix. However due to the sequential
nature of the algorithm, the latency is proportional to K and cannot be reduced
with parallel hardware. Thus it may not be desirable for a system that has a
very low latency requirement.

In this work, we present a low-latency and high-throughput matrix inversion
method, also based on the Neumann series. In particular we propose to use a
new seed matrix [18], for which the inverse can be easily calculated in a par-
allel fashion with lower complexity, hence leading to lower latency and higher
throughput.

2 System Model

For this work, we consider single-cell large-scale multi-user MIMO (MU-MIMO)
with one BS and K UTs. The BS is equipped with M antennas and the UTs
have a single antenna, such that M antennas at the BS communicate with K
single-antenna UTs (M > K > 1). The system model considered in this work is
in line with the corresponding system model described in [1].

The reverse link propagation matrix, G with a dimension of M × K is the
product of the M ×K matrix H, which accounts for the small-scale fading, and a
K×K diagonal matrix D

1/2
β , which accounts for the large-scale fading [1]. Hence

G = HD
1/2
β , where the Kth column vector of H describes the small-scale fading

between the Kth UT and the M antennas, while the Kth diagonal element of
D

1/2
β is the large-scale fading coefficient. For the forward link, the BS transmits

an M × 1 vector, x, through its M antennas and the K UTs collectively receive
a K × 1 vector:

y =
√

ρGHx + w, (1)

where w is the K ×1 vector of the receiver noise whose components are indepen-
dent and distributed as CN (0, 1). The total transmitted power is normalized to
satisfy E[xHx] = 1. Hence, ρT > 0 denotes the total downlink power.

2.1 Linear Pre-coding at the Transmitter

The M ×1 transmitted signal vector x is given as x = Ws, where W is an M ×K
pre-coding matrix and s is a K × 1 vector containing data symbols intended for
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K users. For MU-MIMO with large arrays of antennas at the BS, the columns of
the propagation matrix are asymptotically orthogonal under favorable conditions
[1], and

(
GHG

M
)M�K≈Dβ . (2)

Due to this property, simple linear pre-coders, like MF, ZF and RZF, can
be deployed on the transmitter side for close to optimal performance. The MF
pre-coder, despite being simple, requires more BS antennas to achieve close to
optimal performance [1]. Hence we focus on a ZF and RZF pre-coding scheme
in our system model.

Zero Forcing (ZF) Pre-coding: The ZF pre-coding schemes [13] have been
extensively studied on multiuser systems as ZF decouples the multiuser channel
into independent single-user channels and has been shown to achieve a large
proportion of dirty paper coding capacity [12].

The ZF [11] expression is given by

WZF = G(GHG)−1. (3)

Regularized Zero Forcing (RZF) Pre-coding: The regularized ZF pre-
coder, as the name implies, introduces a regularization parameter in the channel
inversion. One way to regularize an inverse is to add a multiple of the identity
matrix before inversion, such as

WRZF = G(GHG + αI)−1. (4)

The amount of interference depends on α > 0. If α = 0, then it essentially
becomes a ZF pre-coder(Eq. 3). The amount of interference increases with α ,
and the optimum value of α is given as [11]

α =
K

ρ
where K is number of users and ρ is SNR. (5)

Both ZF and RZF pre-coding schemes involve inversion of a K × K gram
matrix Z (Z = GGH for ZF and Z = (GHG + αI) for RZF ), which is an
expensive and critical operation. In the next section, we will present a low-latency
approximate matrix inversion suitable for massive MIMO.

3 Approximate Matrix Inversion

An exact matrix inversion operation for a K × K gram matrix Z requires cubic
order complexity О (K3) [7]. Due to the increasing channel matrix size in mas-
sive MIMO systems, such direct inversion methods may not be a very efficient
solution. To reduce the computational complexity, the Neumann series has been
proposed as an alternative to exact inversion methods [8,9].
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If Z is very “close to” an invertible matrix X in the sense that

limn→∞(I − X−1Z)n = 0,

then Z is nonsingular and its inverse is given by [8]

Z−1 =
∞∑

n=0

(I − X−1Z)nX−1. (6)

And if the L − 1 terms of the Neumann series are used for approximation,
then Eq. 6 can be modified as

Z−1 =
L∑

n=0

(I − X−1Z)nX−1. (7)

If the first two terms of the Neumann series are used (L = 1), and Eq. 7
becomes

Z−1 = X−1 + (I − X−1Z)X−1. (8)

Similarly, if the first four terms of the Neumann series are used (L = 3), Eq. 7
becomes

Z−1 = X−1 + (I − X−1Z)X−1 + (I − X−1Z)2X−1 + (I − X−1Z)3X−1. (9)

The matrix X, termed as the ‘seed’, is an initial approximation of Z−1, which
should be easily invertible for lower latency and higher throughput.

Diagonal Neumann Series. As mentioned, Wu et al. [8] suggested using the
diagonal elements of matrix Z as an initial approximation (seed) for Neumann
series expansion, which we refer to as the DNS.

Inversion of a diagonal ‘seed’ matrix is very simple, and it requires only K
inversion operations. Thus for L = 2, the complexity of the inversion operation
for a K × K gram matrix Z using Eq. 8 is O (K2) [8] as opposed to cubic order
complexity O (K3) of the exact inversion methods [7].

Tri-Diagonal Neumann Series. For highly correlated channels or low β val-
ues, using only the diagonal elements as a seed will result in slow convergence
of the Neumann series. Hence more Neumann series terms will be required
to achieve a certain accuracy, which will result in higher complexity as each
additional term for a Neuman series involves computing power of the matrix
(I − X−1Z)n , as shown in Eq. 9.

As mentioned, Prabhu et al. [9] proposed that by including some off-diagonal
elements with the diagonal elements as a seed, the convergence of the Neumann
series could be improved. Hence they proposed using a tri-diagonal matrix as a
seed, which we refer to as the TNS. This method results in better convergence
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and superior performance as compared to the DNS [8]. However the complexity
of obtaining the inverse of the tri-diagonal seed matrix also increases as compared
to the DNS.

4 Proposed Method

Here we propose a new seed matrix, which has similar performance to the TNS,
but is much easier to invert, hence resulting in lower overall latency and resulting
in higher throughput. In addition to the diagonal elements of Z, we also keep
the first column to form the seed matrix for the Neumann series. The following
shows an example of the seed matrix (X) of a 4 × 4 gram matrix Z:

X =

⎡

⎢⎢⎣

Z00 0 0 0
Z10 Z11 0 0
Z20 0 Z22 0
Z30 0 0 Z33

⎤

⎥⎥⎦ . (10)

The reason for using X as a seed matrix is that it is much easier to invert
when compared to using a tri-diagonal matrix as a seed. The inverse of X can
be obtained using the following procedure. X can be decomposed as X = DA
as follows:

X =

⎡

⎢⎢⎣

Z00 0 0 0
0 Z11 0 0
0 0 Z22 0
0 0 0 Z33

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 0 0 0
Z10Z

−1
11 1 0 0

Z20Z
−1
22 0 1 0

Z30Z
−1
33 0 0 1

⎤

⎥⎥⎦ . (11)

Matrix D is a diagonal matrix of which the inverse is easy to obtain by simply
calculating the reciprocal of the diagonal elements. Similarly, matrix A is called
an atomic triangular matrix [7], of which the inverse can be obtained easily by
the following:

⎡

⎢⎢⎣

1 0 0 0
a 1 0 0
b 0 1 0
c 0 0 1

⎤

⎥⎥⎦

−1

=

⎡

⎢⎢⎣

1 0 0 0
−a 1 0 0
−b 0 1 0
−c 0 0 1

⎤

⎥⎥⎦ . (12)

Hence the inverse of the proposed seed matrix is calculated as X−1 =
A−1D−1, and

⎡
⎢⎢⎣

1 0 0 0
−Z10Z

−1
11 1 0 0

−Z20Z
−1
22 0 1 0

−Z30Z
−1
33 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Z−1
00 0 0 0
0 Z−1

11 0 0
0 0 Z−1

22 0
0 0 0 Z−1

33

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Z−1
00 0 0 0

−Z10Z
−1
00 Z−1

11 Z−1
11 0 0

−Z20Z
−1
00 Z−1

22 0 Z−1
22 0

−Z30Z
−1
00 Z−1

33 0 0 Z−1
33

⎤
⎥⎥⎦ . (13)

From the above equation, it can be seen that X−1 can be calculated in
constant time as long as we have enough parallel hardware to calculate the
reciprocal and the multiplication.
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For the inversion of the tri-diagonal matrix, a modified Gaussian elimination
method was proposed in [9]. The dependency of the Gaussian elimination algo-
rithm makes it difficult to parallelize the computation, and hence the latency
for computing the inverse of the tri-diagonal matrix is in the order of O (K) [9],
even when a large number of hardware resources are available.

5 Performance Analysis

We simulate an un-coded large-scale MU-MIMO downlink system, employing
4-QAM modulation and linear pre-coding at the transmitter side and MF detec-
tion at the receiver. For computing the inverse of the gram matrix Z, the Neu-
mann series is employed with different seed matrices. Figures 1, 2, 3, 4, 5 and
6 compare the bit error rate (BER) performance of the Neumann-series-based
inverse, using different seed matrices, with that using exact matrix inversion
under the conditions of β = 5 and with different numbers of UTs (K = 8).

Figure 1 shows that for K = 8, when only the first two terms of the Neumann
series are included (i.e., L = 1), the performance of the proposed seed matrix and
TNS is much better than that of the DNS. Figure 1 (a) depicts the experimental
results for ZF pre-coding and Fig. 1 (b) shows the result for RZF pre-coding at
the transmitter.

Figure 2 shows that when we increase the number of Neumann series terms
(i.e., when L = 3), the BER performance of the proposed seed matrix and TNS
becomes closer to that of the exact inversion, which shows that the proposed
seed matrix and TNS require fewer Neumann series terms as compared to the
DNS. The same BER performance trend can be observed for different numbers
of UTs (K), as shown in Figs. 1, 2, 3, 4, 5 and 6.

For the experimental results presented in Figs. 1, 2, 3, 4, 5 and 6, a fixed
value of β = 5 is used. For evaluating the performance of the proposed scheme
under different values of β, the proposed scheme is compared with the DNS
[8] and TNS [9] methods by evaluating the SNR-loss compared to the exact
inversion to achieve a BER of 10−3. The results are summarized in Figs. 7, 8
and 9, which show the performance comparisons for different numbers of UTs
(K = 8, 12 and 16), different pre-coding methods (ZF and RZF) and different
numbers of Neumann series terms (for L = 1 and L = 3), respectively.

Experimental results (Figs. 7, 8 and 9) show that for low values of β (β <
10), the TNS and the proposed method give better performance than the DNS,
whereas with higher values of β (>10), the performance loss is almost zero. This
means that using only the first two terms is sufficient for inverse calculation
(L = 1). However for low β values, a larger number of Neumann series terms is
required to achieve a certain accuracy (L = 3).

In general, it can be deduced from the experimental results that using the
proposed seed matrix gives a better performance than using the DNS, and is
almost the same as using the TNS. However the complexity and latency of the
proposed seed matrix is less than that of the TNS method.
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Fig. 10. proposed VLSI architecture (a) Block diagram of proposed inversion method
(b) Seed multiplication unit (X−1Z) (c) Scheduling diagram for seed inversion
(X−1)unit

6 Proposed Architecture

In this section, a VLSI architecture which performs the proposed matrix inver-
sion with low latency and high throughput is presented. Figure 10(a) shows the
top level block diagram of the architecture. After extracting the seed matrix
(X) from the gram matrix Z, the seed is inverted in a seed inversion block. The
inverted seed matrix (X−1) is then multiplied with the gram matrix Z, to obtain
the product (X−1Z), and a generic multiplication unit computes the powers of
the product (IK − X−1Z)n. For the best case scenarios with higher β values,
only the first two terms of the Neumann series are used for approximation, i.e.,
Z−1 = X−1+(IK −X−1Z)X−1. For this case, the generic matrix multiplication
unit is not required and can be bypassed, resulting in much lower latency and
higher throughput.

6.1 Seed Inversion Unit (X−1)

Fig. 10(b) shows the scheduling diagram of the seed inversion (X−1) for a 4 × 4
matrix, example presented in Sect. 4, using a single reciprocal unit and a multi-
plier. The overall latency for this inversion is 2(K–1), which is one third of the
latency for inverting a tri-diagonal matrix (6K) using a modified Gaussian elim-
ination algorithm [9]. For the reciprocal calculation (Z−1

ii ), a standard unrolled
single Newton Raphson iteration, similar to that used in [8,9], is employed. As
discussed in the previous section, the latency of the proposed seed inversion can
be further reduced by deploying a greater number of multipliers and reciprocal
units, since there is no dependency, whereas the modified Gaussian elimina-
tion algorithm [9], due to the dependencies, may not be suitable for parallel
implementation.
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6.2 Seed Multiplication Unit (X−1Z)

Figure 10 (c) shows a simple circuit that consists of two multipliers and one adder
for the multiplication of X−1and Z. zij is multiplied by xii and then added to
the product of z1j and x1i to obtain the value of yij (Y = X−1Z), where zij ,
xij , and yij are the values of the elements at the ith row and the jth column of
the matrices Z, X−1, and Y , respectively. This multiplication unit has a latency
of two cycles.

6.3 Generic Multiplication Unit (IK − X−1Z)n

For lower values of β, more terms of the Neumann series are required for better
accuracy of inversion. Hence we need to compute higher powers of the product
(IK − X−1A)n. Generic MAC (multiply and accumulate) banks are used to
compute the higher powers of (IK − X−1A)n. The matrix multiplication is of
cubic order complexity, O(K3), where K is the size of the matrix. As discussed
in [9], parallel hardware can be used to speed up this calculation. Let α be a
parallelization factor,. Then the total latency of the multiplication unit is reduced
to (L−1)K3

α .

Table 1. Latency Comparision

TNS [9] Proposed method

Seed Inversion (X−1) 6K 2(K-1)

Generic Multiplication (I − X−1Z)L−2(α = 10) (L−1)K3

α
(L−1)K3

α

Latency with Higher β (L = 1) 6K 2(K-1)

Latency with Lower β (L = 3) 6K + (L−1)K3

α
2(K − 1) + (L−1)K3

α

7 Timing Analysis

Table 1 summarizes the latency comparison with the TNS [9] for high and low β
values under the same hardware complexity and α value (parallelization factor).
For higher values of β (e.g. β > 10), using only the first two terms of the Neumann
series is sufficient (L = 1), and hence the generic multiplication module can be
bypassed and no matrix multiplications (IK −X−1A)L−1 are required. Therefore
the total latency for both the TNS and the proposed method is comprised of
seed inversion latencies. It can be seen that the latency of the proposed seed
matrix is three times smaller than that of the TNS. In fact, if more hardware is
available, the latency reduction is even higher.

For lower values of β, more Neumann series terms are required, and (L−1)K3

α
cycles are added to the final latency. If α (parallelization factor) is small, the
latency is dominated by that of the generic multiplication unit, and hence total
latency for both the TNS and proposed method will be similar.
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Table 2. ASIC implementation of matrix inversion

Direct inverse Approximate inverse

DMI [5] BMI [6] TNS [9] Proposed method

Higher β (L=1) Lower β (L=3) Higher β (L=1) Lower β (L=3)

Order 4 X 4 8 X 8 16 X 16 16 X 16

Technology 0.25 μm 90 nm 65 nm

Gate Count 73K 90K 104K 117K

Max. Freq.
(MHz)

170 500 420 448

Throughput 1.72M 0.65M 4.37M 0.51M 15M 0.54M

Normalized
Throughputa

0.016 0.016 1.04 0.12 3.35 0.12

Normalized
Hardware
Efficiencyb

0.22 0.18 10 1.15 28.6 1.02

a Normalized Throughput for K = 16 at 100MHz = Throughput×Order3×100
Frequency×K3

b Normalized Hardware Efficiency = Normalized Throughput
Gate Count

8 Implementation Results

The VLSI architecture for inverting a 16 × 16 matrix using the proposed seed
matrix was designed and synthesized in TSMC 65-nm technology. 16-bit internal
precision is used for the datapath of the architecture. The implementation is com-
pared with the architecture using direct matrix inversion [5,6] and the TNS [9].
The comparison results are summarized in Table 2. It can be seen that the pro-
posed architecture can sustain a maximum clock frequency of 448 MHz, with an
area cost of 117K gates.

For a MIMO system with K = 16, β = 5, α = 10 and L = 3 the latencies for
the proposed method and TNS are 850 cycles and 916 cycles, respectively. For
such cases with lower values of β, as mentioned in Sect. 7, the latency is domi-
nated by that of the generic multiplication unit. Due to overlapped scheduling,
the latency for the seed inversion unit can be absorbed into the generic multi-
plication unit, and hence the generic multiplication unit is the main source of
latency for both the TNS and proposed method at lower values of β. Therefore a
throughput of 0.54M inversions per second is achieved for the proposed method
operating at 448MHz, while the TNS method operating at 420MHz will have a
throughput of 0.51M inversions per second.

Although it seems that for lower values of β, the TNS and proposed scheme
have similar throughput and hardware efficiency. However we would like to men-
tion that this is mainly due to lower values of the parellization factor α used in
the generic multiplication unit, due to which the overall latency is dominated by
that of the generic multiplication unit.

However if a higher paralleziation factor of α > 100 is used, the latency will be
dominated by the seed multiplication unit instead of the generic multiplication
unit. Since the proposed seed inversion has lower latency than the TNS, even
for lower values of β, the proposed scheme will result in higher throughput than
the TNS and better inversion accuracy than the DNS.
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For MIMO systems with higher β values, the generic multiplication unit can
be bypassed, and the latency for the proposed method and TNS are reduced
to 30 cycles and 96 cycles, respectively, resulting in a throughput of 15M and
4.37M inversions per second, respectively.

9 Conclusion

In this work, we have developed a low-latency and high-throughput matrix inver-
sion method for the linear pre-coder in massive MIMO. The inversion method is
based on Neumann series expansion, and a new seed matrix is used as an initial
approximation for the Neumann series, which gives better performance, a lower
complexity matrix inverse, and lower latency. Detailed latency and throughput
analysis is presented for high and low values of β. A high-throughput VLSI
architecture for inverting a 16 × 16 matrix using the proposed method is also
presented.
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