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Abstract. This article presents three different approaches to modeling and
solving the classic transportation-location problem including the traditional
cost-minimization mixed integer linear program. It is shown that modeling these
problems as a profit maximization mixed integer program instead allows for the
relaxation of a set of constraints. An alternative multi-objective optimization
model using goal programming is also presented. A representative model of the
fluid milk supply chain in the U.S. is developed to demonstrate the scenarios and
solutions achieved by the three different models to conclude that the
multi-objective model is a robust approach to solve these optimization problems
even when there is only a single explicit objective.
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1 Introduction

A standard transportation-location problem is defined as shipping goods from origins
with fixed capacities to destinations with defined demand requirement. The objective is
to select source nodes to open and distribute the goods to destinations subject to
capacity and demand constraints minimizing the total cost [1]. Key assumptions are
that there is only one kind of good being shipped from the origins to the destinations
and that the unit transportation cost does not depend on the volume shipped.

These problems are traditionally modeled as an overall cost minimization mixed
integer linear program. However, this approach fails to return a feasible solution when
the assumption that “capacity equals or exceeds demand” is not met, which is a fairly
common scenario in real life scenarios. One alternative approach is to model the
problem as a maximize profit instead of minimize cost, thereby eliminating the
necessity to define “capacity equals or exceeds demand” as a hard constraint. Although
this mitigates the limitation of the cost minimization model, it does not provide the
flexibility to the decision maker to define a minimum requirement at some or all of the
demand points. This condition can be incorporated by defining a “supply greater than
or equal demand multiplied by fill rate” constraint, where fill rate is specified by the
decision maker. The profit maximization model fails to return a feasible solution when
there is not enough capacity in the system to fulfil this constraint across all the demand
points.
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We are interested in modeling this problem in such a way that a best possible
solution is returned when there is not enough capacity to fulfil the demand, enabling
decision makers to make the most of the situation. This way, they can schedule the
shipments or inventory as optimized by the model and arrange for back ordering to
fulfil the demand in the remaining nodes at a later point of time. To achieve this, the
transportation-location problem can be modeled as a multi-objective optimization
model with maximizing fill rate at the demand nodes and minimizing overall system
cost.

The following sections present a review of the literature of interest and relevant to
this work, the mathematical formulation of the different models described above and an
illustrative case study of the fluid milk supply chain in U.S. demonstrating the per-
formance of these models.

2 Literature Review

Perl and Daskin [2] define and solve a transportation problem simultaneous as a facility
location and vehicle routing problem. A mixed-integer programming formulation was
developed to minimize the system cost and also a heuristic was presented to solve this
large and complex problem which decomposes the original program into three sub
problems.

Hillier and Lieberman [3] present algorithms for linear programming with multiple
objectives. Goal programming is defined as “an approach to establish a specific
numeric goal for each of the objectives, formulate an objective function for each
objective, and then seek a solution that minimizes the (weighted) sum of deviations of
these objective functions from their respective goals”. If the different objectives are of
same importance, it is a non-preemptive goal program and if there is a priority order for
the objectives, it is a preemptive goal program.

Maas et al. [4] present a mixed-integer program that captures the operational
options that facility managers have to meet demands in excess of capacity for short
periods of time. This study empirically demonstrates the operational flexibility avail-
able with managers in reality which is not captured in the traditional facility location
problems because of the use of hard capacity constraints.

Nicholson et al. [5] present an analysis of localization policies with the case of diary
supply chain in the northeastern states of USA. A baseline scenario was defined with the
objective is to minimize the cost of the entire system and two scenarios with additional
constraints placed on shipments between sources and destinations and then evaluated on
multiple criteria like food miles, supply chain costs, and greenhouse emissions. Milk
demand is stated as being seasonal and two typical months of a year were considered–
March (supply exceeds demand) and September (demand exceeds supply).

3 Formulation

In this section, we present the mathematical formulation of the three different models
discussed. The followings are the model parameters.
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I � Set of source locations
J � Set of destinations or demand points
fi � fixed cost of locating a facility at candidate site i 2 I
ki � capacity of warehouse at site i 2 I
cij � cost of shipping one unit from site i to node j 2 J
dj � demand requirement at each destination j 2 J
hj � fill rate requires at each destination j 2 J
p� unit selling price of product

The decision variables common to all three models are the following.

xij � volume shipped from warehouse ið Þ to destination jð Þ
Bi ¼ 1 if source location i is chosen to open;

0 otherwise:

�

The capacity constraint remains the same for all different models and is defined as

X
j
xij � ki � Bi; 8i 2 I ð1Þ

3.1 Cost Minimization Problem (CMP)

The CMP solves for the decision variables xij and Bi by minimizing the overall cost of
the system, formulated in (2) subject to (1) and the demand constraint defined in (3).

Min
X

i
fiBi þ

X
i

X
j
xijcij ð2Þ

X
i
xij ¼ dj; 8j 2 J ð3Þ

3.2 Profit Maximization Problem (PMP)

The PMP solves for the decision variables by maximizing the overall profit othe
system, and the objective function is defined in (4).

Max�
X

i
fiBi þ

X
i

X
j
xijðp� cijÞ ð4Þ

The capacity constraint remains the same as in (1) but the demand constraint (2) is
modified as in (5). An additional constraint (6) can be imposed if a minimum fill rate is
required at each demand point.

X
i
xij � dj; 8j 2 J; ð5Þ
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X
i
xij � hjdj; 8j 2 J ð6Þ

3.3 Multi Criteria Problem (MCP)

A new set of decision variables is introduced in this model. Fill rate hj for each demand
point j, defined as the fraction of demand to be supplied at each destination j such that

0� hj � 1; 8j 2 J ð7Þ

The two objectives of this model are to maximize the fill rate across the system and
to minimize the overall cost, which can be mathematically expressed as

Max
X

j
hj; ð8Þ

Min
X

i
fiBi þ

X
i

X
j
xijcij ð9Þ

Subject to (1), (7) and a modified demand constraint defined in (10).

X
i
xij ¼ hjdj; 8j 2 J ð10Þ

This problem can be modelled to be solved as a linear program introducing aux-
iliary slack variables U, E and target values for the different objectives.

hj þU1
j � E1

j ¼ T1
j 8j 2 J; ð11Þ

X
i
fiBi þ

X
i

X
j
xijcij þU2 � E2 ¼ T2; ð12Þ

U1
j ;E

1
j ;U

2;E2; T1
j ; T

2 � 0 ð13Þ

The final objective function for MCP is defined in (14), where M is an arbitrarily
large number, and subject to constraints (1), (7), (10), (11), (12), and (13).

Min M
X

j
Uj þE ð14Þ

4 Illustration and Results

A mathematical model of the fluid milk supply network in the U.S. was developed with
the geographic centers of each mainland state excluding Washington D.C. as the
candidate locations for the sources. Three scenarios were developed, differing on the
system capacity (SC) available to satisfy the overall demand (OD). These scenarios are
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differentiated by the ratio SC/OD and any minimum fill rate (FR) condition specified
(hi in (6) and Tj

1 in (11)) at each destination and are listed in Table 1.

4.1 Demand and Supply Data

The warehouse capacities were sized proportionally to the fluid milk produced in that
particular state as obtained from USDA [6–8]. The annual milk production data from
USDA was scaled to the time horizon to obtain the supply capacity of each warehouse
and fixed costs of opening such warehouses have been estimated proportionally.

We model the demand points as the U.S. Zip codes and use a dataset acquired from
the marketing company, Nielsen, via the James M. Kilts Center for Marketing at the
University of Chicago, Booth School of Business [9] to calibrate our demand. The
Nielsen Homescan Consumer Panel dataset contains six years of longitudinal panel
data of consumer products. The data files were consolidated and segregated so as to
obtain parameters in accordance with the purpose of our analysis. This extracted data
was combined with the population distribution in zip code tabulation areas from the U.
S. Census Bureau [10] to calibrate the demand in two different time periods of the year,
when demand exceeds supply and when there is sufficient capacity to meet demand.

Longitudinal and latitudinal parameters were attributed to the zip codes to compute
the distance matrix for the network using the formula presented in (15), where lat1,
lat2, lon1 and lon2 are the latitudes and longitudes of the two points respectively and
R * 3,963 miles [11] is the equatorial radius of the Earth returning distance between
two zip codes as flown by a crow in miles [12]. It is assumed that all shipments are
done in regular sized, fully loaded refrigerated trucks for which an average rate/mile is
computed, taking into account fuel charges and refrigeration costs. Using a conversion
factor, the distance in miles and capacity of each truck, the shipping rate per each unit
can be computed using simple arithmetic [13, 14].

cos�1 sin lat1ð Þ sin lat2ð Þþ cos lat1ð Þ cos lat2ð Þ cos lon2� lon1ð Þ½ � � R ð15Þ

4.2 Benchmarking Results

All three models of a simplified version of the problem were formulated and solved in
two software packages – Lindo Systems’ LINGO [15] and IBM’s ILOG CPLEX [16]
on a Windows 10 machine with Intel Core i7-2670QM CPU @ 2.20 GHz and 8 GB of
memory. This version considers only the transportation part of the original problem
with all the source locations open, thereby making it a pure linear program and

Table 1. Definition of scenarios for benchmarking

Scenario SC/OD FR

Scenario 1 1.7 1
Scenario 2 0.75 1
Scenario 3 0.75 0.8

Goal Programming for Supply Chain Optimization 77



reducing the solving times. Both the software packages returned identical solutions in
all three scenarios as can be seen in Table 2 and their performance is benchmarked for
solving time in Fig. 1. CPLEX, being considerably faster was chosen to solve the
complete MILP under different scenarios.

All three models return a global optimal solution in Scenario 1 as expected.
The PMP yields the same solution as CMP even with (2) modified to (4) because each
additional unit of demand supplied contributes to an increase in profits and hence, the
model has an inherent incentive to satisfy as much of the demand as possible. This
property enables the PMP to return a best feasible solution in Scenario 2 when the
overall demand is greater than the system capacity while CMP reaches infeasibility.
Best feasible can described as satisfying the most profitable portion of the demand,
given the system capacity. As for the MCP, first the fill rates for the demand nodes are
decided depending on the system capacity and then, the shipping schedules are opti-
mized for minimal cost. In Scenario 1, all nodes are given a fill rate 1 and in Scenario 2,
the nodes with least cost to fulfill demand are allotted a fill rate 1. This adds up to the

Table 2. Results achieved by the three models under different scenarios

Scenario Model Result

Scenario 1 CMP Global optimal
PMP Global optimal
MCP Global optimal

Scenario 2 CMP Infeasible
PMP Best feasible
MCP Best feasible

Scenario 3 CMP Infeasible
PMP Infeasible
MCP Best feasible

914

3,450

6,715

442

1,607

2,648

188

1,293

3,069

140 234 201 46 159 294 48 43 319

CMP PMP MCP CMP PMP MCP CMP PMP MCP

Scenario 1 Scenario 2 Scenario 3

Lingo Cplex

Fig. 1. Solving times in seconds for Lingo and CPLEX under different scenarios
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least expensive demand to fulfill within the system capacity. The solutions returned by
PMP and MCP in Scenario 2 are identical and termed best feasible because all the
constraints have not been satisfied completely, but have been satisfied to the best
capabilities of the system.

In Scenario 3, we simulate a situation where the decision makers want to maintain a
minimum fill rate hj at each of the demand nodes, which is done by introducing (6) with
hi = 0.8 into the PMP and changing the Tj

1 to 0.8 in the MCP. The PMP reaches
infeasibility because constraint set (6) cannot be satisfied at all the nodes. The number
of nodes supplied by the MCP is more in Scenario 3 than Scenario 2 as the overall
capacity is the same but each node is now being filled up to 80% only.

Identical results were returned when the complete MILP problem was run on
CPLEX, but with longer solving times than the pure LP problem. These times can be
seen in Fig. 2 and there is an increase in solving times of CMP and PMP to MCP as
expected, because of the introduction of a new set of decision variables.

5 Conclusions

Modeling the classic transportation-facility problem as a multi-objective optimization
problem with maximizing fill rate at demand points and minimizing overall system cost
proved to be a versatile and flexible approach. The model achieved the objective of
returning the best feasible solution to decision makers as can be seen in the results of
the illustrative example. While the PMP performed better than the CMP in solving the
MILP problem, it could not offer the level of constraint flexibility the MCP could.

The problem size in MCP is larger due to introduction of new variables - one
heuristic could be to check for the system feasibility and then choose between the PMP
or MCP models to find the shipping schedules. As the demand and transportation
matrices are sparse matrices, with numerous 0 entries, the solving times can be reduced

Fig. 2. Solving times in seconds in CPLEX for complete MILP
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by using heuristic algorithms to traverse through these matrices. Further studies could
be conducted on the effect of the target values defined in MCP on the solution quality,
defining the second objective in MCP as a profit maximization, or how the solutions
differ when the priorities of the two objectives are switched.
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