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Abstract. Due to increasingly required flexibility in manufacturing sys-
tems, adaptation of monitoring and control to changing context such
as reconfiguration of devices becomes more important. Referring to the
usage of structured information on the Web, digital twin models of man-
ufacturing data can be seen as knowledge graphs that constantly need
to be aligned with the physical environment. With a growing number
of smart devices participating in production processes, handling these
alignments manually is no longer feasible. Yet, the growing availabil-
ity of data coming from operations (e.g. process events) and contextual
sources (e.g. equipment configurations) enables machine learning to syn-
chronize data models with physical reality. Common knowledge graph
learning approaches, however, are not designed to deal with both, static
and time-dependent data.

In order to overcome this, we introduce a representation learning
model that shows promising results for the synchronization of semantics
from existing manufacturing knowledge graphs and operational data.
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1 Introduction

The ubiquitous availability of data empowers manufacturing companies to
embrace advanced data analytic technologies that allow to monitor, predict,
and optimize manufacturing operations. Still, ensuring semantic interoperability
within hardware-software integrated cyber-physical systems (CPS) and manage-
ment applications requires extensive manual data modeling effort, thus introduc-
ing and maintaining these technologies is challenging for manufacturers [7]. For
example, today, deploying a new device for machine condition monitoring at a
shop floor means manual effort to model this device and all of its signals through-
out several software applications (e.g. SCADA, MES). Otherwise, physical reality

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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is not correctly reflected in existing models and there is no semantic interoper-
ability between applications.

Recently, descriptive data models have been revitalized as part of a digi-
tal representation of physical systems, the so-called digital twin, which allows
systems to discover, inherit, evaluate and share information across different sub-
systems [2]. From a data modeling perspective, structured information of digital
twins can be represented as knowledge graph (KG), where relations and entities
follow well-defined vocabularies and semantics.

Knowledge graphs are commonly understood as publicly-accessible Linked
Data resources – prominent examples are Wikidata1 and WordNet2. Similarly,
Manufacturing Execution Systems (MES) and engineering platforms that are
built upon sizable relational databases can be seen as domain-specific knowledge
graphs, when lifted to a semantic schema [5]. Such a manufacturing knowledge
graph should be able to automatically acquire updated information based on
different operational data sources (e.g. SCADA, PLCs, etc.), even if these data
sources are not aware of their semantics.

Continuing the machine monitoring example: By observing data coming from
the newly added device (e.g. events) the KG should automatically recognize
the type of device, its location, or its capabilities and therefore allow other
applications to adapt to this updated context.

Machine Learning in KGs has emerged recently with the goal to enable auto-
mated integration of new facts into KGs without manual modeling efforts [9].
When multiple data sources are used to extract information, the problem further
extends to so-called knowledge fusion [3]. The same problems apply to models
in manufacturing systems that need to be in-sync with physical reality reflected
by multiple operational data sources [4]. In this paper, we present an approach
to support fusion of information coming from operational data sources with
manufacturing KGs by learning latent representations of entities. The goal is to
offer automated recommendations on how to integrate unknown entities into the
existing structure of the KG and thus keeping the digital twin in-sync without
manual modeling effort. Ultimately, this is beneficial to monitoring and manage-
ment applications that rely on a immediately aligned digital representation of
the manufacturing system.

2 Motivation Scenario

In this section we present an example scenario that motivates the application of
machine learning (knowledge fusion) to manufacturing KGs in conjunction with
operational data sources.

Consider an automated production line at a discrete manufacturing facility,
consisting of multiple production units that can be configured to produce several
variants of a product. The manufacturing KG (e.g. provided by an MES) of this
production line gives information about device topology and processes executed
1 http://wikidata.org.
2 http://wordnet.princeton.edu.
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by each of the production units, whereas a SCADA system observes sequences
of events during operation. As shown in Fig. 1, at the bottom, sequences of
events are continuously generated and aligned to entities in the manufacturing
KG. Entities and their relations are denoted as triples (head-entity, relation,
tail-entity), in the middle of the Figure. The schema (classes and relations) of
the KG is shown on top of the entities using a simplified class diagram notation.
For example, the triple (Event 1, occurs at, Conveyor) in the KG states that
entity Event 1 occurs at entity Conveyor. Additionally the conveyor entity is
modeled as device that is involved in the board assembly process.

Assuming a new device is deployed to the production line to monitor tem-
perature measurements of the conveyor. As production resumes, events of this
new device are continuously observed, but they are lacking semantic alignment
to the existing KG. Figure 2 shows a new sequence of events, where unknown
entities in the triples are denoted with question marks. Here, the class of the
unaligned event Event 2 and its source (device) are unknown, (Event 2, is-a,
?), respectively (Event 2, occurs at, ?).

However, the distribution of events in the sequence data should give an indi-
cation about which device is most likely to be hold responsible (in this case
the conveyor). Since other conveyor events are assumed to co-occur in similar
fashion as the new monitoring events, this information can be exploited to re-
engineer semantics. Presuming one could obtain a vector representation of all
involved entities (events, devices, etc.), it would be possible to calculate a sim-
ilarity between Event 1 and Event 2 that would allow to infer that both are
related to the conveyor entity in the KG. The representation learning approach
in the following is motivated by learning latent entity embeddings that reflect
such similarity.

Event 3Event 2Event 1 Event 5Sequence Data:

Knowledge Graph
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Device

Production 
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Process
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time
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Fig. 1. Sequence data entities aligned to triples in the knowledge graph
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Fig. 2. Observing new events with unknown semantics

3 Problem Statement

In this section, we formally define the problem of learning joint representations
of entities in KGs and operations data of manufacturing systems.
A knowledge graph, denoted as KG is a directed graph with labeled edges.
Each edge is represented in form of triples (h, r, t) that indicates the existence
of a relationship between the head entity h and the tail entity t by the labeled
relation r. Head and tail are contained in the set of entities h, t ∈ E and each
relation respectively in the set of relations r ∈ R.
A sequence data set, denoted as D = {(x1, ..., xi, ..., xm)Tj }, is a set of
sequences, where each sequence consists of an ordered set of event entities xi.
The length m of each sequence can vary depending on a sequence window size.
It is implied that there exists a mapping of event entities xi to entities in E , i.e.
event entities are also represented in the KG.

Knowledge Graph Embeddings. Given KG, the problem of learning knowledge
graph embeddings is to encode all entities in E and relations in R in a contin-
uous low-dimensional vector space, i.e. h, t ∈ R

d and relation r ∈ R
d. In order to

learn useful representations, a meaningful distance measure has to be employed,
e.g. in the original TransE model [1], h + r ≈ t. This means that translating
entity h with relation r should end up close at its tail entity t in the latent
d-dimensional space. It has been shown that these translation embeddings can
be effectively learned by using a ranking loss with the intuition that h + r ≈ t
should be close for true triples and far apart for false/unknown ones. Formally,
the learning objective is formulated as minimizing a margin-based ranking loss:

LKG =
∑

(h,r,t)∈KG

∑

(h′,r,t′)∈S′
h,r,t

max(0, 1 + dist(h + r, t) − dist(h′ + r, t′)) (1)

where dist(·) is some distance function (e.g. Euclidian) and S′
h,r,t is a set of

negative samples, i.e. artificially constructed false triples by replacing h or t
with a random entity. This loss is minimized when the translation of correct
triples is closer than that of unknown ones by a constant margin, here 1.

Sequential Data Embeddings. Given D, the problem of learning sequential
embeddings of entities xi is similar to knowledge graphs, i.e. encode all enti-
ties in the same low-dimensional vector space, xi ∈ R

d, where semantically
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similar entities should end up close to each other in this latent space. Learning
this kind of embeddings follows the distributional semantics hypothesis which
states that similar entities occur in similar context. This has been one of the
key ideas in the field of Natural Language Processing (NLP), since these embed-
dings tend to exhibit natural relations between words (e.g. capture synonymous
meanings) [6]. Distributed representations are obtained by assuming that simi-
larity between entities in the data can be modeled with a distribution, formally
P (xi|W ), i.e. the occurrence of entity xi depends on and can be predicted from
its surrounding window events W . Figure 3 displays how Event 3 can be mod-
eled from its surrounding events in a sliding time window of length m through
the event sequences. It is assumed that events having similar causes and effects
share similar semantics.

Event 3Event 2Event 1 Event m…
Event 

Sequence

Distributed 
Representation

window size

Fig. 3. Representations of event entities are learned from surrounding context

Mathematically, the probability distribution of predicting target entity xi

from its surrounding entities can be expressed by a categorical distribution, e.g.
the Softmax function:

P (xi|Wi) =
expS(xi,Wi)∑
j �=i expS(xj,Wi)

, (2)

where xi is the vector representation of entity xi and S(·) is some similarity
function between entities and their surrounding window entities represented as
matrix Wi. The objective function in terms of loss is given by the negative log
likelihood:

LSeq = −
n∑

i

log(P (ei|Wi)) (3)

Joint Embeddings. As the goal of this approach is to jointly model entities in the
knowledge graph as well as in the sequential data, we propose a joint learning
model that is trained by simply adding both loss terms:

LJoint = LSeq + LKG (4)
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Entity Embeddings

x1 x3

x1 x3

= (Event 1, Event 2, Event 3) = (Event 1, occurs at, Conveyor)

x2

Relation Embeddings

xi | Wi

Fig. 4. Architecture of the joint embedding learning model

Minimizing the joint loss LJoint should result in solid embeddings of both, enti-
ties in the knowledge graph and the sequence data set. In reality, joint loss min-
imization is approximated using a state-of-the-art stochastic gradient descent
optimizer. The key idea here is that entity embeddings are shared across both
tasks and therefore the outcome should reflect co-occurrence of sequential data as
well as the structure of the knowledge graph. The architecture of the joint embed-
ding approach is shown in Fig. 4, where the |E|-by-d matrix of entity embeddings
is located in the center. These embeddings are shared with the prediction model
of entities in the sequential data on the left-hand side and the knowledge graph
embedding model on the right-hand side. Note that in the depicted example this
shared aspect is highlighted with Event 1 having the same embedding (represen-
tation) in both models, i.e. h = x1. The |R|-by-d matrix of relation embeddings
on the right-hand side is solely used for the knowledge graph embeddings as it
only influences distance calculation between triples.

4 Prototype Evaluation

We evaluated this approach on a real-world manufacturing KG data set coming
from an automated assembly line. The event sequences are taken from a SCADA-
level Alarms & Events database, whereas the initial KG was extracted from sev-
eral spreadsheet files and CAD models. The final KG ended up with a size of
about 3,700 triples about processes, equipments, and events, whereas the sequen-
tial data consisted of 57 thousand events occurrences. A prototypical implemen-
tation of the representation learning was implemented using the TensorF lowTM

library. For performance evaluation, the usual criteria are (cf. [1]):

– Mean Rank: The average predicted rank of the head or tail entity that would
have been the correct one (1 indicating perfect rank)

– Hits Top–10: The fraction of predicted ranks that were in the top 10
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Fig. 5. Evaluation on hold-out test data (unknown triples) during training

Table 1. Models and data sets with and without sequential data

Model |KG| |D| Test size Mean rank Hits top–10

KG 3.7k - 3% 316.46 27.66

KG+Seq 3.7k 57k 3% 296.16 28.92

We compare two models, KG (knowledge graph embeddings only) and KG+Seq
(joint embeddings). In Fig. 5, the performance of KG and KG + Seq are visu-
alized during model training on a hold-out (unseen) test data set of incomplete
triples, e.g. (Conveyor, involved in, ?). It can be seen that the joint model
performs better in terms of lower mean rank and higher hits top-10 percentage
(Table 1).

5 Related Work

We divide related work into two categories, limited to applications and tech-
niques that are close to the one in this work.

Model Learning in Manufacturing. Machine learning has been used to discover
influencing factors of manufacturing processes [14]. Other works of adapting to
changing context have studied monitoring processing times in flexible production
systems [10,11] and more high-level architecture proposals for context extraction
and self-adaption of production systems [12]. However, the authors do not specify
a concrete methodology on how to extract context knowledge and align it with
existing models.
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Learning of Knowledge Graph Embeddings. Existing learning methods for KGs
such as [1,9] have been extended to include many-to-many relationships [8] and
to incorporate textual information to improve entity representation learning.
Recently, word co-occurrences as sequential data were used in KG completion
tasks [13]. In contrast to our approach, these works are focused on large-scale
knowledge graphs containing noisy information.

6 Conclusion

An approach for automated recommendations for the alignment of semantics
coming from operational data and manufacturing KGs was presented. Our model
allows to predict missing relations introduced from changes in physical environ-
ments and unaligned event semantics, which can be detected and integrated
into a global knowledge graph schema, thus lowering manual modeling effort.
The joint representation of entities shows promising performance, which is vital
for transition to fully automated synchronization, ensuring correct operation of
monitoring and other management applications such as scheduling.
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F., Flöck, F., Gil, Y. (eds.) ISWC 2016 Part II. LNCS, vol. 9982, pp. 325–343.
Springer, Cham (2016). doi:10.1007/978-3-319-46547-0 30

6. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning - ICML 2014, vol. 32, pp. 1188–1196
(2014)

7. Lechevalier, D., Narayanan, A., Rachuri, S.: Towards a domain-specific framework
for predictive analytics in manufacturing. In: Proceedings - 2014 IEEE Interna-
tional Conference on Big Data, IEEE Big Data 2014, pp. 987–995 (2015)

8. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed-
dings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence Learning, pp. 2181–2187 (2015)

9. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graph. Proc. IEEE 28, 1–23 (2015)

http://arxiv.org/abs/1610.06467
http://dx.doi.org/10.1007/978-3-319-46547-0_30


310 M. Ringsquandl et al.

10. Ringsquandl, M., Lamparter, S., Brandt, S., Hubauer, T., Lepratti, R.: Semantic-
guided feature selection for industrial automation systems. In: Arenas, M., et al.
(eds.) ISWC 2015 Part II. LNCS, vol. 9367, pp. 225–240. Springer, Cham (2015).
doi:10.1007/978-3-319-25010-6 13

11. Ringsquandl, M., Lamparter, S., Lepratti, R.: Estimating processing times within
context-aware manufacturing systems. In: Proceedings of the 2015 IFAC Sympo-
sium on Information Control Manufacturing (INCOM 2015) (2015)

12. Scholze, S., Stokic, D., Barata, J., Decker, C.: Context extraction for self-learning
production systems. In: IEEE International Conference on India Information
(INDIN), pp. 809–814 (2012)

13. Wang, Z., Li, J.Z.J.: Text-enhanced representation learning for knowledge graph.
In: IJCAI, pp. 1293–1299 (2016)

14. Wuest, T., Irgens, C., Thoben, K.D.: An approach to monitoring quality in man-
ufacturing using supervised machine learning on product state data. J. Intell.
Manuuf. 25, 1167–1180 (2014)

http://dx.doi.org/10.1007/978-3-319-25010-6_13

	Knowledge Fusion of Manufacturing Operations Data Using Representation Learning
	1 Introduction
	2 Motivation Scenario
	3 Problem Statement
	4 Prototype Evaluation
	5 Related Work
	6 Conclusion
	References




