An Approach to Development of System Architecture
in Large Collaborative Projects

Gokan Mayl(g), Dimosthenis Ioannidisz, Ifigeneia N. Metaxa® , Dimitrios Tzovarasz,
and Dimitris Kiritsis'

I EPFL, ICT for Sustainable Manufacturing, EPFL SCI-STI-DK, Station 9,
1015 Lausanne, Switzerland
{gokan.may,dimitris.kiritsis}@epfl.ch
2 Information Technologies Institute (ITI), CERTH, 57001 Thessaloniki, Greece
{djoannid,dimitrios.tzovaras}@iti.gr
3 ATLANTIS Engineering SA, 55535 Thessaloniki, Greece
metaxa@abe.gr

Abstract. Innovation projects in manufacturing domain often include several
end users with different use cases that require a special approach for converging
to one architecture solution, which addresses the needs of all end users. The
communication between end users and developers in different research and soft-
ware development projects should be supported correspondingly. This paper
describes an approach to development of software intensive system architecture
in large collaborative projects that extends traditional approaches with different
architecture viewpoints and additional iterative steps aiming to design a main
platform integrating project solutions. The approach is applied and validated in
a large collaborative EU-funded H2020 research project entitled Z-Factor, i.e.
Zero-defect manufacturing strategies towards on-line production management for
European factories. Based on the standard ISO/IEC/IEEE 42010 that implies a
process based on a set of relevant architecture viewpoints and following the
architecture development approach introduced in this study, Z-Factor platform is
defined by the following viewpoints: conceptual, functional, information, and
deployment.

Keywords: Software engineering - System architecture - Collaborative projects -
Manufacturing

1 Introduction

In today’s complex world of IT, business and manufacturing, innovation may often
emerge thanks to the involvement in research and development projects of heteroge-
neous and interdisciplinary teams whose members are coming from different back-
grounds and expertise [1]. Such projects should accommodate both the diverse user
needs as well as the various interests and goals of the team development members. The
communication between end users and developers in different research and software
development projects should be supported correspondingly [2]. This paper describes an

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved
H. Lodding et al. (Eds.): APMS 2017, Part I, IFIP AICT 513, pp. 67-75, 2017.
DOI: 10.1007/978-3-319-66923-6_8

68 G. May et al.

approach to development of software intensive system architecture in large collaborative
projects that extends traditional approaches with different architecture viewpoints and
additional iterative steps aiming to design a main platform integrating project solutions.
The approach is applied and validated in a large collaborative EU-funded H2020
research project entitled Z-Factor [3]. Based on the standard ISO/IEC/IEEE 42010 that
implies a process based on a set of relevant architecture viewpoints and following the
architecture development approach introduced in this study, Z-Factor platform is defined
by the following viewpoints: conceptual, functional, information, and deployment.

2 Approach to Development of System Architecture

Figure 1 shows the architecture development approach.

SOTA

analysis for SW Tools Tior el Represent

Deployment
4 4 exchanged P, pl
architecture Landscape architecture : 5 Requirements
information
Data Deployment
exchange diagram +
between Hardware

modules requirements

Aonceptual"" Functional "\ Information
/iewpoint | Viewpoint Viewpoint

UML
Sequence

‘ Overall s
“ System

diagrams

Fig. 1. Architecture development approach

In the State of the art (SOTA) analysis step, relevant large collaborative projects and
international standards are analyzed from a system and architecture perspective in order
to (i) define the architecture development method, and (ii) identify critical aspects for
the system architecture that should be taken into account.

The design of the main system architecture is carried out based on the knowledge
and insights from relevant international projects, and the documentation of the archi-
tecture is based on the standard ISO/IEC/IEEE 42010 (2011) “Systems and software
engineering — Architecture description” [4]. This standard establishes a methodology
for the architectural description of software intensive systems. The standard implies a
process based on a set of relevant architecture viewpoints, and in this study we consider
four viewpoints, i.e. conceptual view, functional view, information view, and deploy-
ment view.

The System Architecture of the main platform is described starting from the high-
level architecture and tools’ description down to the definition of data flow and tools’
inner structure. The architectural description includes aspects related to the identification

An Approach to Development of System Architecture 69

of the major system components, how they should interact and how their external inter-
faces should be defined.

The first high-level description that leads to the definition of System Architecture
consists in identifying and classifying all the tools presented in what can be called the
software tools’ landscape, i.e. the conceptual view. The conceptual architecture provides
an overview of the tools along with their dependencies and affiliation to the responsible
leading partners. In this step, project documents, partners’ feedback and the input from
the analysis of the project requirements and use cases play an important role.

In the functional view the components, their functionality, and their interactions are
described. Functional viewpoint contains all the functions that the system performs and
the responsibilities as well as interfaces of the functional elements with respect to the
relationship between them. These functions are described using UML diagrams. In this
step, a first version of the functional architecture is defined by (i) identifying the tech-
nologies and software modules to be provided by the project partners, and (ii) thinking
of and identifying the missing modules and functionalities which are required for the
implementation of the main platform and that will be developed and integrated along
the project. Following this description of the main functional view, all technology part-
ners provide a detailed description of the expected inputs, generated outputs and main
functionalities as well as the component diagrams for each tool.

In the next step, a schema is provided to represent the exchanged information
between the envisioned components. The information view describes the application
domain models and the data flow as well as the distribution. Finally, the deployment
requirements are collected from the partners and deployment diagram is designed
accordingly. The deployment view describes how and where the system will be
deployed, which physical components are needed, as well as the dependencies, hardware
requirements and physical constraints. Finally, UML sequence diagrams designed for
each use case should clarify how the platform will work and which components are
relevant to achieve different tasks. The final system architecture thus represents a key
cornerstone in setting the basis for the successful deployment of future project results
by providing the means for their harmonization in a coherent infrastructure.

3 Implementation of the Approach in Z-Factor

The EU H2020 Factory of the Future (FoF) project Z-Factor focuses on Zero-defect
manufacturing strategies towards on-line production management for European facto-
ries. The Z-Factor Platform and solution introduce five multi-stage production-based
strategies targeting (i) early detection of the defect (Z-DETECT), (ii) prediction of the
defect generation (Z-PREDICT), (iii) prevention of defect generation by recalibrating
the production line (multi-stage), as well as defect propagation in later stages of the
production (Z-PREVENT), and (iv) reworking/remanufacturing of the product, if this
is possible, using additive and subtractive manufacturing techniques (Z-REPAIR), and
finally (v) management of the aforementioned strategies through event modelling, KPI
(key performance indicators) monitoring and real-time decision support (Z-MANAGE).
Accordingly, Z-Factor architecture will encompass the design and development of a

70 G. May et al.

diverse set of technologies with different specifications and requirements aligned with
these 5 main Z-Factor strategies. Consequently, the Z-Factor Platform will be demon-
strated in three different pilots belonging to the three end users (i.e., Microsemi, Inter-
seals, and Durit), where each one targets at different aspect of the operation and activities.

Following the logic of the Z-Factor platform design and development, in the
following subsections we develop the Z-Factor system architecture which comprise four
different architecture viewpoints (i.e. conceptual, functional, information, deployment).

3.1 Conceptual Viewpoint

The first high-level description that led to the definition of the System Architecture
consisted in identifying and classifying all the software tools to be developed in Z-Factor.
In this step of the architecture development, we collect and categorize the technologies and
software components that the individual partners of the Z-Factor project brought in with
them. In addition, the partners’ expertise has been quickly identified and used as best as
possible in this first process. This has also helped us to identify gaps in the architecture

[Subtractive
i &

; Additive '
Manufacturing |

In process

process

Fig. 2. Z-Factor conceptual architecture viewpoint

An Approach to Development of System Architecture 71

that needed to be filled in order to achieve the platform envisioned by the Z-Factor
project. Figure 2 presents this landscape by proposing a compact representation of the
involved tools.

3.2 Functional Viewpoint

Beginning from the conceptual architecture defined in the previous section, we have
started putting the components into an initial architecture, identifying services and
dependencies within the platform. We have also added new components in order to cover
all the required Z-Factor functionalities. The result of this process is presented in this
section, which includes the defined overall Z-Factor functional architecture. As it can
be observed in Fig. 3, Z-Factor overall architecture has been subdivided in different
layers, as specified initially, where components are of different nature and offer different

functionalities.
Visualization
Decision
Support
Z-FactOr SW
for ZDM
]é\;ent
Manager
T al Se icC Data acquisition Shopfloor
. and processing
Manager

GUI/Dashboard

@ @ ponen) |
GUI Visual Multi-level Phone / Tablet
Designer Analytics Visualization Ul

M'ddi; % mponcic |2
LG cwane Integrated
Core Modﬁi| N KMDSS

Manager &
a Condition

Green Monitoring

Optimization

Production
Management

HMI & Sensor Network
&l

Sensors

al : al Devices /
Legacy Network Sensors
systems infrastructure

Fig. 3. Z-Factor functional architecture viewpoint

In order to define the System Architecture in such a way that it represents a usable
schema for the implementation, a UML Component diagram has been created (shown
in Fig. 3), where each tool has been represented as a component. Component diagrams
are particularly useful when applied to distributed development. In fact, the initial archi-
tectural modelling efforts during cycle O focuses on identifying the landscape of the
system and UML component diagrams which enable the modeling of the high-level
software components, and more importantly the interfaces to those components. Once
the interfaces are defined and agreed to teams, it is much easier organizing the devel-
opment effort between sub-teams.

72 G. May et al.

Z-Factor functional viewpoint thus contains all the functions that the system should
perform as well as the responsibilities and interfaces of the functional elements and the
relationship between them. These functions are described using UML diagrams.
Figure 3 shows the component diagram view of the overall Z-Factor architecture.

To sum up, the main components, their functionality, and their interactions are
described in the functional view. Accordingly, the main components for Z-Factor archi-
tecture are:

e HMI & Sensor Network, which includes sensors, actuators, HMIs for humans to
provide input to machines and thus the overall system, cameras, network infrastruc-
ture, legacy systems, etc.

e Shop-floor components which comprise semantic context manager, data acquisition
and processing including 3D laser scanning, and Z-Factor repository.

e Middleware including device manager, event manager, green optimizer, and core
model manager.

e Z-Factor software modules for zero-defect management in manufacturing, which
builds the service layer and includes Z-Factor specific tools such as real-time quality
control, production management, reverse supply chain, zero-defect robotic debur-
ring, and additive/subtractive manufacturing repair.

e Decision Support System (DSS) component, which will supervise and provide feed-
back for all the processes executed in the production line, evaluating performance
parameters and responding to defects, keeping historical data.

e Finally, a visualization layer has been foreseen, which includes GUI/Dashboard
designer, Visual Analytics Module, multi-level visualization component, and phone/
tablet U, etc.

Having identified the main functional view, we have then clarified the role of each
layer and components. As first step of this phase, a template has been defined in order
to collect a short description of all components brought by the partners. In particular,
this template has aimed to collect the following component information: description of
the main functionalities, related services, dependencies, inputs needed and outputs
provided. This detailed description is introduced by a short description of the tool,
pointing out the associated task and the principal user(s) of the tool. Then, the functional
requirements are pointed out, meaning that for each tool a list of the main inputs, the
main outputs and the main functionalities are listed and explained. After this analysis,
the software structure of the tool architecture is given by the use of an UML Component
Diagram allowing a first, deeper analysis on how the tool will be implemented. Even-
tually, a complete description of the modules included in the detailed view is provided
in order to point out the responsibilities of each module and their interactions with the
overall System Architecture.

3.3 Information Viewpoint

The information viewpoint describes the way that the architecture stores, manipulates,
manages, and distributes information. The ultimate purpose of virtually any computer
system is to manipulate information in some form, and this viewpoint develops a

An Approach to Development of System Architecture 73

complete but high-level view of static data structure and information flow. Accordingly,
this section illustrates a schema to represent the exchanged information between the
envisioned components of the Z-Factor platform. Figure 4 highlights this information
viewpoint diagram.

EvaluationResults ReverseSCEvents |

rrrrrrrrrrrrrrrrrrrrrr E£S-DSS

[Fmmmmn o Mechinell s Defect Prediction | __ DefectsReport __
HumanData

Defect Detection

PP ReverseSCEvauations______________ Module
PR A A A AAAA
Manager '

! Machindata |

HumanData !

ReverseSCMetrics

Soredshofooata | oo
H B ProductData 1

A A A A

! : ! Mashinsoas
U spcbosa |1 141 LMechibal
: Produm{ommo:

! RavData !

" ' T I | ki
1EventNotification ' ‘Dala

HML& S X e

Fig. 4. Z-Factor information architecture viewpoint

3.4 Deployment Viewpoint

The deployment view needs to document the required deployment environment of the
Z-Factor platform, which depends on the pilot areas and their topology. In this section,
a first component diagram indicating the deployment view of the Z-Factor components
is depicted in Fig. 5.

The HMI & Sensor network is comprised by a variety of heterogeneous sensors
including the preinstalled factory automation system, which provides information about
the production activities and the status of the factory infrastructure. Furthermore, it is
comprised by the other sensors which will be used within the Z-Factor project. All these
sensors/devices will be connected to the Middleware Device Manager through corre-
sponding gateways, which will forward the information from the shop floor to the
Middleware. The Device Manager, running in a dedicated PC named IoT Gateway, is
equipped with all the necessary drivers, so as to understand and interpret the multi-
sensorial information. The Device Manager is interconnected with the Middleware
Event Manager, which could be located on the same PC (i.e. IoT Gateway) or even on
another workstation as it is depicted in Fig. 5. The integrated Knowledge Management

74 G. May et al.

Fig. 5. Z-Factor deployment viewpoint

and Decision Support System (KMDSS) is interconnected with the Middleware Device
Manager in order to acquire data stemming from the sensor network. This information
is subsequently processed, generating recommendations which are then provided to
users or other subsystems in the form of Events through the Event Manager.

All Z-Factor components, which will be connected among each other with the
Middleware Event Manager, could be installed either on the same PC workstation or
distributed to a number of PCs. Figure 5 illustrates the case where the Z-Factor compo-
nents are distributed to various PC workstations. All the Z-Factor components compose
the cloud-based Z-Factor infrastructure and will be interconnected among each other
with a dedicated intranet, which could be either wired, wireless or even a combination
of wired and wireless.

4 Conclusion

The introduced approach has proven its applicability on the realistic example of a large
collaborative research project, demonstrating its ability to support the users and devel-
opers on their way from project requirements and software tools’ description to the
unified system architecture. Mutual analysis of the architecture by end users and soft-
ware developers with different competences inspired all sides and supported the defini-
tion of new solutions. The resulting Z-Factor platform satisfies the identified business
requirements of the industrial end-users and will act as main driver for the interpretation
and explanation of the activities related to the design and management of a zero-defect

An Approach to Development of System Architecture 75

manufacturing system at large. The application of this method in large innovative
projects would facilitate their success.

Acknowledgements. The work presented in this paper is supported by the project Z-Factor which
is funded by the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 723906. The paper reflects only the authors’ views and the Commission is not
responsible for any use that may be made of the information it contains.

References

1. Koukias, A., May, G., Vasyutynskyy, V., Nadoveza, D., McCarthy, J.C., Taisch, M., Kiritsis,
D.: Approach on analysis of heterogeneous requirements in software engineering. IFAC Proc.
Vol. 46(7), 372-377 (2013)

2. Kovécs, G.L., Paganelli, P.: A planning and management infrastructure for large, complex,

distributed projects—beyond ERP and SCM. Comput. Ind. 51(2), 165-183 (2003)

Z-Factor Project. http://www.z-factor.eu/. Accessed 1 Mar 2017

4. ISO/IEC/IEEE 42010. Systems and software engineering — Architecture description (2011)

bl

http://www.z-factor.eu/

	An Approach to Development of System Architecture in Large Collaborative Projects
	Abstract
	1 Introduction
	2 Approach to Development of System Architecture
	3 Implementation of the Approach in Z-Factor
	3.1 Conceptual Viewpoint
	3.2 Functional Viewpoint
	3.3 Information Viewpoint
	3.4 Deployment Viewpoint

	4 Conclusion
	Acknowledgements
	References

