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Abstract. The current trend of integrating machines and factories into
cyber-physical systems (CPS) creates an enormous complexity for opera-
tors of such systems. Especially the search for the root cause of cascading
failures becomes highly time-consuming. Within this paper, we address
the question on how to help human users to better and faster understand
root causes of such situations. We propose a concept of interactive alarm
flood reduction and present the implementation of a first vertical pro-
totype for such a system. We consider this prototype as a first artifact
to be discussed by the research community and aim towards an incre-
mental further development of the system in order to support humans
in complex error situations.
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1 Introduction and Motivation

Currently the landscape of industrial production changes fundamentally. While
in the past decades engineering in industrial production focused on the question
on how to further automatize industrial production, the current development
concentrates on the digitalization and connection of industrial components and
whole factories to form so-called cyber-physical systems (CPS) [26]. The formed
networks as well as the use of machine learning technologies to create intelligent
production components will increase production efficiency and is therefore of
huge economic value. A study of Germany’s digital association Bitkom forecasts
a value-added potential of 79 billion euros in the six major industrial branches
of the German economy until 2025 [4]. With the changes of technologies and
processes, human interactions with production systems and factories will also be
transformed [30].

By creating new networks of industrial components and factories, complex-
ity is induced into the system. This complexity can become an issue in case of
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errors, faults, failures, or security attacks of a single component that might influ-
ence other parts of overall CPS due to cascading failures [25]. While some of the
cascading failures might be avoided by incorporating robustness principles into
the design and implementation process of CPS (e.g. [43]), we assume that there
will be always failure situations that will require human interventions. How-
ever, finding root causes in failure situations requires more effort and becomes
costly, if systems are connected. Maintenance work in the new complex context
of CPS requires interdisciplinary skills and high competencies, such as knowledge
about the technologies, economic and legal factors, social and communicational
skills and willingness to learn [33]. Based on these high requirements and the
present shortage in highly-skilled workers it would be desirable to have intelligent
systems that support humans in the analysis and handling of failures in CPS.
With this paper, we want to focus on the question on how to help human users
to understand root causes of complex failure situations. More specifically, we
address the topic of interactive alarm flood reduction in CPS scenarios, an inter-
active machine learning (iML) approach to find root causes of complex failure
situations. With this paper, we present a first prototype of an assistive system
that can help users to find root causes of alarm floods by using machine learning
technologies.

The rest of the paper is organized as follows. Section 2 gives an overview on
related work in the research areas of assistive systems for error-handling, alarm
flood reduction and iML. Section 3 shortly describes the research through design
method that is the foundation for our research method. Section 4 proposes our
concept of interactive alarm flood reduction. Section 5 describes our prototype
in detail, followed by a discussion of the results, a conclusion and outlook in
Sect. 6.

2 Related Work

In this section, we will provide an overview of the current research regarding
three fields: First, we will present previous assistive systems in the context of
error-handling. Second, we will show previous machine learning methods for
alarm flood reduction and third, we will present the young research field of iML.

2.1 Assistive Systems for Error-Handling

There has been a lot of research work on the topic of assistive systems to sup-
port work processes in the future of industrial production and many overview
works and surveys exist, e.g. on how to support users with Augmented Real-
ity (AR) in industry [5,14]. However, only few proposed systems considered
the support in complex error situations and focus mainly on a non-interactive
visualization. Folmer et al. [15] present a system called Automatic Alarm Data
Analyzer (AADA) that use machine learning algorithms to reduce alarm floods
and a three-dimensional visualization to show only the most important informa-
tion to an operator. In a similar way, Laberge et al. [24] analyzed different alarm
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summary display designs for the visualization of complex error situations. They
compared a list-based presentation with a time-series presentation showing icons
and summarized descriptions. According to their study, the latter presentation
led to fewer false user responses. Another work in this domain by Renzhin et al.
[31] analyses and visualizes communication data between machines in CPS in
various way. By choosing the appropriate visualization, users are empowered to
find errors more easily. Furthermore, the system can find deviations from the
normal state of the system and reports such errors automatically to the user.

2.2 Alarm Flood Reduction

The topic of alarm flood reduction gained attention from the process industry
after incidents like the explosion at the Texaco Refinery in Milford Haven [17].
As a result, the non-profit organization Engineering Equipment & Materials
Users’ Association (EEMUA) created the guideline EEMUA 191 [10]. The quasi-
standard EEMUA 191 for alarm management recommends to have only one
alarm per 10 min. Based on this, further standards such as ANSI/ISA-18.2-
2009 [28] or IEC62682:2014 [9] have been developed. With the vision of industry
4.0 this topic has an increasing importance also for other industrial branches.
Several approaches to address the topic of alarm floods exist. Most of them
deal with clustering similar alarms together. A good overview about different
approaches is provided by Wang et al. [39].

We want to focus on reducing alarm floods by identifying the root cause of
the alarm flood. Therefore, we need a causal model which represents the depen-
dencies of the alarms. Probabilistic graphical models, such as Bayesian nets,
fault trees, or Petri nets are particularly suitable for this purpose. They were
already used in the field of alarm flood reduction. Kezunovic and Guan [23] use a
fuzzy reasoning Petri nets diagnose model to identify root causes. For this, they
take advantages of an expert rule based system and fuzzy logic. Simeu-Abazi
et al. [35] exploit dynamic fault trees to filter false alarms and locate faults
from alarms. Guo et al. [16] develop an analytic model for alarm processing,
which is based on temporal constraint networks. They use this model to find out
what caused the reported alarms and estimate when these events happen. Wei
et al. [41] apply a rule network for alarm processing. They can determine the
root cause and also identify missing or false alarms. Wang et al. [37] combine
association rules with fuzzy logic. They use a weighted fuzzy association rule
mining approach to discover correlated alarm sequences. Based on this, they are
able to identify root causes. Abele et al. [1] propose to combine modeling knowl-
edge and machine learning knowledge to identify alarm root causes. They use a
constrained-based method to learn the causal model of a factory represented by
a Bayesian network. This enables faster modeling and accurate parametrization
of alarm dependencies but expert knowledge is still required. Wang et al. [38]
apply an online root-cause analysis of alarms in discrete Bayesian networks. They
restrict the Bayesian Network to have only one child. The method is evaluated on
a numerical example of a tank-level system. In [42] various approaches to learn
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a causal representation of alarms to identify the root cause are investigated. The
concept for the reduction of alarm floods in this work is based on their findings.

2.3 Interactive Machine Learning (iML)

In the context of Machine Learning, iML is an approach that involves humans
into machine learning processes to deliver better results than fully-automated
systems. According to Robert et al. [32], the available iML system can be clas-
sified into the following three categories:

First, there are iML systems, where an appropriate data visualization helps
humans to manually build a model. Still, the interference is done automati-
cally based on the manually created model. Examples for this system are the
perception-based classification (PBC) system presented by Ankerst et al. [2,3]
and the work of Ware et al. [40].

Second, systems have been described under the term iML that involve
humans into an evaluation-feedback loop to improve an automatically gener-
ated model. The created model is appropriately visualized to the user and the
system contains a feedback channel, where users can assess the quality of a cer-
tain model. With this feedback, the system can improve the model iteratively.
These systems require a very fast model generation to allow rapid improvement
when feedback is given to the system. Examples for such systems are the system
of Fails et al. [11] that allows interaction designers to rapidly build perceptual
user interfaces (PUI) and the Wekinator1 system that analyses human gestures
in the context of music making [12].

The third type that is also named collaborative iML (ciML) is the newest
of the approaches. ciML systems can be characterized as system, where humans
can influence the model generation algorithm during runtime and work collab-
oratively with the algorithm to create a model. Examples for ciML systems are
the decision tree generation system by Ankerst et al. [3] and interactive ant-
colony algorithm to solve the traveling salesman problem (TSP) presented by
Holzinger et al. [20].

In this paper, we understand iML as systems, were the user is involved into
the feedback loop of iML systems, which is the second type in the classification
above.

3 Method

To better understand, how to support users in handling complex failure situa-
tions, we decided to develop a first prototype of an interactive system for alarm
flood reduction. This prototype can be seen as a research artifact to communi-
cate and discuss ideas among the research community [27]. In this way, we follow
the “research through design” approach proposed by Zimmerman et al. [44]. To
develop the prototype, we chose an iterative approach and followed the human-
centered design process specified in ISO 9241-210 (see [21], cf. [19]). This process
1 http://www.wekinator.org/.

http://www.wekinator.org/
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has proven to be very effective for designing interactive systems with a high usabil-
ity and has been successfully applied in an industrial context as well [6].

The prototype presented in this paper is the result of the first iteration. It
is a vertical prototype, so it does not contain all features of the system yet, but
therefore contains the core functionality and shows the feasibility of our concept.

4 Concept

The general concept proposed in this paper is the use of a cloud-based machine
learning system that monitors data from machines and becomes active in the
situation of an alarm flood, which we define as an occurrence of more than ten
errors per minute. This concept is shown in Fig. 1. Data, such as error messages
and warnings from machines and factories are send to a cloud service and stored
in a database. Based on this data, a machine learning algorithm builds up a
model of the relation of different error messages and warnings. In case of an
alarm flood the model is used to infer conclusions about the root cause of the
current situation. The analysis is presented to the user in a suitable way (e.g.
via an adaptive and responsive user interface). There are two types of user
involvement in this concept: First, the users of the assistive system (usually
the operators of factories or machines) report (explicitly or implicitly) feedback
to the system, if a certain root cause was predicted correctly from the system.
This feedback is stored in the database and used for the next iteration of the

Fig. 1. Overall process of the interactive alarm flood reduction
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model generation. Second, expert users can improve the model by using a model
editor. By assessing, if a detected error correlation is a causal relation or not,
the expert can manually change the model. The manual changes are kept when
the model is rebuilt in following iterations.

This section will focus on the aspects of the conceptual development of the
alarm flood reduction (algorithm) and the adaptive and responsive user interface.

4.1 Alarm Flood Reduction

The concept of the alarm flood reduction is depicted in Fig. 2. The concept can
be divided into two steps. As an initial step a causal model from the gathered
data in the alarm log is learned. In the alarm log the alarms of the factory or
CPS are listed with information about timing, description and status. The status
represents if the alarm is active or inactive. Based on the information of the alarm
log a causal model of the alarms is learned. Probabilistic graphical models are
suitable for as a causal model. We decide to use Bayesian Networks to represent
the dependencies of the alarms as a causal model. Bayesian networks are a class
of graphical models which allow an intuitive representation of multivariate data.
A Bayesian network is a directed acyclic graph, denoted B = (N,E), with a
set of variables XXX = {X1,X2, . . . , Xp}. Each node n ∈ N is associated with
one variable Xi. The edges e ∈ E, which connect the nodes, represent direct
probabilistic dependencies. In a second step, we use the current alarms and the
learned causal model of the alarms to infer the root cause. Because of the learned
relations, we are able to identify the possible root cause of an alarm flood. As a
consequence, we can reduce the amount of alarms to the possible root cause.

Fig. 2. Concept of alarm flood reduction
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4.2 Adaptive and Responsive User Interface

We distinguish between two separate user interfaces: the interface of the assistive
system and the model generator.

The user interface of the assistive system should be highly flexible to sup-
port different users and work situations. Therefore, we propose an adaptive and
responsive user interface, that can be used with various technologies and interac-
tion concepts. As a basic user interface, we use a responsive web application that
adapts to different devices. While responsive web applications are the current
state of web technology, they are limited to (two-dimensional) graphical user
interfaces. With this interaction concept, we go beyond this limitation. The web
application is the base visualization; however, if a user needs further assistance,
such as support in a repair scenario, where free hands are required, the user
can switch to an augmented reality (AR) visualization based on head-mounted
displays (HMD) (such as [29]) or mobile in-situ projections (such as [7]). Beyond
the visualization, the user needs to have a way of giving feedback to the system,
while and after doing maintenance work. Especially the results of an obtained
repair task are important to check, whether the model is accurate or need to be
improved. Therefore, we included a feedback channel to the system to report,
whether the root cause was detected correctly. This feedback channel could be
explicitly by users’ approvals or implicitly (cf. [34]) by the recognition of the
users’ activities and tasks.

The model generator is used by experts to manually adapt the model. This
interface presents the model in the form of a large graph. Due to the large data
sets that might be involved, this interface is shown on large computer displays.
Expert users can mark edges that represent causalities of errors or remove edges
from the model, that are no causal relations.

5 Prototype

In the context of the human-centered design process (compare section Method),
a first prototype has been developed iteratively. This prototype represents a ver-
tical prototype, so it does not contain all features of the system yet. However, it
contains the core functionality and shows the feasibility of our proposed concept.
This section will describe the implementation of the prototype system.

5.1 Architecture

The high-level architecture of the presented system is shown in Fig. 3. For the
basic infrastructure, we use Amazon Web Services (AWS), which provides ser-
vices, such as virtual servers, a database (DynamoDB), and supports the devel-
opment of application programming interfaces (APIs) that follow the principles
of representational state transfer (RESTful APIs). We provide a web server with
a generic RESTful API, where different machines can be connected to. Since
industrial machines usually do not use web protocols but rather rely on machine
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Fig. 3. High-level architecture of the system

to machine protocols, such as Open Platform Communications Unified Archi-
tecture (OPC UA), individual connectors need to be implemented for each of
the specific machine types. The web server is connected to the AWS DynamoDB
and to a server running an R environment2 for executing the machine learning
algorithms. The web server is also used to provide the current user interface
to various devices. The following sections present the implementation of the
machine learning algorithms and of the user interface in more detail.

5.2 Machine Learning Algorithms

The implementation of the machine learning algorithm contains three steps,
namely structure learning, parameter learning and inference. We use the Max-
Min Hill-Climbing which was developed by Tsamardinos et al. for learning the
structure [36]. For a better understanding of the associated pseudo code, we need
a few definitions. The dataset D consists of a set of variables ϑ. In the variable
PCx the candidates of parents and children for the node X are stored. This
set of candidates is calculated with a Max-Min Parents and Children (MMPC)
algorithm. The variable Y is a node of the set PCx. The pseudo code of MMHC
looks as follows: The algorithm first identifies the parents and children set of
each variable, then performs a greedy Hill-Climbing search in the reduced space

2 https://www.r-project.org/.

https://www.r-project.org/


Managing Complexity 77

of Bayesian network. The search begins with an empty graph. The edge addition,
removal, or reversing which leads to the largest increase in the score is taken and
the search continues in a similar way recursively. The difference from standard
Hill-Climbing is that the search is constrained to only consider edges which were
discovered by MMPC in the first phase. The MMPC algorithm calculates the
correlation between the nodes.

In a next step, the probabilities or parameters of the Bayesian network are
learned. For this we use the maximum likelihood estimation (MLE) which was
developed by R.A. Fischer and is a classical method in statistics [13]. Here, a
parameter p is estimated to maximize the probability of obtaining the observa-
tion under the condition of the parameter p. In other words, the MLE provides
the most plausible parameter p as an estimate with respect to the observation. If
the parameter p is a probability in the Bayesian network and the historical data
D represents the observations, the likelihood function is composed as follows:

Algorithm 1. MMHC Algorithm
1: procedure MMHC(D)
2: Input: data D
3: Output: a DAG on the variables in D
4: % Restrict
5: for every variable X ∈ ϑ do
6: PCX = MMPC(X, D)
7: end for
8: % Search
9: Starting from an empty graph perform Greedy Hill-Climbing with operators

add-edge, delete-edge, reverse-edge. Y → X if Y ∈ PCX

10: Return the highest scoring DAG found
11: end procedure

L(D|p) =
n∏

i=1

f(D|p) (1)

The probability density function of D under the condition p is f(D|p). With the
learned structure and the probabilities, the inference can begin. The approximate
method logic sampling (LS) is used for this purpose.

The Logic Sampling Algorithm is a very simple procedure developed by Max
Henrion in 1986 [18]. In this case, a state is arbitrarily assumed per sample for
the root nodes according to their probability table. Thus, a certain number of
samples, which are determined, are carried out. Subsequently, the probability
that e.g. a node X assumes the state True as follows:

P (X = True) =
Number of cases with X = True

Number of all samples
(2)
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This process always converges to the correct solution, but in very rare cases
the number of samples required can become exorbitant [22]. The feedback of
the expert is included with a whitelist and blacklist in the structure learning.
The whitelist contains all predetermined relations and the blacklist contains all
prohibited relations between the alarms.

5.3 User Interface

The current user interface is built on the basis of web technologies. Server-sided,
the system provides a generic RESTful API for exchanging the data between
the server and the end-users’ devices. The actual client is built as a responsive
web application. While the responsive assistive system is part of the current
prototype, the model editor is ongoing work and therefore not further described
in this section.

Fig. 4. Screenshots of the responsive web application with (a) normal situation without
errors and (b) case of an occurring alarm flood. (Color figure online)

The webserver can be accessed to load the assistive system in form of a
responsive web application that automatically adapts to the device of the user,
such as computer screens, smartphones or tablet computers. The integration of
other interaction devices, such as HMDs for hand-free operation is ongoing work.
The user interface is implemented in HTML5 using the frameworks Bootstrap3

and AngularJS4. To display the information on small screens, the content of the
current user interface is limited to the most important information. It shows the
occurring errors and (in case of an alarm flood) the root cause of the problem

3 http://getbootstrap.com/.
4 https://angularjs.org/.

http://getbootstrap.com/
https://angularjs.org/
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(see Fig. 4b) or a huge green check mark if all machines are working properly
(see Fig. 4a).

Since this responsive website cannot be displayed on devices without web
browsers, such as HMDs, native applications will be provided in future that
also make use of the generic API. According to our concept, there will be more
detailed assistance information to display not only the root cause but rather
various types of media (images, videos) that help users to fix a specific cascade
of errors, which is a topic for future work.

6 Discussion, Conclusion and Outlook

In this paper, we proposed our concept of a system for interactive alarm flood
reduction for determine root causes in complex failure situations. Such a system
will be beneficial for finding errors in complex industrial environments, e.g. in
the future of production, when CPS become omnipresent. Contrary to previous
work, we do not only focus on automatic machine learning concepts for alarm
flood reduction, but rather want to establish a feedback channel to empower
users to give feedback of the results of the alarm flood reduction to the system.
Having this possibility, the model representing the causal relations of alarms can
iteratively be improved.

We presented a first vertical prototype of our concept consisting of a machine
learning system based on the Max-Min Hill-Climbing algorithm of Tsamardinos
et al. [36] and the maximum likelihood estimation of Fischer [13] as well as
a responsive web application as user interface based on web technology. This
prototype has been developed in an iterative design process. While a formal
evaluation of our prototype is outstanding and future work, we discussed the
results with experts from industry. However, the prototype shows the feasibility
of our proposed concept.

Future work will focus on the improvement of the system to give better
predictions of root causes as well as a deeper integration of human feedback.
Furthermore, additional features will be added to the very basic user interface
described in this paper. The responsive web application will be extended in
the way to actually realize an assistive system; this will be achieved by not
only showing the error but rather guide users through the process of repair or
maintenance in a similar way to assistive systems in manufacturing, such as [8].
For this purpose, the system will be extended to also allow for connecting other
interaction devices, e.g. HMDs. While the interface of the web server is designed
in a way to cover this process, a specific scenario containing machines and related
maintenance and repair manuals needs to be created. Parallel to this technical
development, we plan to evaluate the overall systems repeatedly during the iter-
ative development process.

As already stated our system is in an early stage. However, the current proto-
type is a first artifact to communicate our vision and to discuss ideas among the
research community (cf. [27,44]). The further development and evaluation will
give more insight into the question on how to help human users to understand
errors in complex interconnected systems, such as CPS.
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