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Abstract. Predicting the onset of heart disease is of obvious importance
as doctors try to improve the general health of their patients. If it were
possible to identify high-risk patients before their heart failure diagnosis,
doctors could use that information to implement preventative measures
to keep a heart failure diagnosis from becoming a reality. Integration of
Electronic Medical Records (EMRs) into clinical practice has enabled the
use of computational techniques for personalized healthcare at scale. The
larger goal of such modeling is to pivot from reactive medicine to preven-
tative care and early detection of adverse conditions. In this paper, we
present a trajectory-based disease progression model to detect chronic
heart failure. We validate our work on a database of Medicare records
of 1.1 million elderly US patients. Our supervised approach allows us to
assign likelihood of chronic heart failure for an unseen patient’s disease
history and identify key disease progression trajectories that intensify
or diminish said likelihood. This information will be a tremendous help
as patients and doctors try to understand what are the most danger-
ous diagnoses for those who are susceptible to heart failure. Using our
model, we demonstrate some of the most common disease trajectories
that eventually result in the development of heart failure.

Keywords: Heart failure - Cardiovascular disease : Directed acyclic
graph + Medicare - EMR - Health care

1 Introduction

Today the healthcare industry finds itself at the precipice of a significant change,
as the past decade has seen the adaption and integration of electronic medical
records (EMR) into clinical practice. Beyond the logistical benefits of main-
taining and organizing patients’ medical data, clinicians and researchers can
perform novel research using these secondary data sources [1-3]. In fact EMRs
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ability to provide a computationally accessible set of structured data represent-
ing the expansive healthcare feature space has fueled the emergence of a sundry
of informatics tools ranging from early clinical decision support systems, to the
statistical analysis of, to predictive analytics aimed at identifying patients at
risk for readmission [4,5].

Building on the success of these tools, many researchers have seen healthcare
informatics as the junction between another line of parallel clinical research, the
shift from reactive to preventative medicine. Medical research is itself an evolv-
ing field, and has advanced in parallel with the emergence of EMR. Clinicians
have put forth a strong effort in advancing the care paradigm from reactive
medicine, where clinicians treat the conditions currently afflicting a patient, to
preventative care where clinicians undertake courses of action “for the purpose
of preventing disease or detecting it in an asymptomatic stage” [6]. As such,
the early detection and treatment of adverse health conditions represents an
exciting opportunity for the informatics community. Others have found that a
combination of research areas, including, but not limited to, graph-based data
mining, entropy-based data mining, and topological-based data mining, work
best for knowledge discovery and towards an end goal of supplementing human
learning with machine learning [7]. Eventually the goal is to have P4-medicine
(predictive, preventative, participatory, personalized) available for all patients
by using big data and the combined human computer interaction and knowledge
discovery/data mining approach [7].

A number of works have built on this foundation, focusing predictive tasks
from disease prediction, to the prediction of breast cancer survivability [8,9].
However, these tools suffer from a fundamental flaw, they identify patients’
health conditions as isolated events, i.e. a disease will occur in a patient’s future
medical chart, or a patient will recover from early stage breast cancer. One must
remember that an individuals’ health condition does not only consist of when
doctors measure them in a clinical environment. Although the rate of onset may
vary, the progression of disease represents a highly fluid state. As such, it may
be more valuable to view these patients’ conditions as trajectories, rather than
binary events.

While this seems like a significant shift in thinking, medical subfields have
already established the concept of a disease trajectory, sometimes denoted as
disease ‘progression’. In particular, research in relation to neurodegenerative
disorders such as Parkinson’s and Alzheimer’s have quite well established this
concept [10,11]. More recently, the trajectory concept has begun expanding into
the general healthcare population. Many clinicians have long postulated that an
underlying progression of related diagnoses may relate to diagnoses for which
we do not explicitly relate a temporal aspect. Today, the data collected through
the expanding EMR now allows for researchers to examine such hypotheses in
detail. Perhaps Jensen et al., have provided one of the best examples to date,
where through their work they successfully extracted diagnosis trajectories by
analyzing millions of longitudinal patient records and utilized a novel way of
describing biological disease progression [12].
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In this work, we build on this concept and present a novel graph-based diagno-
sis trajectory model. While recent advances have taken what effectively represent
an “unsupervised” approach to trajectory discovery, we aim to provide a target
based “supervised” methodology. We will begin with a discussion of the under-
lying methodology used in constructing the underlying diagnosis graph. From
here, we will discuss utilizing the temporal relations extracted from the graph,
showing that we can identify paths that significant differentiate the occurrence
of the target diagnosis. Finally, we will provide a case study of the methodology
in relation to patients with congestive heart failure.

2 Data Description

Electronic Medical Records (EMRs) log information on patients in the form of
diagnosis codes for each of their visits. This log effectively narrates a patient’s
medical history as identified by medical practitioners and can predict their future
health outcomes. Here we describe our data source, the data structure, how
chronic heart failure appears these diagnoses logs and how prevalent it is within
our patients.

Provenance. Our data comes from the Medicare records of 1,145,541 elderly
patients in the United States. The accuracy and completeness of these records
makes them invaluable to demographic and epidemiological research [9,13,14].
The data is completely anonymized—Dboth in terms of the patients and the
healthcare providers. For a given patient, we applied a threshold of a maximum
of 5 in-patient visit, and each visit corresponds to a maximum of 10 diagnosis
codes from the International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). These ICD-9-CM codes are designed to convey an
intrinsic hierarchy of diagnosis detail—the full 5-digit code represents the spe-
cific condition, location and/or severity, and its leading 3 digits represent the
medical diagnosis family. This “code collapse” [9] helps us identify the family of
patients who develop heart failure in our data.

Identifying heart failure. We observe ground truth evidence of pres-
ence/absence of heart failure with ICD-9-CM diagnoses for individual patients.
Diagnoses represented by the family of ‘428.xy’ codes cover all diagnoses for heart
failure. Specific examples of the 428 diagnosis family include Systolic heart fail-
ure (428.2); which breaks down into Systolic heart failure, unspecified (428.20),
Acute systolic heart failure (428.21), Chronic systolic heart failure (428.22) and
Acute on chronic systolic heart failure (428.23). We labeled as ‘HF’ all patients
for whom we observed the ‘428’ diagnosis family, and labeled the rest as ‘NHEF’
for heart failure and non-heart failure respectively.

Table 1 shows a sample patient’s medical history. Here we see the chrono-
logical history of the patient through each successive visit expressed in terms
of full ICD-9-CM codes. For each visit, the first code is the principal diagnosis,
followed by any secondary diagnoses made during that visit. The data presents
these diagnoses in their full ICD-9-CM form where 733.00 represents Osteo-
porosis, unspecified. Some diagnoses, such as Pathologic fracture (733.1) and
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Table 1. Example Patient History: Each row represents a distinct visit in chrono-
logical order. In each visit, the data shows multiple ICD-9-CM code diagnoses for our
example patient. Note that the code for heart failure (428.0) appears in the fifth visit.

Visit | Vector of ICD-9-CM disease codes

1 7331 (Pathologic fracture, unspecified site), 73300 (Osteoporosis,
unspecified), 2761 (Hyposmolality and/or hyponatremia), 4928 (Other
emphysema), 73743 (Scoliosis associated with other conditions)

2 7331 (Pathologic fracture, unspecified site), 73300 (Osteoporosis,
unspecified), 73741 (Kyphosis associated with other conditions), 73743
(Scoliosis associated with other conditions), 261 (Nutritional marasmus)
3 7331 (Pathologic fracture, unspecified site), 73300 (Osteoporosis,
unspecified), 73741 (Kyphosis associated with other conditions), 73743
(Scoliosis associated with other conditions), 261 (Nutritional marasmus)

4 485 (Bronchopneumonia, organism unspecified), 2765 (Volume depletion
disorder), 2769 (Electrolyte and fluid disorders not elsewhere classified),
496 (Chronic airway obstruction, not elsewhere classified),73300
(Osteoporosis, unspecified)

5 48230 (Pneumonia due to Streptococcus, unspecified) 4280 (Heart
failure), 5119 (Unspecified pleural effusion), 2761 (Hyposmolality and/or
hyponatremia), 2768 (Hypopotassemia), 73300 (Osteoporosis, unspecifie),
73741 (Kyphosis associated with other conditions), 7331 (Pathologic
fracture, unspecified site)

Nutritional marasmus (261), use fewer than the maximum 5 digits in ICD-9-CM.
Using Table 1 as an example, we see that in visit #5, the patient was diagnosed
with Congestive heart failure, unspecified (428.0) and therefore belongs to the
class ‘HF’.

Summary Statistics. The EMR data used in this study covers 1,145,541
elderly Medicare patients over the course of 5,727,705 total visits. Over the
course of these visits, the patients registered a total of 12,396 unique ICD-9-
CM diagnoses codes, which represent 1,064 families of 3 digit collapsed codes.
This set of patients exhibits a heart failure rate of 46.6%, which is extremely
high compared to the United States, about 5.7 million (2.2%) adults have heart
failure [15]. However, some have observed the overall prevalence of heart failure
in elderly patients in the United States as high as 10.6 to 13.5% (Chart 20-
2 [15]). Since our study focuses on patients on Medicare, this number is further
amplified.

Ezxperiments. Based on this EMR data, we group our analysis into two distinct
phases—(1) building a representational model for heart failure and (2) predicting
heart failure outcomes for unseen patients. First, we infer the nature of disease
progression for patients with and without observed heart failure. Based on the
learned model, we identify trajectories, individual diagnoses, and edges that give
the best indication of heart failure. We then use this model on previously unseen
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patients and predict whether they will develop heart failure and validate this
against observed ground truth data about these test patients.

3 Building a Representational Predictive Model

Researchers have built contemporary disease progression models using patient
data with already known target outcomes. [10,11]. In contrast, our supervised
approach helps contextualize disease progression trajectories against an in-situ
control set of patients, i.e. our data contains trajectories followed by patients who
eventually were diagnosed with Heart Failure and those who were not. This app-
roach highlights the diagnosis trajectories that intensify or diminish likelihood of
heart failure in patients. The identification of such divergence in diagnoses helps
pinpoint signals for heart failure from overall population trends. In this section,
we describe how we restructure Medicare EMR data to obtain supervised disease
progression trajectories. We then merge individual trajectories in the form of a
compact Directed Acyclic Graph to model class-aware patient population-wide
trends in diagnoses. Using this model, we identify key differentiating diagnoses
and trajectories that help separate patients who are likely to develop heart failure
from those who do not.

Preprocessing. We transform the data from raw medical histories shown in
Table 1 to extract class-aware trajectories for patients using the following steps.
We first collapse the diagnosis codes to their 3 digit counterparts, then eliminate
duplicate families of diagnoses and then decouple the diagnosis history used for
prediction from the observed outcome. Table 2 shows the result of applying this
preprocessing to the example history from Table 1.

1. Removing patients who receive a heart disease diagnosis on their first visit
Out of the 46.6% of the patients in our dataset who develop heart failure,
18.0% receive a heart failure diagnosis in their very first visit. Since this
study revolves around the concept of diagnoses leading up to heart failure,
we consider these patients out of scope for our training and testing data. This
removal of heart failure cases reduces the rate of observed heart failure in the
rest of the patients down to 34.8% from the original 46.6%.

2. Decoupling input data and target labels—In patients with heart failure, we
right-censor the diagnosis data when the first ‘428’ code appears. This ensures
that there is no “data leakage”, i.e. we do not predict heart failure based on
an observed diagnosis of heart failure since it is a chronic condition.

3. Pre-pruning diagnoses and pathways—To mitigate the impact of spuri-
ous/noisy disease trajectories in our analysis, we set a minimum support
threshold of 100 for the nodes and edges in our graph. By imposing this
threshold, we ensure that none of the diagnoses or the pathways between
them draws conclusions from a set of fewer than 100 patients out of a total
sample size of 1.1M patients.

4. Code Collapse—The original data contains 12,396 “Minor Category” diagno-
sis codes, whereas our analysis targets the “Major Category” outcome (heart
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Table 2. Preprocessed Example Patient History. Using the same example data
as Table 1, we derive a compact history of the patient. As a result of this preprocessing,
we arrive at a set of input diagnoses (visits #1 to 4) to create a trajectory and decouple
it from the labeled outcome (visit #5). Note that the diagnosis has been collapsed to
its family

Visit # | ICD-9-CM codes

1 733 (Other disorders of bone and cartilage), 276 (Disorders of fluid
electrolyte and acid-base balance), 492 (Emphysema), 737 (Curvature of
spine)

261 (Nutritional marasmus)

NA

4 485 (Bronchopneumonia, organism unspecified), 496 (Chronic airway
obstruction, not elsewhere classified)

5 428 heart failure

failure). Collapsing the 5-digit diagnoses codes down to their respective 3-digit
major categories helps reduce the complexity of the problem and matches the
granularity of the observed outcome. As a result, we now use 1,064 diagnosis
families to chart patient trajectories, which is 8.6% of the original complexity.

5. Removing duplicate diagnoses—We only consider new and previously unob-
served diagnoses in our analyses. In Table1, this means that we consider
diagnoses for Other disorders of bone and cartilage (733) only for their first
visit. We hope to address the trade-off of dropping duplicate diagnosis in
Future Work.

6. Removing superfluous diagnoses—ICD-9-CM diagnosis codes starting with V
(Supplementary classification of factors influencing health status and contact
with health services) and E (External causes of injury) reveal little about the
progression of disease and were taken out of the graph.

Disease Progression for Individual Patients. For the example patient in
Table 2, we can now create a disease progression history based on their diagnoses
Fig. 1. Each node represents a diagnosis and each edge (e(i,j)) represents a
potential transition from diagnosis ¢ to j across successive patient visits. Each of
these edges is strictly directed from a diagnosis in visit (¢ — 1) to a diagnosis in
visit ¢ and nodes in the same visit do not have edges between them. This makes
the graph a Directed Acyclic Graph (DAG). Each patient in our training data
has an outcome label associated with them, which we use as a label for each of
these patient-centric DAGs (Fig. 2).

A Class-Aware Heart Failure Model. While each patient’s disease progres-
sion DAG contains signals for their eventual outcome, but a domain expert
aided causal analysis for each patient would not scale to the 1.1M patients in
our dataset. Instead, we aggregate these histories into a unified model across
all patients to get a consensus on which diagnoses and pathways signal which
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Class = Heart Failure

Fig. 1. Example Patient Disease Progression. A directed acyclic graph can model
a single patient’s disease progression as shown above. Each layer represents a distinct
visit, and each child node belongs to the next visit. In each visit layer, we identify
several unique diagnosis codes. Each individual node in the graph represents these
diagnosis codes.

o0 co00 oo

Glass = Non Heart Failure Class = Heart Failure Class = Non Heart Failure
Individual Patient Disease Progression Overall model

Fig. 2. Combining individual patient histories

outcome for an unseen patient. Within our patient population, we perform a
5-fold cross-validation, training on 80% of the patients and testing the model on
the other 20% over 5 folds of the data. As shown in Fig.2, we simply combine
observed nodes and edges across all training set patients and create a compos-
ite DAG. The nodes at each level represent the superset of possible diagnoses
at that visit and edges between each level represent the observed transitions
between diagnoses.

The weight of each edge e(, j) corresponds to the observed confidence of heart
failure among patients who were diagnosed with ¢ and then j. Similarly, we assign
a weight to each node n representing the observed confidence of heart failure for
that node. A patient can have multiple diagnoses within the same visit, each
of which adds to the support of the corresponding nodes and edges. This does
not guarantee the total incoming support into a node being equal to the total
outgoing support. Another salient feature of this model is that it cane distinguish
the same diagnosis code between visits. For example, if one observes code ‘261’ in
visit #1 and #2 for different patients, we create nodes labeled ‘261_1" and ‘261_2’
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Fig. 3. Degree distribution of trained diagnosis graph

to preserve their unique trajectory histories. By this definition, it is possible for
‘2611’ and ‘261_2’ to have completely different weights. In our model, we label
each node’s diagnosis code according to the visit it was observed in.

Model Inference. The overall trained model is an interconnected representa-
tion that contains 1,974 nodes and 26,229 edges. with an average in-degree and
out-degree of 13.29. The degree distribution of the trained diagnosis graph is
given in Fig. 3. A relatively few nodes and edges contain a high likelihood of
heart failure as seen in Fig.4. These high-confidence nodes and edges indicate
underlying diagnoses and trajectories that lead to high rates of heart failure.
We identify nodes and edges with a high propensity for heart failure in
Tables 3 and 4 respectively. These nodes and edges describe diagnostic path-
ways that indicate heart failure. In addition to extremely high likelihood of
heart failure, we also identify diagnoses that effectively discern heart failure. For
this, we use information gain (or InfoGain, for short) for successive diagnoses in
patients. A higher information gain indicates a higher class polarization between

Distribution of Heart Failure Propensity Distribution of Heart Failure Propensity
across all nodes in DAG across all edges in DAG
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Fig. 4. Heart failure trajectories are highly imbalanced: We observe that the
progression of heart failure follows a minor set of nodes and edges in the learned model.
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Edge Information Gains Asymmetric Edge Information Gains
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Fig. 5. Information Gain in Edges: We compute the information gain for each edge
and use it as an edge attribute. By making information gain class aware, we treat non-
heart failure intensifying edges as negative information gains. This makes it easier to
isolate signals for heart failure intensifying paths.

heart failure and non-heart-failure. Information Gain (IG) is the reduction in
entropy for a given edge in our model. Specifically, an edge e(i,j) with high
information gain indicates that the diagnosis of j after ¢ leads to a higher confi-
dence of arriving at either class. We compute each node’s entropy from its class
distribution using

H(i) = —pr(i)log(pr(i))  H(G) =Y —pw(5)log(pw (5))

1G(i,j) = H(i) — H(j)

where ¢ and j are the respective source and destination diagnoses, k €
{HF,NHF}, and pg(.) represents the probability of observing class k in a
given node. Information Gain for e(4, j) is simply IG(i,j) = H(i) — H(j), where
higher values of IG are more helpful in our search for heart failure propensity
intensifying markers.

The sheer abundance of pathways towards non-heart-failure outcomes
eclipses the relatively low InfoGain of individual edges which intensify heart
failure. These are the majority of the edges which form the positive side of
Fig. 5a. However, we are primarily interested in edges which intensify likelihood
of heart failure. To achieve this, we artificially penalize InfoGain in edges which
have a higher likelihood of non heart failure by simply making them negative.
This isolates and highlights heart-failure intensifying pathways in the network.
Figure 5b shows how this transformation affects the edge attributes and isolates
the relatively few edges which exhibit a high InfoGain favoring heart failure.

The above steps outline how we process raw patient records into a supervised
representational model. This graphical model not only amalgamates patient dis-
ease trajectories, but it also highlights key pathways leading to heart failure.
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4 Predicting Heart Failure for an Unseen Patient

Now that we have a representational and interpretable model to predict heart
failure, we use it to predict outcomes for our held-out test dataset. We describe
how we convert a new patient’s diagnosis history into predicted probabilities and
how we evaluate these predicted outcomes.

How to Predict. Given a test patient’s diagnosis history, we replicate the
steps in the training section to arrive at a graph similar to Fig.1. Here, we
make an important assumption about the nature of our model—we assume that
the probabilities at each stage obey a Bayesian model. Using the probabilities
from our trained model, we can predict relative odds of heart failure and non-
heart failure by simply multiplying the class-wise probabilities for each edge
and normalizing them. Given a test patient with a disease progression graph
G'test, the unnormalized value of P(Y = HF)* =[], p(e(i, 7)), Ye(i,j) € Grest
and p(e(i,7)) € Gtrained- We then similarly compute the unnormalized value of
P(Y = NHF)* and finally output the normalized value of P(Y = HF).

In this work, we assume a Markovian model when using the Bayesian net-
work structure to model disease progression. This means that dependencies and
graph attributes (for instance, support and confidence) do not extend beyond
immediate descendants directly in our model, i.e. A|B and B|C can model dis-
ease progression, but not A|B, C directly. In future work, the model can extend
to include higher-order dependencies [16]. This would enable us to model depen-
dencies of the form A|B,C and beyond.

Evaluation and Baselines. We compute the above probabilities for all
patients in the test set and evaluated against their true observed outcomes. We
then compute the Receiver Operating Characteristics in terms of False Positive
Rate and True Positive Rate for these predictions. Our key prediction metric is
the area under the ROC curve (AUROC), a higher AUROC indicating superior
predictive performance.

How soon can we predict Heart Failure? Each visit in our trained model
is represented by a layer of nodes in the DAG. A prediction made using the first
i layers of the DAG corresponds to a prediction made on ¢ visits of an unseen
test patient. Deliberately pruning the number of layers in the trained DAG is
equivalent to reducing the complexity of our trained model and being able to
predict our target outcome earlier. In order to see if this trade-off negatively
influences predictive performance, we test the unseen patient histories on DAGs
pruned to predict heart failure from 1, 2, 3 and 4 (maximum number of test
visits in our data) visits and evaluate their area under the ROC curve.

5 Results

The techniques described above cover three key aspects of our research. First, we
train a class-aware model of heart failure from patient history data. Second, we
interpret the model to identify key diagnoses and disease progression pathways
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Table 3. Top 20 confidence nodes for heart failure. These nodes represent the
diagnoses with the highest likelihood of heart failure in our model.

Visit # | Diagnosis Confidence | Support
2 Rheumatic fever with heart involvement 0.5947 882
1 Rheumatic fever with heart involvement 0.5685 690
2 Pulmonary congestion and hypostasis 0.5117 2088
1 Cardiomyopathy 0.4923 7338
1 Diseases of mitral valve 0.4746 1872
2 Cardiomyopathy 0.466 11864
1 Pulmonary congestion and hypostasis 0.4552 1046
1 Poisoning by agents primarily affecting the |0.4448 679
cardiovascular system
1 Hypertensive heart and renal disease 0.4383 3784
2 Hypertensive heart and renal disease 0.4366 7624
1 Diseases of mitral and aortic valves 0.4312 8724
1 Diseases of aortic valve 0.4232 199
2 Diseases of mitral valve 0.4188 2764
2 Diseases of aortic valve 0.4097 487
1 Diseases of other endocardial structures 0.4032 3524
1 Chronic pulmonary heart disease 0.4016 4924
1 Nephrotic syndrome 0.3963 1676
2 Diseases of mitral and aortic valves 0.3949 15168
2 Chronic pulmonary heart disease 0.3918 9477
1 Hypertensive heart disease 0.375 41999

which intensify or mitigate the chances of a given patient developing heart failure.
Third, we show how this model performs when predicting heart failure outcomes
for a completely unseen set of patients.

Model Inference. Looking at the highest confidence nodes for heart failure in
Table 3, several common themes appear in diagnoses that tend to proceed heart
failure - namely, rheumatic fever, pulmonary congestion, cardiomyopathy, blood
poisoning, kidney disease, hypertension, and aortic and mitral valve disease. For
these diagnoses, it does not appear to matter much if one diagnoses a patient
on 1 or 2 - the progression to heart disease seems to occur at about the same
confidence levels. By absolute numbers in this data set, the diagnoses that lead
to heart failure the most are cardiomyopathy and aortic mitral valve diseases.
Rheumatic heart diseases and pulmonary congestion patients appear less than
the former three in the data set, but have a higher probability of leading to heart
failure.
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Table 4. Highest Confidence disease progression edges in trained DAG. Top
20 diagnostic edges with extremely high confidence of heart failure. These edges repre-
sent those at the extreme right of the distribution in Fig. 4b. Visit number corresponds
to source diagnosis.

Source Destination Conf | Supp
Visit # | Diagnosis Visit # | Diagnosis
1 Cardiac dysrhythmias 2 Rheumatic fever with 0.6995| 183
heart involvement
1 Cardiac dysrhythmias 2 Pulmonary congestion 0.6870 | 131
and hypostasis
1 Diabetes mellitus 2 Pulmonary congestion 0.6798 | 178
and hypostasis
1 Other forms of chronic 2 Pulmonary congestion 0.6486 | 148
ischemic heart disease and hypostasis
1 Other diseases of lung Cardiomyopathy 0.6400 | 150
1 Cardiomyopathy Pneumonia, organism 0.6209 | 153
unspecified
1 Cardiomyopathy 2 Acute myocardial 0.6198 | 121
infarction
1 Conduction disorders Cardiomyopathy 0.6123 | 325
1 Acute myocardial 2 Cardiomyopathy 0.6000 | 180
infarction
1 Old myocardial infarction | 2 Cardiomyopathy 0.5986 | 147
1 Cholelithiasis 2 Cardiomyopathy 0.5943 | 106
1 Cardiomyopathy 2 Other diseases of lung 0.5882 | 170
1 Diverticula of intestine 2 Cardiomyopathy 0.5847 | 118
1 Cardiomyopathy 2 Conduction disorders 0.5738 | 237
1 Cardiac dysrhythmias 2 Cardiomyopathy 0.5724 | 1277
1 Cardiomyopathy 2 Transcient cerebral 0.5714 | 105
ischemia
1 I1l-defined descriptions 2 Cardiomyopathy 0.5708 | 212
and complications of
heart disease
1 Diabetes mellitus 2 Chronic pulmonary heart | 0.5706 | 340
disease
1 Essential hypertension 2 Pulmonary congestion 0.5610 | 164
and hypostasis
1 Iron deficiency anemias 2 Cardiomyopathy 0.5577| 104

Referring to the highest confidence edges for heart failure given in Table 4, we
can see that may of the same destination diagnoses match the diagnoses given
in the high confidence nodes in Table 3. The edges give us some idea about the
diagnoses that come first that may lead to heart disease given another diagnosis.
For instance, the high confidence nodes in Table 3 told us that diagnoses such
as rheumatic fever, pulmonary congestion, and cardiomyopathy lead to heart
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Table 5. Top 20 Information Gain edges in trained DAG. These edges represent
diagnoses which go from seemingly benign to high likelihood of heart failure.

Source Destination InfoGain | Supp
Visit # | Diagnosis Conf | Visit # | Diagnosis Conf
1 Affective psychoses |0.1541 |2 Acute myocardial 0.3462 | 0.1597 153
infarction
1 Affective psychoses | 0.1541 | 2 Other diseases of 0.3355 | 0.1544 225
endocardium
1 Affective psychoses |0.1541 | 2 Hypertensive heart | 0.3279 | 0.1533 210
disease
1 Malignant neoplasm | 0.1769 | 2 Acute myocardial 0.3462 | 0.1489 106
of bladder infarction
1 Other cerebral 0.1717 | 2 Acute myocardial 0.3462 | 0.1324 105
degenerations infarction
1 Other cerebral 0.1717 | 2 Other diseases of 0.3355 | 0.1272 194
degenerations endocardium
1 Other cerebral 0.1717 | 2 Hypertensive heart 0.3279 | 0.1261 141
degenerations disease
1 Parkinson’s disease |0.1795 |2 Acute myocardial 0.3462 | 0.1252 151
infarction
1 Parkinson’s disease |0.1795 |2 Other diseases of 0.3355 | 0.1200 167
endocardium
1 Parkinson’s disease | 0.1795 |2 Hypertensive heart 0.3279 | 0.1189 161
disease
1 Neurotic disorder 0.1874 | 2 Acute myocardial 0.3462 | 0.1068 249
infarction
1 Neurotic disorder 0.1874 | 2 Other diseases of 0.3355 | 0.1016 286
endocardium
1 Neurotic disorder 0.1874 | 2 Hypertensive heart | 0.3279 | 0.1005 247
disease
2 General symptoms 0.2176 | 3 Cardiomyopathy 0.2980 | 0.1004 152
2 Other disorders of 0.2208 | 3 Hypertensive heart | 0.3109 | 0.1004 146
urethra and urinary and renal disease
tract
2 Other disorders of 0.2208 | 3 Cardiomyopathy 0.2980 | 0.0980 199
urethra and urinary
tract
1 Senile and presenile | 0.1898 | 2 Acute myocardial 0.3462 | 0.0979 179
organic psychotic infarction
conditions
1 Senile and presenile | 0.1898 | 2 Other diseases of 0.3355 | 0.0926 221
organic psychotic endocardium
conditions
2 Other and 0.2282 | 3 Hypertensive heart 0.3109 | 0.0917 207
unspecified anemias and renal disease
1 Senile and presenile | 0.1898 | 2 Hypertensive heart 0.3279 | 0.0915 225

organic psychotic
conditions

disease
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failure. 14 out of the 20 top confidence edges involve cardiomyopathy, which
indicates that cardiomyopathy is a strong component in leading to heart failure.
Cardiac dysrhythmia is a diagnosis that is particularly deadly when combined
with further diagnoses.

The findings of this graph seem to confirm the results of other studies. Others
have identified cardiomyopathy and valve dysfunction as precursors for heart
disease [17-19]. The American Heart Association has recommended that patients
who have chronic kidney disease are in the highest risk group for development of
cardiovascular disease [18]. Researchers have associated nephrotic syndrome with
cardiovascular disease [18]. Pulmonary congestion is very common in patients
with heart failure due to its relation to high pressure in the left ventricle of the
heart. Many patients who have heart failure are also found to have fluid overload
which is a common result of pulmonary congestion. Detection and treatment of
pulmonary congestion can help prevent progression of heart failure [20]. The
result of blood poisoning and sepsis is often multiple organ failure, including
septic cardiomyopathy, which can lead to heart failure [21]. Other studies have
found that chronic pulmonary heart disease is a predictor of chronic heart failure
in China [22]. For many years, doctors have known that rheumatic fever can
contribute to heart failure occurring later in life [23]. Hypertension is also a
major contributing factor in congestive heart failure [24].

Almost all the top confidence edges involved rheumatic heart disease, pul-
monary congestion and hypostasis, mitral and aortic valve disease, or cardiomy-
opathy, which therefore accentuates the importance of those diseases in the diag-
nosis of heart failure. The high confidence edges given in Table 4 let us know that
diseases such as cardiac dysrhythmia, diabetes, ischemic heart disease, and lung
diseases, diagnosed beforehand, can ultimately result in heart failure.

Table 5 shows us the highest information gain nodes tend to come from source
diagnoses that are mental or noncardiac in nature (Affective psychoses, cerebral
degeneration, malignant neoplasm of bladder, Parkinson’s disease, etc.) followed
by an acute myocardial infarction, endocardium diseases, or cardiomyopathy.
This seems to suggest that these diagnoses are the first cardiac problems that
might occur in patients with other mental or noncardiac issues. This model
of information gain suggests that screening for those three diseases, since they
appear as some of the first cardiac diagnosis on a trajectory that leads to heart
failure.

Heart Failure Prediction. Our model can predict heart failure in patients
from diagnoses from their second visit (i.e.: their first disease progression) as
seen in Fig.6. Adding diagnoses from subsequent visits makes the predictive
performance plateau in comparison to the second visit. As discussed in our Data
Preprocessing stage in Sect. 3, we only have a maximum of 4 patient visits for
our prediction task.
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Predictive Performance
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Fig. 6. Predictive performance for various number of visits. Area under the
ROC curve plateaus with an increased amount of visits.

6 Discussion

Which disease progression trajectories lead to heart failure? A diagnosis of car-
diomyopathy is a very common theme that appears in many high confidence
edges and high information gains that lead to heart failure. Cardiomyopathy
appears in 14 out of the 20 high confidence edges and 5 of the top 20 high infor-
mation gains. We can therefore conclude that cardiomyopathy is an important
factor in the progression of a heart failure trajectory. Monitoring patients for
cardiomyopathy and intervening early is therefore important in limiting heart
disease.

Besides cardiomyopathy, most of the other high information gain edges had a
destination edge of acute myocardial infarction or endocardium diseases. These
three appear as “gateway” diagnoses that eventually results in heart failure later
in their medical record for patients who do not currently have a diagnosis of heart
disease.

While cardiomyopathy is very common in the high confidence edge nodes,
it does not occupy the top four high confidence edges. Cardiac dysrhythmia
appears as a source diagnosis in the two top confidence edges, indicating that
those with cardiac dysrhythmia should watch out for rheumatic heart disease
or pulmonary congestion. Additionally, pulmonary congestion appears as a des-
tination node for three out of the top four confidence edges, indicating that
pulmonary congestion is a complication that, given other diagnoses such as car-
diac dysrhythmia, diabetes, or chronic ischemic heart disease, could eventually
result in heart failure.

Can we predict heart failure? Using this model, we observe we can predict heart
failure using the conclusions found from this data. The ROC curve given in Fig. 6
indicates that diagnoses given in the first visit contains most of the information
that leads to heart failure. We receive diminishing returns from subsequent diag-
noses after that first visit. One reason could be that most of the diseases that
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eventually result in heart failure have already appeared by their first visit to
a doctor, and rarely do patients not have diseases that are indicative of heart
failure at their first visit, and then they go on to get heart failure later. Table5
gives some examples of patients that have the highest jump in the probability of
developing heart failure after their first visit. Certain cardiac events put those
who were originally being treated for mental diagnoses in particular (affective
psychoses, cerebral degenerations, Parkinson’s disease, neurotic disorder) on a
path to heart failure beginning in Visit 2. In general, the data tells us that
the disease progression from Visit 1 to Visit 2 gives the most indication that a
patient will eventually become a heart failure patient.

7 Conclusion

By constructing a DAG of Medicare patients and their visits, we found trends in
diseases that result in an ultimate diagnosis of heart failure. We conclude that
cardiomyopathy is a condition that is commonly associated with heart failure
such that screening for cardiomyopathy should be a common part of preventa-
tive treatment. Additionally, we know that many patients’ first diagnoses on a
heart failure path are acute myocardial infarctions, endocardium diseases, and
cardiomyopathy. Doctors who see patients for other medical issues, especially
mental issues as observed, should know of these complications since they are
often the first that show up in diagnoses that do not otherwise lead to heart
failure. We also found that rheumatic heart disease, pulmonary congestion and
hypostasis, cardiomyopathy, blood poisoning, and valve and aortic diseases are
common comorbidities that occur before doctors diagnose patients with heart
failure. Because the highest information gains in our DAG are on paths that
concern mental disorders such as psychosis, cerebral degeneration, and Parkin-
son’s, the conclusion can be made that patients being seen for these disorders
should also be monitored for heart disease.

The ultimate goal of such a system is to be able to effectively predict likeli-
hood of heart failure, which we demonstrate using our trained DAG. We show
that the most indicative diagnoses belong to the first disease progression in terms
of their information gain and area under the ROC curve. This underscores the
usefulness of our model in extracting signals which can be used for early detec-
tion of heart failure.
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