
Bit-Sliding: A Generic Technique for Bit-Serial
Implementations of SPN-based Primitives

Applications to AES, PRESENT and SKINNY

Jérémy Jean1(B), Amir Moradi2(B),
Thomas Peyrin3,4(B), and Pascal Sasdrich2(B)

1 ANSSI Crypto Lab, Paris, France
Jeremy.Jean@ssi.gouv.fr

2 Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Bochum, Germany
{Amir.Moradi,Pascal.Sasdrich}@rub.de

3 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
Thomas.Peyrin@ntu.edu.sg

4 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

Abstract. Area minimization is one of the main efficiency criterion for
lightweight encryption primitives. While reducing the implementation
data path is a natural strategy for achieving this goal, Substitution-
Permutation Network (SPN) ciphers are usually hard to implement in
a bit-serial way (1-bit data path). More generally, this is hard for any
data path smaller than its Sbox size, since many scan flip-flops would
be required for storage, which are more area-expensive than regular flip-
flops.

In this article, we propose the first strategy to obtain extremely small
bit-serial ASIC implementations of SPN primitives. Our technique, which
we call bit-sliding, is generic and offers many new interesting implemen-
tation trade-offs. It manages to minimize the area by reducing the data
path to a single bit, while avoiding the use of many scan flip-flops.

Following this general architecture, we could obtain the first bit-
serial and the smallest implementation of AES-128 to date (1560 GE
for encryption only, and 1738 GE for encryption and decryption with
IBM 130 nm standard-cell library), greatly improving over the smallest
known implementations (about 30% decrease), making AES-128 compet-
itive to many ciphers specifically designed for lightweight cryptography.
To exhibit the generality of our strategy, we also applied it to the PRESENT
and SKINNY block ciphers, again offering the smallest implementations of
these ciphers thus far, reaching an area as low as 1065 GE for a 64-
bit block 128-bit key cipher. It is also to be noted that our bit-sliding
seems to obtain very good power consumption figures, which makes this
implementation strategy a good candidate for passive RFID tags.

Keywords: Bit-serial implementations · Bit-slide · Lightweight
cryptography

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 687–707, 2017.
DOI: 10.1007/978-3-319-66787-4 33



688 J. Jean et al.

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptogra-
phy has attracted a lot of attention in the last decade among the symmetric-key
community. In particular, we have seen many improvements in both primitive
design and their hardware implementations. We currently know much better
how a lightweight encryption scheme should look like (small block size, small
nonlinear components, very few or even no XORs gates for the linear layer,
etc.).

Lightweight cryptography can have different meanings depending on the appli-
cations and the situations. For example, for passive RFID tags, power consump-
tion is very important, and for battery-driven devices energy consumption is
a top priority. Power and energy consumption depend on both the area and
throughput of the implementation. In this scenario, so-called round-based imple-
mentations (i.e., one cipher round per clock cycle) are usually the most efficient
trade-offs with regards to these metrics. For example, the tweakable block cipher
SKINNY [6] was recently introduced with the goal of reaching the best possible
efficiency for round-based implementations.

Yet, for the obvious reason that many lightweight devices are very strongly
constrained, one of the most important measurement remains simply the imple-
mentation area, regardless of the throughput. It was estimated in 2005 that only
a maximum of 2000 GE can be dedicated to security in an RFID tag [19]. While
these numbers might have evolved a little since then, it is clear that area is a key
aspect when designing/implementing a primitive. In that scenario, round-based
implementations are far from being optimal since the data path is very large. In
contrast, the serial implementation strategy tries to minimize the data path to
reduce the overall area. Some primitives even specialized for this type of imple-
mentation (e.g., LED [15], PHOTON [14]), with a linear layer crafted to be cheap
and easy to perform in a serial way.

In 2013, the National Security Agency (NSA) published two new ciphers [5],
SIMON (tuned for hardware) and SPECK (tuned for software) targeting very low-
area implementations. SIMON is based on a simple Feistel construction with just
a few rotations, ANDs and XORs to build the internal function. The authors
showed that SIMON’s simplicity easily allows many hardware implementation
trade-offs with regards to the data path, going as low as a 1-bit-serial implemen-
tation.

For Substitution-Permutation Network (SPN) primitives, like AES [12] or
PRESENT [7], the situation is more complex. While they can usually provide more
confidence concerning their security, they are known to be harder to implement
in a bit-serial way. To the best of the authors’ knowledge, as of today, there is
no bit-serial implementation of an SPN cipher, mainly due to the underlying
structure organized around their Sbox and linear layers. While this construction
offers efficient and easy implementation trade-offs, it seems nontrivial to build an
architecture with a dapa path below the Sbox size. Thus, there remains a gap to
bridge between SPN primitives and ciphers with a general SIMON-like structure.



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 689

Our Contributions. In this article, we provide the first general bit-serial
Application-Specific Integrated Circuit (ASIC) implementation strategy for SPN
ciphers. Our technique, that we call bit-sliding, allows implementations to use
small data paths, while significantly reducing the number of costly scan flip-flops
(FF) used to store the state and key bits.

Although our technique mainly focuses on 1-bit-serial implementations, it
easily scales and supports many other trade-offs, e.g., data paths of 2 bits, 4
bits, etc. This agility turns to be very valuable in practice, where one wants
to map the best possible implementation to a set of constraints combining a
particular scenario and specific devices. We applied our strategy to AES, and
together with other minor implementation tricks, we obtained extremely small
AES-128 implementations on ASIC: only 1560 Gate Equivalent (GE) for encryp-
tion (incl. 75% for storage), and 1738 GE for encryption and decryption using
IBM 130 nm library (incl. 67% for storage).1 By comparison, using the same
library, the smallest ASIC implementation of AES-128 previously known requires
2182 GE for encryption [22] (incl. 64% of storage), and 2402 GE for encryption
and decryption [3] (incl. 55% of storage).2 Our results show that AES-128 could
almost be considered as a lightweight cipher.

Since our strategy is very generic, we also applied it to the cases of PRESENT
and SKINNY, again obtaining the smallest known implementations. More pre-
cisely, for the 64-bit block 128-bit key versions and using the IBM 130 nm library,
we could reach 1065 GE for PRESENT and 1054 GE for SKINNY compared to the
to-date smallest PRESENT-128 with 1230 GE [31]. Our work shows that the gap
between the design strategy of SIMON and a classical SPN is smaller than previ-
ously thought, as SIMON can reach 958 GE for the same block/key sizes.

In terms of power consumption, it turns out that bit-sliding provides good
results when compared to currently known implementation strategies. This
makes it potentially interesting for passive RFID tags for which power is a key
constraint. However, as for any bit-serial implementation, due to the many cycles
required to execute the circuit, the energy consumption figures will not be as
good as one can obtain with round-based implementations.

We emphasize that for fairness, we compare the various implementations
to ours using five standard libraries: namely, UMC 180 nm, UMC 130 nm,
UMC 90 nm, NanGate 45 nm and IBM 130 nm.

2 Bit-Sliding Implementation Technique

We describe in this section the conducting idea of our technique, which allows
to significantly decrease the area required to serially implement any SPN-based
cryptographic primitive. To clearly expose our strategy, we first describe the
general structure of SPN primitives in Sect. 2.1 and we recall the most common
1 The same library used to benchmark SIMON area footprints in [5].
2 We note that the 2400 GE reported in [22] are done on a different library, namely

UMC 180 nm. The numbers we report here are obtained by re-synthesizing the code
from [22] on IBM 130 nm.



690 J. Jean et al.

types of hardware implementation trade-offs in Sect. 2.2. Then, in Sect. 2.3, we
explain the effect of reducing the data path of an SPN implementation, in par-
ticular how the choice of the various flip-flops used for state storage strongly
affects the total area. Finally, we describe our bit-sliding implementation strat-
egy in Sect. 2.4 and we tackle the problem of bit-serializing any Sbox in Sect. 2.5.
Applications of these techniques to AES-128 and PRESENT block ciphers are con-
ducted in the subsequent sections of the paper (the case of SKINNY is provided
in the long version of the paper [17]). For completeness, we provide in Sect. 2.6
a quick summary of previous low-area implementations of SPN ciphers such as
AES-128 and PRESENT.

2.1 Substitution-Permutation Networks

Even though our results apply to any SPN-based construction (block cipher,
hash function, stream cipher, public permutation, etc.), for simplicity of the
description, we focus on block ciphers.

A block cipher corresponds to a keyed family of permutations over a fixed
domain, E : {0, 1}k ×{0, 1}n → {0, 1}n. The value k denotes the key size in bits,
n the dimension of the domain on which the permutation applies, and for each
key K ∈ {0, 1}k, the mapping E(K, •), that we usually denote EK(•), defines a
permutation over {0, 1}n.

From a high-level perspective, an SPN-based block cipher relies on a round
function f that consists of the mathematical composition of a nonlinear permu-
tation S and a linear permutation P , which can be seen as a direct application
of Shannon’s confusion (nonlinear) and diffusion (linear) paradigm [27].

From a practical point of view, the problem of implementing the whole cipher
then reduces to implementing the small permutations S and P , that can either be
chosen for their good cryptographic properties, and/or for their low hardware or
software costs. In most known ciphers, the nonlinear permutation S : {0, 1}n →
{0, 1}n relies on an even smaller permutation called Sbox, that is applied several
times in parallel on independent portions on the internal n-bit state. We denote
by s the bit-size of these Sboxes. Similarly, the linear layer often comprises
identical functions applied several times in parallel on independent portions on
the internal state. We denote by l the bit-size of these functions.

2.2 Implementation Trade-Offs

We usually classify ASIC implementations of cryptographic algorithms in three
categories: round-based implementations, fully unrolled implementations and
serial implementations. A round-based implementation typically offers a very
good area/throughput trade-off, by providing the cryptographic functionalities
(e.g., encryption and decryption). The idea is this case consists in simply imple-
menting the full round function f of the block cipher in one clock cycle and to
reuse the circuit to produce the output of the cipher. In contrast, to minimize
the latency a fully unrolled implementation would implement all the rounds at
the expense of a much larger area, essentially proportional to the number of the



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 691

cipher rounds (for instance PRINCE [8] or MANTIS [6] have been designed to sat-
isfy such low-latency requirements). Finally, serial implementations (the focus
of this article) trade throughput by only implementing a small fraction of the
round function f , for applications that require to minimize the area as much as
possible.

2.3 Data Path Reduction and Flip-Flops

From round-based to serial implementations, the data path is usually reduced.
In the case of SPN primitives, reducing this data path is natural as long as
the application independence of the various sub-components of the cipher (s-
bit Sboxes and l-bit linear functions) is respected. This is the reason why all
the smallest known SPN implementations are serial implementations with an
s-bit data path (l being most of the time a multiple of s). Many trade-offs lying
between an s-bit implementation and a round-based implementation can easily
be reached. For example, in the case of AES, depending on the efficiency targets,
one can trivially go from a byte-wise implementation, to a row- or column-wise
implementation, up to a full round-based implementation.

The data path reduction in an ASIC implementation offers area reduction at
two levels. First, it allows to reduce the number of sub-components to implement
(n/s Sboxes in the case of a round-based implementation versus only a single
Sbox for a s-bit serial implementation), directly reducing the total area cost.
Second, it offers an opportunity to reduce the number of scan flip-flops (scan FF),
at the benefit of regular flip-flops (FF) for storage. A scan FF contains a 2-
to-1 multiplexer to select either the data input or the scan input. This scan
feature allows to drive the FF data input with an alternate source of data,
thus greatly increasing the possibilities for the implementer about where the
data navigates. In short: in an ASIC architecture, when a storage bit receives
data only from a single source, regular FF can be used. If another source must
potentially be selected, then a scan FF is required (with extra multiplexers
in case of multiple sources). However, the inner multiplexer comes at a non-
negligible price, as scan FF cost about 20–30% more GE than regular ones.

2.4 The Bit-Sliding Strategy

Because of the difference between scan FF and regular FF, when minimizing
the area is the main goal, there is a natural incentive in trying to use as many
regular FF as possible. In other words, the data should flow in such a way that
many storage bits only have a single input source. This is hard to achieve with
a classical s-bit data path, since the data usually moves from all bits of an
Sbox to all bits of another Sbox. Thus, the complex wiring due to the cipher
specifications impacts all the Sbox storage bits at the same time. For example,
in the case of AES, the ShiftRows forces most internal state storage bits to use
scan FFs.

This is where the bit-sliding strategy comes into play. When enabling the
bit-serial implementation by reducing the data path from s bits to a single bit,



692 J. Jean et al.

we make the data bits slide. All the complex data wiring due to the cipher
specifications becomes handled only by the very first bit of the cipher state.
Therefore, this first bit has to be stored in a scan FF, while the other bits can
simply use regular FF. Depending on the cipher sub-components, other state
bits should also make use of scan FF, but the effect is obviously stronger as the
size of the Sbox grows larger.

We emphasize that minimizing the ratio of scan FF is really the relevant way
to look at the problem of area minimization. Most previous works concentrated
on the optimization of the ciphers sub-components. Yet, in the case of lightweight
cryptography where implementations are already very optimized for area, these
sub-components represent a relatively small portion of the total area cost, in
opposition to the storage costs. For example, for our PRESENT implementations,
the storage represents about 80–90% of the total area cost. For AES-128, the
same ratio is about 65–75%.

2.5 Bit-Serializing Any Sbox

A key issue when going from an s-bit data path to a single bit data path, is
to find a way to implement the Sbox in a bit-serial way. For some ciphers,
like PICCOLO [28] or SKINNY [6], this is easy as their Sbox can naturally be
decomposed into an iterative 1-bit data path process. However, for most ciphers,
this is not the case and we cannot assume such a decomposition always exists.

We therefore propose to emulate this bit-serial Sbox by making use of s
scan FFs to serially shift out the Sbox output bits at each clock cycle, while
reusing the classical s-bit data path circuit of the entire Sbox to store its output.

Although the cost of this strategy is probably not optimal (extra regular FFs
should change to scan FF), we nevertheless argue that this is not a real issue
since the overall cost of this bit-serial Sbox implementation is very small when
compared to the total area cost of the entire cipher. Moreover, this strategy has
the important advantage that it is very simple to put into place and that it
generically works for any Sbox.

2.6 Previous Serial SPN Implementations

Most of the existing SPN ciphers such as AES or PRESENT have been implemented
using word-wise serialization, with 4- or 8-bit data paths. For AES, after two
small implementations of the encryption core by Feldhofer et al. [13] in 2005
and Hämäläinen et al. [16] in 2006, one can emphasize the work by Moradi
et al. [22] in 2011, which led to an encryption-only implementation of AES-128
with 2400 GE for the UMC 180 nm standard-cell library. More recently, a follow-
up work by Banik et al. [2] added the decryption functionality, while keeping the
overhead as small as possible: they reached a total of 2645 GE on STM 90 nm
library. According to our estimations (see Sect. 3), this implementation requires
around 2760 GE on UMC 180 nm, which therefore adds decryption to [22] for a
small overhead of about 15%. In [3] Banik et al. further improved this to 2227 GE
on STM 90 nm (about 2590 GE on UMC 180 nm).



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 693

As for PRESENT, the first result appeared in the specifications [7], where
the authors report a 4-bit serial implementation using about 1570 GE on
UMC 180 nm. In 2008, Rolfes et al. [25] presented an optimization reaching
about 1075 GE on the same library, which was further decreased to 1032 GE by
Yap et al. [31].

Finally, we remark that bit-serial implementations of SKINNY and GIFT [4]
have already been reported, which are based on the work described in this article.

3 Application to AES-128

3.1 Optimizations of the Components

Since its standardization, the AES has received many different kind of contri-
butions including the attempts to optimize its implementations on many plat-
forms. We review here the main results that we use in our implementations,
which specifically target two internal components of the AES: the 8-bit Sbox
from SubBytes and the matrix multiplication applied in the MixColumns.

SubBytes. One crucial design choice of any SPN-based cipher lies in the Sbox
and its cryptographic strength. In the AES, Daemen and Rijmen chose to rely on
the algebraic inversion in the field GF(28) for its good resistance to classical dif-
ferential and linear cryptanalysis. Based on this strong mathematical structure,
Satoh et al. in [26] used the tower field decomposition to implement the field
inversion using only 2-bit operations, later improved by Mentens et al. in [21].
Then, in 2005, Canright reported a smaller implementation of the combined Sbox
and its inverse by enumerating all possible normal bases to perform the decom-
position, which resulted in the landmark paper [10]. In our serial implementation
supporting both encryption and decryption, we use this implementation.

However, when the inverse Sbox is not required, especially for inverse-free
mode of operations like CTR that do not require the decryption operation, the
implementation cost can be further reduced. Indeed, Boyar, Matthews and Per-
alta have shown in [9] that solving an instance of the so-called Shortest Lin-
ear Program NP-hard problem yields optimized AES Sbox implementations. In
particular, they introduce a 115-operation implementation of the Sbox, further
refined to 113 logical operations in [11], which is, to the best of our knowledge,
the smallest known to date. We use this implementation in our encryption-only
AES cores, which allows to save 20–30 GE over Canright’s implementation.

We should also refer to [29], where the constructed Sbox with small footprint
needs in average 127 clock cycles. The work has been later improved in [30],
where the presented Sbox finishes the operation after at most 16 (in average
7) clock cycles. Regardless of the vulnerability of such a construction to timing
attacks [20], we could not use them in our architecture due to their latency
higher than 8 clock cycles.

MixColumns. Linear layers of SPN-based primitives have attracted lots of atten-
tion in the past few years, mostly from the design point of view. Here, we are



694 J. Jean et al.

interested in finding an efficient implementation of the fixed MixColumns trans-
formation, which can either be seen as multiplication by a 4 × 4 matrix over
GF(28) or by a 32 × 32 matrix over GF(2). For 8-bit data path, similar to
previous works like [1,2,33], we have considered the 32 × 32 binary matrix to
implement the MixColumns. An already-reported strategy can implement it in
108 XORs, but we tried to slightly improve this by using a heuristic search tool
from [18], which yielded two implementations using 103 and 104 XORs, where
the 104-XOR one turned to be more area efficient.

3.2 Bit-Serial Implementations of AES-128 Encryption

We first begin by describing an implementation that only supports encryption,
and then complete it to derive one that achieves both encryption and decryption.

Data Path. The design architecture of our bit-serial implementation of AES-128
is shown in Fig. 1. The entire 128-bit state register forms a shift register,
which is triggered at every clock cycle. The white register cells indicate reg-
ular FFs, while the gray ones scan FFs. The plaintext bits are serially fed from
most significant bit (MSB) down to least significant bit (LSB) of the Bytes
0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15. In other words, during the first
128 clock cycles, first 8 bits (MSB downto LSB) of plaintext Byte 0 and then
that of Byte 4 are given till the 8 bits (MSB downto LSB) of plaintext Byte 15.

MC3

MC2

MC0

MC1

Ciphertext
Sbox

Plaintext

RoundKey

PolynotLSB

7

7

Byte 0 Byte 4 Byte 8 Byte 12

Byte 1

M
S

B

L
S

B

MC3

MC2

MC1

MC0

Fig. 1. Bit-serial architecture for AES-128 (encryption only, data path).

The AddRoundKey is also performed in a bit serial form, i.e., realized by one 2-
input XOR gate. For each byte, during the first 7 clock cycles, the AddRoundKey
result is fed into the rotating shift register, and at the 8th clock cycle, the Sbox
output is saved at the last 8 bits of the shift register and at the same time the
rest of the state register is shifted. Therefore, we had to use scan FFs for the
last 8 bits of the state shift register (see Fig. 1). For the Sbox module, as stated



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 695

before, we made use of the 113-gate description given in [11] by Cagdas Calik.
After 128 clock cycles, the SubBytes is completely performed.

The ShiftRows is also performed bit-serially. The scan FFs enable us to per-
form the entire ShiftRows in 8 clock cycles. We should emphasize that we have
examined two different design architectures. In our design, in contrast to [2,3,22],
the state register is always shifted without any exception. This avoids extra logic
to enable and disable the registers. In [3], an alternative solution is used, where
each row of the state register is controlled by clock gating. Hence, by freezing
the first row, shifting the second row once, the third row twice and the forth row
three times, the ShiftRows can be performed. We have examined this fashion
in our bit-serial architecture as well. It allows us to turn 9 scan FFs to regular
FFs, but it needs 4 clock gating circuits and the corresponding control logic.
For the bit-serial architecture, it led to more area consumption. We discuss this
architecture in Sect. 3.4, when we extend our serial architecture to higher bit
lengths.

For the MixColumns, we also provide a bit-serial version. More precisely, each
column is processed in 8 clock cycles, i.e., the entire MixColumns is performed in
32 clock cycles. In order to enable such a scenario, when processing a column,
we need to store the MSB of all four bytes, which are used to determine whether
the extra reduction for the xtime (i.e., multiplication by 2 in GF(28) under
AES polynomial) is required. The green cells in Fig. 1 indicate the extra register
cells which are used for this purpose. The input of the green register cells come
from the 2nd MSB of column bytes. Therefore, these registers should store the
MSB one clock cycle before the operation on each column is started. During
the ShiftRows and at the 8th clock cycle of MixColumns on each column, these
registers are enabled. This enables us to fulfill our goal, i.e., always clocking the
state shift register. The bit-serial MixColumns circuit needs two control signals:
Poly, which provides the bit representation of the AES polynomial 0x1B serially
(MSB downto LSB) and notLSB, which enables xtime for the LSB.

Therefore, one full round of the AES is performed in 128+8+32 = 168 clock
cycles. During the last round, MixColumns is ignored, and the last AddRound-
Key is performed while the ciphertext bits are given out. Therefore, the entire
encryption takes 9× 168+128+8+128 = 1776 clock cycles. Similar to [2,3,22],
while the ciphertext bits are given out, the next plaintext can be fed inside.
Therefore, similar to their reported numbers, the clock cycles required to fed
plaintext inside are not counted.

Key Path. The key register is similar to the state register and is shifted one bit
per clock cycle, and gives one bit of the RoundKey to be used by AddRoundKey
(see Fig. 2). The key schedule is performed in parallel to the AddRoundKey and
SubBytes, i.e., in 128 clock cycles. In other words, while the RoundKey bit is
given out the next RoundKey is generated. Therefore, the key shift register
needs to be frozen during ShiftRows and MixColumns operations, which is done
by means of clock gating. As shown in Fig. 2, the entire key register except the
last one is made by regular FFs, which led to a large area saving. During key



696 J. Jean et al.

AddRow4Key

RoundKey

8

Byte 0M
S

B

L
S

B Byte 4 Byte 8 Byte 12

Byte 1

AddRow1to3

7

Sbox

8

Rcon

Fig. 2. Bit-serial architecture for AES-128 (encryption only, key path).

schedule, the Sbox module, which is shared with the data path,3 is required 4
times. We instantiate 7 extra scan FFs, those marked by green, which save 7
bits of the Sbox output and can shift serially as well. It is noteworthy that 4
of such register cells are shared with the data path circuit to store the MSBs
required in MixColumns.4 At the first clock cycle of the key schedule, the Sbox
is used and its output is stored in the dedicated green register. It is indeed a
perfect sharing of the Sbox module between the data path and key path circuits.
During every 8 clock cycles, the Sbox is used by the key path at the first clock
cycle and by the data path at the last clock cycle. During the first 8 clock cycles,
the Sbox output S(Byte13) is added to Byte0, which is already the first byte of
the next Roundkey. Note that the RoundConstant Rcon is also provided serially
by the control logic. During the next 16 clock cycles, by means of AddRow4
signal, S(Byte13) ⊕ Byte0 ⊕ Byte4 and S(Byte13) ⊕ Byte0 ⊕ Byte4 ⊕ Byte8 are
calculated, which are the next 2 bytes of the next RoundKey. The next 8 clock
cycles, Byte12 is fed unchanged into the shift register, that is required to go
through the Sbox later. This process is repeated 4 times and at the last 8 clock
cycles, i.e., clock cycles 121 to 128, by means of AddRow1to3, the last XORs are
performed to make the Bytes 12, 13, 14, and 15 of the next RoundKey. During
the next 8+32 clock cycles, when the data path circuit is performing ShiftRows
and MixColumns, the entire key shift register is frozen.

3.3 Bit-Serial AES-128 Encryption and Decryption Core

Data Path. In order to add decryption, we slightly changed the architecture
(see Fig. 3). First, we replaced the last 7 regular FFs by scan FFs, where Byte0
is stored. Then, as said before, we made use of Canright AES Sbox [10].

The encryption functionality of the circuit stays unchanged, while the decryp-
tion needs several more clock cycles. After serially loading the ciphertext bits,
at the first 128 clock cycles, the AddRoundKey is performed. Afterwards, the
3 Eight 2-to-1 MUX at the Sbox input are not shown.
4 It requires four 2-to-1 MUX which are not shown.



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 697

MC3

MC2

MC1

Output

Sbox
Sbox-1

Input77

Byte 8 Byte 12

Byte 1

MSB

7

88

L
SB

LSB

RoundKey

Byte 4M
SB

L
SB MC0

8

Fig. 3. Bit-serial architecture for AES-128 (encryption and decryption, data path).

ShiftRows−1 should be done. To do so, we perform the ShiftRows three times since
ShiftRows3 = ShiftRows−1. This helps us to not modify the design architecture,
i.e., no extra scan FF or MUX. Therefore, the entire ShiftRows−1 takes 3×8 = 24
clock cycles. The next SubBytes−1 and AddRoundKey are performed at the same
time. For the first clock cycle, the Sbox inverse is stored in 7 scan FFs, where
Byte0 is stored, and the same time the XOR with the RoundKey bit and the shift
in the sate register happen. In the next 7 clock cycles, the AddRoundKey is per-
formed. This is repeated 16 times, i.e., 128 clock cycles. For the MixColumns−1,
we followed the principle used in [3] that MixColumns3 = MixColumns−1. In
other words, we repeat the MixColumns process explained above 3 times, in
3 × 32 = 96 clock cycles. Note that for simplicity, the MixColumns circuit is not
shown in Fig. 3. At the last decryption round, first the ShiftRows−1 is performed,
in 24 clock cycles, and afterwards, when the SubBytes−1 and AddRoundKey are
simultaneously performed, the plaintext bits are given out. Therefore, the entire
decryption takes 128 + 9 × (24 + 128 + 96) + 24 + 128 = 2512 clock cycles. Note
that the state register, similar to the encryption-only variant, is always active.

AddRow4Key

RoundKey

8

Byte 0M
S

B

L
S

B Byte 4 Byte 8 Byte 12

Byte 1

AddRow1to3

8

Sbox

8

Rcon

MSB

7
LSB

7

AddInvnotLastByte

Fig. 4. Bit-serial architecture for AES-128 (encryption and decryption, key path).



698 J. Jean et al.

Key Path. Enabling the inverse key schedule in our bit-serial architecture is a
bit more involved than in the data path. According to Fig. 4, we still make use of
only one scan FF and the rest of the key shift register is made by regular FFs. We
only extended the 7 green scan FFs to 8. At the first 8 clock cycles, Byte1⊕Byte5
is serially computed and shifted into the green scan FFs, and at the 8th clock
cycle the entire 8-bit Sbox output is stored in the green scan FFs. Within the next
16 clock cycles, the key state is just rotated. During the next 8 clock cycles, the
green scan FFs are serially shifted out and its XOR results with Byte0 is stored.
At the same time, by means of AddInv signal, Byte0 ⊕ Byte4, Byte4 ⊕ Byte8,
and Byte8 ⊕ Byte12 are serially computed, that are the first 4 bytes of the
next RoundKey upwards. For sure, RoundConstant is also provided (serially)
in reverse order (by the control logic). This process is repeated 4 times with
one exception. At the last time, i.e., at Clock cycles 97 to 104, by means of the
notLastByte signal, the XOR is bypassed when the green scan FFs are serially
loaded. This is due to the fact that such an XOR has already been performed.
Hence, the key scheduleinv takes again 128 clock cycles, and is synchronized
with the AddRoundKey of the data path circuit. During other clock cycles, where
ShiftRows−1 and MixColumns−1 are performed, the key shift register is disabled.

3.4 Extension to Higher Bit Lengths

We could relatively easily extend our design architecture(s) to higher bit lengths.
More precisely, instead of shifting 1 bit at every clock cycle, we can process either
2, 4, or 8 bits. The design architectures stay the same, but every computing
module provides 2, 4, or 8 bits at every clock cycle. More importantly, the number
of scan FFs increases almost linearly. For the 2-bit version, the 9 scan FFs that
enabled ShiftRows must be doubled. Its required number of clock cycles is also
half of the 1-bit version, i.e., 888 for encryption and 1256 for decryption.

However, we observed that in 4-bit (resp. 8-bit) serial version almost half
(resp. full) of the FFs of the state register need to be changed to scan FF, that
in fact contradicts our desire to use as much regular FFs as possible instead
of scan FFs. In these two settings (4- and 8-bit serial), we have achieved more
efficient designs if the ShiftRows is realized by employing 4 different clock gating,
each of which for a row in state shift register. This allows us to avoid replacing
36 (resp. 72) regular FFs by scan FF. This architecture forces us to spend 4 more
clock cycles during MixColumns since not all state registers during ShiftRows are
shifted, and the MSB for the MixColumns cannot be saved beforehand. Therefore,
for the 4-bit version, the AddRoundKey and SubBytes are performed in 32 clock
cycles, the ShiftRows in 6 cycles, and the MixColumns in 4 × (1 + 2) = 12 cycles,
hence 9× (32+6+12)+32+6+32 = 520 clock cycles for the entire encryption.

For the decryption, the ShiftRows−1 does not need to be performed as
ShiftRows3, and it can also be done in 6 clock cycles. However, the MixColumns−1

still requires to apply 3 times MixColumns, i.e., 3 × 12 = 36 cycles. Thus, the
entire decryption needs 32 + 9 × (6 + 32 + 36) + 6 + 32 = 736 clock cycles.

In the 8-bit serial version, since the Sbox is required during the entire 16 clock
cycles of SubBytes, we had to disable the state shift register 4 times to allow the



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 699

Sbox module to be used by the key schedule. Since MixColumns now computes
the entire column in 1 clock cycle, there is no need for extra registers (as well
as clock cycles) to save the MSBs. Therefore, AddRoundKey and SubBytes need
20 clock cycles, ShiftRows 3 clock cycles, and MixColumns 4 clock cycles, i.e.,
9 × (20 + 3 + 4) + 20 + 3 + 16 = 282 clock cycles in total. The first step of
decryption is AddRoundKey, but at the same time the next RoundKey should
be provided. In order to simplify the control logic, the first sole AddRoundKey
also takes 20 clock cycles, and MixColumns−1 12 clock cycles. Hence, the entire
decryption is performed in 20 + 9 × (3 + 20 + 12) + 3 + 16 = 354 clock cycles.

Compared to [2,3,22], our design is different with respect to how we han-
dle the key schedule. For example, our entire key state register needs only 8
scan FFs; we could reduce the area, but with a higher number of clock cycles. It
is noteworthy that we have manually optimized most of the control logic (e.g.,
generation of Rcon) to obtain the most compact design.

Table 1. AES-128 implementations for a data path of δ bits @ 100 KHz.

Func. δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits GE µW GE µW GE µW GE µW GE µW Cycles

NAND µm2 9.677 5.120 3.136 0.798 5.760

Enc 1 1727 3.510 1902 0.845 1596 0.666 1982 100.2 1560 0.823 1776 New

Enc 2 1796 3.640 1992 0.904 1667 0.699 2054 104.6 1625 0.842 888 New

Enc 4 1920 4.040 2168 1.040 1784 0.800 2146 111.4 1731 0.892 520 New

Enc 8 2112 3.990 2360 1.020 1968 0.784 2337 122.2 1912 0.874 282 New

Enc 8 2400 6.240 3574 1.270 2292 0.768 2768 136.6 2182 0.984 226 [22]

EncDec 1 1917 3.670 2142 0.944 1794 0.713 2171 112.1 1738 0.852 1776/2512 New

EncDec 2 2028 3.920 2269 0.972 1916 0.761 2286 119.8 1855 0.922 888/1256 New

EncDec 4 2212 4.590 2509 1.200 2097 0.942 2436 130.4 2069 1.070 520/736 New

EncDec 8 2416 4.490 2713 1.170 2329 0.945 2621 142.3 2293 1.070 282/354 New

EncDec 8 2577 3.560 2893 0.915 2332 0.645 2793 139.1 2402 0.753 246/326 [3]

EncDec 8 2772 5.860 3233 1.280 2639 0.832 3105 160.2 2503 1.110 226/226 [2]

3.5 Results

The synthesis result of our designs under five different standard cell libraries
and the corresponding power consumption values – estimated at 100 KHz – are
shown in Table 1. We have also shown that of the designs reported in [2,3,22]. It
should be noted that we had access to their designs and did the syntheses by our
considered libraries. It can be seen that in all cases our constructions outper-
form the smallest designs reported in literature. The numbers listed in Table 1
obtained under the highest optimization level (for area) of the synthesizer. For all
designs (including [2,3,22]), we further forced the synthesizer to make use of the
dedicated scan FFs of the underlying library when needed. It can be seen that
all of our designs need smaller area footprints compared to the other designs.



700 J. Jean et al.

In case of the estimated power consumption, our designs also outperform the
others except the one in [3]. However, as an important observation by increasing
the δ, the estimated power consumption is increased. We should highlight that
our target is the smallest footprint, and our designs would not provide better
results if either area×time or energy is considered as the metric.

Based on the results presented in Table 1, it can be seen that comparing
the area based on GE in different libraries does not make much sense. For
instance, the synthesis results reported in [2,3] that are based on STM 65 nm and
STM 90 nm libraries cannot be compared with that of another design under a
different library. Indeed, such a huge difference comes from the definition of GE,
i.e., the relative area of the NAND gate compared to the other gates: an efficient
NAND gate (compared to the other gates in the library) will yield larger GE
numbers than an inefficient one. The area of the NAND gate under our consid-
ered libraries are also listed in Table 1. The designs synthesized by Nangate 45 nm
show almost the highest GE numbers, that is due to its extremely small NAND
gate. More interestingly, using IBM 130 nm, it shows the smallest GE numbers
while the results with UMC 130 nm (with the same technology size) are amongst
the largest ones. One reason is the larger NAND gate in IBM 130 nm.

4 Application to PRESENT

4.1 Optimization of the Components

Substitution Layer. To help the synthesizer reach an area-optimized imple-
mentation, we use the tool described in [18] to look for an efficient implementa-
tion of the PRESENT Sbox. We have found several ones that allow to significantly
decrease the area of the Sbox, in comparison to a LUT-based VHDL descrip-
tion: namely, while the LUT description yields an area equivalent to 60–70 GE,
our Sbox implementation decreases it to about 20–30 GE. In our serial imple-
mentations described below, we have selected the PRESENT Sbox implementation
described in [18] using 21.33 GE on UMC 180 nm In our serial implementations
described below, we have selected the PRESENT Sbox implementation described
in [18] using 21.33 GE on UMC 180 nm, which is the world’s smallest known
implementation to date of the PRESENT S-box, about 1 GE smaller than the one
provided in [32].

Permutation Layer. The diffusion layer of PRESENT is designed as a bit permu-
tation that is cheap and efficient in hardware, particularly for round-based archi-
tectures since then the permutation simply breaks down to wired connections.
However, for serialized architectures, such as for our bit-sliding technique, the bit
permutation seems to be an obstacle. Although the permutation layer has some
underlying structure, adapting it for a bit-serial implementation seems nontriv-
ial. However, we present in the following an approach that allows to decompose
the permutation into two independent operations that can be easily performed
in a bit-serial fashion. We note that a two-stage decomposition of the PRESENT



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 701

permutation has also been described in [23]. The first operation performs a local
permutation at the bit-level, whereas the second operation performs a global per-
mutation at the nibble-level, comparable to ShiftRows in the AES.

Local Permutation. Essentially, the local permutation sorts all bits of a single row
of the state (in its matrix representation) according to their significance as show
in Fig. 5. Hence, given four nibbles 0,1,2,3 (with bit-order: MSB downto LSB),
the first nibble will contain the most significant bits (in order 0,1,2,3) after
the sorting operation, whereas the fourth nibble will hold the least significant
bits. Fortunately, this operation can be applied to each row individually and
independently. As a direct consequence, only one row of the state register needs
to implement the local permutation, which can then be applied to the state
successively.

M
SB

L
SB

M
SB

L
SB

M
SB

L
SB

M
SB

L
SB

M
SB

M
SB

M
SB

M
SB

L
SB

L
SB

L
SB

L
SB

SORT

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Fig. 5. Local Permutation (SORT). Re-ordering of bits according to their significance.

Global Permutation. After the local permutation has been performed on all rows
of the state, all bits are sorted according to their significance and, for instance,
the first column will contain all MSBs. However, for a correct implementation of
the permutation layer, the bits should be sorted row-wise instead of column-wise.
Therefore, the global permutation restores the correct ordering by rearranging
the nibbles as shown in Fig. 6, which can also be visualized as a mirroring of
the state to its diagonal. Then, either by swapping two nibbles or by holding a
nibble in its position, the global permutation can be mapped to structures that
are very similar to the ShiftRows operation of AES or SKINNY and we can adapt
some design strategies.

SWAP

13 14 151213 14 151213 14 151213 14 1512

9 10 1189 10 1189 10 1189 10 118

5 6 745 6 745 6 745 6 74

1 2 301 2 301 2 301 2 30 13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

Fig. 6. Global Permutation (SWAP). Column- and row-wise re-ordering of nibbles.

4.2 Bit-Serial Implementations of PRESENT

Data Path. We illustrate in Fig. 7 the basic architecture of our bit-serial imple-
mentation of PRESENT. Similar to the bit-serial AES design described in Sect. 3,
the 64-bit state of PRESENT is held in a shift register and shifted at every
clock cycle. Again, the white cells represent regular FFs, while the gray ones



702 J. Jean et al.

indicate the positions of scan FFs. During the initialization phase, the plain-
text is provided starting from its MSB to its LSB of each nibble in the order
of 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. Hence, each nibble is provided
within 4 clock cycles, starting from MSB to LSB and the entire plaintext is stored
in the state register after 64 clock cycles starting from Nibble0 to Nibble15.

Similar to our bit-serial AES implementation, the addition of the round key is
performed in a bit serial fashion using a single 2-input XOR gate. However, since
PRESENT has a 64-bit state of 16 nibbles, only during the first 3 clock cycles, the
result of the XOR-operation is fed into the state register. At the 4th clock cycle,
the Sbox is applied and the result is saved in the last 4 bits of the state register
(using the indicated scan FFs) while the remaining part of the state is shifted.

At the 16th clock cycle, the first stage of the permutation (local permutation)
is applied to the last row in parallel to the 4th Sbox operation. The red lines
in Fig. 7 indicate the data flow that realizes the sorting of the bits according to
their significance. Since this operation could be interleaved with the continuous
shifting of the state register, we could save a few scan FFs for the last row.

After 64 clock cycles, the round key has been added, all 16 Sboxes have been
evaluated, and each row has been sorted according to the local permutation.
To finalize the round computation, the second stage of the permutation (global
permutation) is performed in 4 clock cycles by means of the blue lines in Fig. 7.
In total, a full round of the cipher is performed in 4 × 16 + 4 = 68 clock cycles.
After 31 rounds (2108 clock cycles), the ciphertext is returned as the result of
the final key addition, whereby the next plaintext can be loaded into the state
register simultaneously.

Key Path. The state register of the key update function is implemented as
shift register, which is shifted and rotated one bit per clock cycle, similar to the
state of the data path (see Fig. 8 for the 80-bit version). At each clock cycle, one
bit of the round key is extracted and given to the data path module.

M
SB

L
SB

Sbox

Input

Output

RoundKey

Nibble 1 Nibble 2 Nibble 3

Nibble 4

2

2

4

3
1

3

Fig. 7. Bit-serial architecture for PRESENT (encryption only, data path).



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 703

M
SB

L
SBByte 0 Byte 1 Byte 2 Byte 3 Byte 4

Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

RoundConst

Key

Sbox

44

55

RoundKey

Fig. 8. Bit-serial architecture for PRESENT-80 (encryption only, key path).

Besides, in order to derive the next round key, the current state has to be
rotated by 61 bits to the left which can be done in parallel to the round key
addition and Sbox computation of the data path. However, these operation takes
64 clock cycles in total, and the rotation of the round key needs only 61 clock
cycles. Hence, we have to stop the shifting of the key register using a gated clock
signal. However, since we would loose synchronization between key schedule and
round function for the last 3 bits of the round key, we have to partition the key
register into a higher (7 bits) and a lower part (73 bits). Then, after 61 clock
cycles, the lower part is stopped, while the higher part still is rotated using an
additional scan FF (see blue line in Fig. 8) to provide the remaining 3 bits of
the round key. Then, while the data path module performs the finalization of
the permutation layer, the remaining 4 bits of the higher part are rotated to
restore the correct order of the bits. In addition, during the last clock cycle, the
round constant is added as well as the Sbox is applied (which is shared with the
data path module5). Eventually, the key register holds the next round key and is
synchronized with the round function in order to continue with the next round.

4.3 Extension to Higher Bit Lengths

In this section, we discuss necessary changes of our architectures to extend and
scale the data path to higher bit lengths in order to increase the throughput and
decrease the latency.

2-Bit Serial. Expansion of our 1-bit serial data path to a 2-bit serial one is
straightforward. Essentially, every component is adapted such that it provides
2 bits at a time, i.e., the state register is shifted for two bits per clock cycle,
while the Sbox is applied every 2 clock cycles. Similarly, the local permutation
is performed every 8 clock cycles, and the finalization of the permutation takes
another 2 clock cycles. Hence, an entire round is computed within 16 × 2 +
2 = 34 clock cycles, which is exactly half of the clock cycles of the 1-bit serial
architecture.

5 Again, necessary 2-to-1 MUX at the inputs are not shown.



704 J. Jean et al.

Unfortunately, adaption of the key path to a 2-bit serial one is more complex.
In particular the rotation of 61 bits is difficult since shifting 2 bits at a time does
not allow a rotation of an odd number of bits. In order to overcome this issue,
we decided to distinguish between odd and even rounds. During an odd round
we use a rotation of 60 bits, while during even rounds the key state is rotated
by 62 bits. However, this approach implies the need for additional multiplexers
in order to select the correct round key as well as the correct positions to inject
the round constant and the Sbox computation. Apart from that, the key state
register is shifted 2 bits per clock cycle, still uses a gated clock signal for the
lower part and a rotation of the most significant bits (eight or six, depending on
the round) for synchronization.

4-Bit Serial. Further, we considered extending the data path to 4 bits using
our bit-sliding technique and replacing all FFs of the state registers by scan FFs.
Unfortunately, the bit permutation layer prevents an efficient scaling of our app-
roach, which would result in an architecture that is even larger than the results
reported in the literature (for nibble-serial implementations). In particular, the
decomposition of the permutation layer, that allowed us an efficient realization
for 1- and 2-bit serial data paths, is rather inefficient for nibble-serial structures.
Although the global permutation could be realized using only scan FFs for the
entire state, the local permutation would require additional multiplexers for the
last row of the state. Eventually, performing the entire permutation in a single
clock cycle after the substitution layer (as it is done in existing nibble-serial
architectures), would be possible solely using scan FFs and without the need of
further multiplexers. Hence, although our bit-sliding approach offers outstanding
results for 1- and 2-bit serial data paths, it does not scale for larger structures
and classical approaches appear to be more efficient.

4.4 Results

In Table 2 we report synthesis results and estimated power consumption of our
designed architectures using the aforementioned five standard cell libraries based
on various technologies (from 45 nm to 180 nm). We also report the results for
the design published in [31] which is, to the best of our knowledge, the smallest
PRESENT architecture reported in the literature. We emphasize again that we
had access to the design sources from [31] and performed the syntheses using
our considered libraries with the same set of parameters as for our architectures.
It can be seen that our constructions outperform the smallest designs reported
in the literature in terms of area and power.



Bit-Sliding: A Generic Technique for Bit-Serial Implementations 705

Table 2. Encryption-only PRESENT implementations for a data path of δ bits @
100 KHz.

Key δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits GE µW GE µW GE µW GE µW GE µW Cycles

80 1 934 1.82 1006 0.44 872 0.32 1113 55.43 847 0.43 2252 New

80 2 1004 2.05 1096 0.47 949 0.33 1191 59.33 913 0.45 1126 New

80 4 1032 3.13 1088 0.53 990 0.33 1279 59.69 942 0.49 516 [31]

128 1 1172 2.41 1268 0.59 1090 0.43 1397 69.26 1065 0.57 2300 New

128 2 1265 2.61 1366 0.61 1189 0.44 1499 74.92 1150 0.58 1150 New

128 4 1344 4.00 1416 0.67 1289 0.53 1672 77.54 1230 0.71 528 [31]

5 Conclusion

In this paper, we have introduced a new ASIC implementation strategy, so-
called bit-sliding, that allows to obtain efficient bit-serial implementations of
SPN ciphers. Apart from the area savings due to a small data path, the bit-
sliding strategy reduces the proportion of scan-flip flops to store the cipher state
and key, greatly improving the performances compared to state-of-the-art area-
optimized implementations.

We have successfully applied bit-sliding to AES-128, PRESENT and SKINNY,
and in some cases reduced the area figures by more than 25%. Even though
area optimization was our main objective, it turns out that power consumption
figures are also improved, which indicates that bit-sliding can be used especially
for passive RFID tags, where area and power consumption are the key measures
to optimize, notably affecting the proximity requirements.

However, as for any bit-serial implementation, it is to be noted that energy
consumption necessarily increases when compared to round-based implementa-
tions, due to the higher latency. Therefore, depending on the area available for
security on the device, bit-sliding might not be the best choice for battery-driven
devices. All in all, this work shows that for some scenarios, AES-128 can be con-
sidered as a lightweight cipher and can now easily fit in less than 2000 GE.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. The authors would like to thank B. Jungk for early discussions
and his input on the bitserial implementations of PRESENT. Additionally, we would like
to thank S. Banik, A. Bogdanov and F. Regazzoni for providing us their implementation
of AES from [2,3]. We also thank H. Yap, K. Khoo, A. Poschmann and M. Henricksen for
sharing with us their implementation of PRESENT described in [32]. This work is partly
supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06).



706 J. Jean et al.

References

1. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 178–194. Springer, Cham (2016). doi:10.1007/978-3-319-31301-6 10

2. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: a compact implementation
of the AES encryption/decryption core. In: Dunkelman, O., Sanadhya, S.K. (eds.)
INDOCRYPT 2016. LNCS, vol. 10095, pp. 173–190. Springer, Cham (2016). doi:10.
1007/978-3-319-49890-4 10

3. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. IACR Cryptology
ePrint Archive 2016:1005 (2016)

4. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a
small PRESENT. In: Cryptographic Hardware and Embedded Systems - CHES
2017, Taipei, Taiwan, September 25–28, 2017 (2017)

5. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: 2015 52nd ACM/EDAC/IEEE
on Design Automation Conference (DAC), pp. 1–6. IEEE (2015)

6. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

8. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

9. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013)

10. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

11. CMT: Circuit Minimization Team. http://www.cs.yale.edu/homes/peralta/
CircuitStuff/CMT.html

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

13. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proc. Inf. Secur. 152(1), 13–20 (2005)

14. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 13

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. [24],
pp. 326–341

16. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and imple-
mentation of low-area and low-power AES encryption hardware core. In: 9th
EUROMICRO Conference on Digital System Design: Architectures, Methods and
Tools, DSD 2006, pp. 577–583. IEEE (2006)

http://dx.doi.org/10.1007/978-3-319-31301-6_10
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://dx.doi.org/10.1007/978-3-642-22792-9_13


Bit-Sliding: A Generic Technique for Bit-Serial Implementations 707

17. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique
for bit-serial implementations of SPN-based primitives - applications to AES,
PRESENT and SKINNY. Cryptology ePrint Archive, Report 2017/600 (2017)

18. Jean, J., Peyrin, T., Sim, S.M.: Optimizing implementations of lightweight building
blocks. Cryptology ePrint Archive, Report 2017/101 (2017)

19. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005). doi:10.1007/11535218 18

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

21. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the Rijndael S-Box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30574-3 22

22. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

23. Poschmann, A.: Lightweight cryptography - cryptographic engineering for a per-
vasive world. Cryptology ePrint Archive, Report 2009/516 (2009)

24. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

25. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implemen-
tations for smart devices – security for 1000 gate equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85893-5 7

26. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 15

27. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Techn. J.
28(4), 656–715 (1949)

28. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. [24], pp. 342–357

29. Wamser, M.S.: Ultra-small designs for inversion-based s-boxes. In: 17th Euromicro
Conference on Digital System Design, DSD 2014, Verona, Italy, August 27–29,
2014, pp. 512–519. IEEE Computer Society (2014)

30. Wamser, M.S., Holzbaur, L., Sigl, G.: A petite and power saving design for the
AES s-box. In: 2015 Euromicro Conference on Digital System Design, DSD 2015,
Madeira, Portugal, August 26–28, 2015, pp. 661–667. IEEE Computer Society
(2015)

31. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - a block cipher suit-
able for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.)
CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25513-7 7

32. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - a block cipher suit-
able for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.)
CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25513-7 7

33. Zhang, X., Parhi, K.K.: High-speed VLSI architectures for the AES algorithm.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(9), 957–967 (2004)

http://dx.doi.org/10.1007/11535218_18
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-540-30574-3_22
http://dx.doi.org/10.1007/978-3-540-30574-3_22
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/978-3-540-85893-5_7
http://dx.doi.org/10.1007/3-540-45682-1_15
http://dx.doi.org/10.1007/978-3-642-25513-7_7
http://dx.doi.org/10.1007/978-3-642-25513-7_7
http://dx.doi.org/10.1007/978-3-642-25513-7_7
http://dx.doi.org/10.1007/978-3-642-25513-7_7

	Bit-Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based Primitives
	1 Introduction
	2 Bit-Sliding Implementation Technique
	2.1 Substitution-Permutation Networks
	2.2 Implementation Trade-Offs
	2.3 Data Path Reduction and Flip-Flops
	2.4 The Bit-Sliding Strategy
	2.5 Bit-Serializing Any Sbox
	2.6 Previous Serial SPN Implementations

	3 Application to AES-128
	3.1 Optimizations of the Components
	3.2 Bit-Serial Implementations of AES-128 Encryption
	3.3 Bit-Serial AES-128 Encryption and Decryption Core
	3.4 Extension to Higher Bit Lengths
	3.5 Results

	4 Application to PRESENT
	4.1 Optimization of the Components
	4.2 Bit-Serial Implementations of PRESENT
	4.3 Extension to Higher Bit Lengths
	4.4 Results

	5 Conclusion
	References


