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1 University of Illinois at Chicago, Chicago, USA
djb@cr.yp.to

2 Technical University of Denmark, Kongens Lyngby, Denmark
stek@dtu.dk

3 Bauhaus-Universität Weimar, Weimar, Germany
Stefan.Lucks@uni-weimar.de

4 Radboud University, Nijmegen, Netherlands
P.Massolino@cs.ru.nl,peter@cryptojedi.org,benoit@viguier.nl

5 Graz University of Technology, Graz, Austria
florian.mendel@gmail.com
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Abstract. This paper presents Gimli, a 384-bit permutation designed
to achieve high security with high performance across a broad range
of platforms, including 64-bit Intel/AMD server CPUs, 64-bit and 32-
bit ARM smartphone CPUs, 32-bit ARM microcontrollers, 8-bit AVR
microcontrollers, FPGAs, ASICs without side-channel protection, and
ASICs with side-channel protection.
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1 Introduction

Keccak [11], the 1600-bit permutation inside SHA-3, is well known to be
extremely energy-efficient: specifically, it achieves very high throughput in
moderate-area hardware. Keccak is also well known to be easy to protect against
side-channel attacks: each of its 24 rounds has algebraic degree only 2, allowing
low-cost masking. The reason that Keccak is well known for these features is
that most symmetric primitives are much worse in these metrics.

Chaskey [21], a 128-bit-permutation-based message-authentication code with
a 128-bit key, is well known to be very fast on 32-bit embedded microcontrollers:
for example, it runs at just 7.0 cycles/byte on an ARM Cortex-M3 microcon-
troller. The reason that Chaskey is well known for this microcontroller perfor-
mance is that most symmetric primitives are much worse in this metric.

Salsa20 [7], a 512-bit-permutation-based stream cipher, is well known to
be very fast on CPUs with vector units. For example, [9] shows that Salsa20
runs at 5.47 cycles/byte using the 128-bit NEON vector unit on a classic ARM
Cortex-A8 (iPad 1, iPhone 4) CPU core. The reason that Salsa20 and its variant
ChaCha20 [6] are well known for this performance is again that most symmetric
primitives are much worse in this metric. This is also why ChaCha20 is now
used by smartphones for HTTPS connections to Google [13] and Cloudflare [27].

Cryptography appears in a wide range of application environments, and each
new environment seems to provide more reasons to be dissatisfied with most
symmetric primitives. For example, Keccak, Salsa20, and ChaCha20 slow down
dramatically when messages are short. As another example, Chaskey has a lim-
ited security level, and slows down dramatically when the same permutation is
used inside a mode aiming for a higher security level.

Contributions of this paper. We introduce Gimli, a 384-bit permuta-
tion. Like other permutations with sufficiently large state sizes, Gimli can
easily be used to build high-security block ciphers, tweakable block ciphers,
stream ciphers, message-authentication codes, authenticated ciphers, hash func-
tions, etc.

What distinguishes Gimli from other permutations is its cross-platform per-
formance. Gimli is designed for energy-efficient hardware and for side-channel-
protected hardware and for microcontrollers and for compactness and for vec-
torization and for short messages and for a high security level.

We present a complete specification of Gimli (Sect. 2), a detailed design ratio-
nale (Sect. 3), an in-depth security analysis (Sect. 4), and performance results for
a wide range of platforms (Sect. 5).

Availability of implementations. We place all software and hardware imple-
mentations described in this paper into the public domain to maximize reusabil-
ity of our results. They are available at https://gimli.cr.yp.to.

https://gimli.cr.yp.to
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2 GIMLI Specification

This section defines Gimli. See Sect. 3 for motivation.

Notation. We denote by W = {0, 1}32 the set of bitstrings of length 32. We
will refer to the elements of this set as “words”. We use

– a ⊕ b to denote a bitwise exclusive or (XOR) of the values a and b,
– a ∧ b for a bitwise logical and of the values a and b,
– a ∨ b for a bitwise logical or of the values a and b,
– a ≪ k for a cyclic left shift of the value a by a shift distance of k, and
– a � k for a non-cyclic shift (i.e., a shift that is filling up with zero bits) of

the value a by a shift distance of k.

We index all vectors and matrices starting at zero. We encode words as bytes in
little-endian form.

i

j

Fig. 1. State representation

The state. Gimli applies a sequence of rounds to a 384-bit state. The state
is represented as a parallelepiped with dimensions 3 × 4 × 32 (see Fig. 1) or,
equivalently, as a 3 × 4 matrix of 32-bit words.

We name the following sets of bits:

– a column j is a sequence of 96 bits such that sj = {s0,j ; s1,j ; s2,j} ∈ W3

– a row i is a sequence of 128 bits such that si = {si,0; si,1; si,2; si,3} ∈ W4

Each round is a sequence of three operations: (1) a non-linear layer, specifi-
cally a 96-bit SP-box applied to each column; (2) in every second round, a linear
mixing layer; (3) in every fourth round, a constant addition.

The non-linear layer. The SP-box consists of three sub-operations: rotations
of the first and second words; a 3-input nonlinear T-function; and a swap of the
first and third words. See Fig. 2 for details.

The linear layer. The linear layer consists of two swap operations, namely
Small-Swap and Big-Swap. Small-Swap occurs every 4 rounds starting from the
1st round. Big-Swap occurs every 4 rounds starting from the 3rd round. See
Fig. 3 for details of these swaps.

The round constants. There are 24 rounds in Gimli, numbered 24, 23, . . . , 1.
When the round number r is 24, 20, 16, 12, 8, 4 we XOR the round constant
0x9e377900 ⊕ r to the first state word s0,0.

Putting it together. Algorithm 1 is pseudocode for the full Gimli permutation.
AppendixA is a C reference implementation.
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x ← x ≪ 24
y ← y ≪ 9

x

y

z

x ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
y ← y ⊕ x ⊕ ((x ∨ z) � 1)
z ← z ⊕ y ⊕ ((x ∧ y) � 3)

x

y

z

x ← z
z ← x

Fig. 2. The SP-box applied to a column

Fig. 3. The linear layer

3 Understanding the GIMLI Design

This section explains how we arrived at the Gimli design presented in Sect. 2.
We started from the well-known goal of designing one unified cryptographic

primitive suitable for many different applications: collision-resistant hashing,
preimage-resistant hashing, message authentication, message encryption, etc. We
found no reason to question the “new conventional wisdom” that a permutation
is a better unified primitive than a block cipher. Like Keccak, Ascon [15], etc., we
evaluate performance only in the forward direction, and we consider only forward
modes; modes that also use the inverse permutation require extra hardware area
and do not seem to offer any noticeable advantages.

Where Gimli departs from previous designs is in its objective of being a single
primitive that performs well on every common platform. We do not insist on
beating all previous primitives on all platforms simultaneously, but we do insist
on coming reasonably close. Each platform has its own hazards that create poor
performance for many primitives; what Gimli shows is that all of these hazards
can be avoided simultaneously.

Vectorization. On common Intel server CPUs, vector instructions are by far
the most efficient arithmetic/logic instructions. As a concrete example, the 12-
round ChaCha12 stream cipher has run at practically the same speed as 12-round
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Algorithm 1. The Gimli permutation
Require: s = (si,j) ∈ W3×4

Ensure: Gimli(s) = (si,j) ∈ W3×4

for r from 24 downto 1 inclusive do
for j from 0 to 3 inclusive do

x ← s0,j ≪ 24 � SP-box
y ← s1,j ≪ 9
z ← s2,j
s2,j ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
s1,j ← y ⊕ x ⊕ ((x ∨ z) � 1)
s0,j ← z ⊕ y ⊕ ((x ∧ y) � 3)

end for
� linear layer

if r mod 4 = 0 then
s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 � Small-Swap

else if r mod 4 = 2 then
s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 � Big-Swap

end if

if r mod 4 = 0 then
s0,0 = s0,0 ⊕ 0x9e377900 ⊕ r � Add constant

end if
end for
return (si,j)

AES-192 on several generations of Intel CPUs (e.g., 1.7 cycles/byte on Westmere;
1.5 cycles/byte on Ivy Bridge; 0.8 cycles/byte on Skylake), despite AES hardware
support, because ChaCha12 takes advantage of the vector hardware on the same
CPUs. Vectorization is attractive for CPU designers because the overhead of
fetching and decoding an instruction is amortized across several data items.

Any permutation built from (e.g.) common 32-bit operations can take advan-
tage of a 32b-bit vector unit if the permutation is applied to b blocks in parallel.
Many modes of use of a permutation support this type of vectorization. But this
type of vectorization creates two performance problems. First, if b parallel blocks
do not fit into vector registers, then there is significant overhead for loads and
stores; vectorized Keccak implementations suffer exactly this problem. Second,
a large b is wasted in applications where messages are short.

Gimli, like Salsa and ChaCha, views its state as consisting of 128-bit rows
that naturally fit into 128-bit vector registers. Each row consists of a vector
of 128/w entries, each entry being a w-bit word, where w is optimized below.
Most of the Gimli operations are applied to every column in parallel, so the
operations naturally vectorize. Taking advantage of 256-bit or 512-bit vector
registers requires handling only 2 or 4 blocks in parallel.

Logic operations and shifts. Gimli’s design uses only bitwise operations on
w-bit words: specifically, and, or, xor, constant-distance left shifts, and constant-
distance rotations.
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There are tremendous hardware-latency advantages to being able to carry
out w bit operations in parallel. Even when latency is not a concern, bitwise
operations are much more energy-efficient than integer addition, which (when
carried out serially) uses almost 5w bit operations for w-bit words. Avoiding
additions also allows “interleaved” implementations as in Keccak, Ascon, etc.,
saving time on software platforms with word sizes below w.

On platforms with w-bit words there is a software cost in avoiding additions.
One way to quantify this cost is as follows. A typical ARX design is roughly
balanced between addition, rotation, and xor. NORX [2] replaces each addition
a + b with a similar bitwise operation a ⊕ b ⊕ ((a ∧ b) � 1), so 3 instructions
(add, rotate, xor) are replaced with 6 instructions; on platforms with free shifts
and rotations (such as the ARM Cortex-M4), 2 instructions are replaced with
4 instructions; on platforms where rotations need to be simulated by shifts (as
in typical vector units), 5 instructions are replaced with 8 instructions. On top
of this near-doubling in cost, the diffusion in the NORX operation is slightly
slower than the diffusion in addition, increasing the number of rounds required
for security.

The pattern of Gimli operations improves upon NORX in three ways. First,
Gimli uses a third input c for a ⊕ b ⊕ ((c ∧ b) � 1), removing the need for a
separate xor operation. Second, Gimli uses only two rotations for three of these
operations; overall Gimli uses 19 instructions on typical vector units, not far
behind the 15 instructions used by three ARX operations. Third, Gimli varies
the 1-bit shift distance, improving diffusion compared to NORX and possibly
even compared to ARX.

We searched through many combinations of possible shift distances (and
rotation distances) in Gimli, applying a simple security model to each combina-
tion. Large shift distances throw away many nonlinear bits and, unsurprisingly,
turned out to be suboptimal. The final Gimli shift distances (2, 1, 3 on three
32-bit words) keep 93.75% of the nonlinear bits.

32-bit words. Taking w = 32 is an obvious choice for 32-bit CPUs. It also
works well on common 64-bit CPUs, since those CPUs have fast instructions
for, e.g., vectorized 32-bit shifts. The 32-bit words can also be split into 16-bit
words (with top and bottom bits, or more efficiently with odd and even bits as
in “interleaved” Keccak software), and further into 8-bit words.

Taking w = 16 or w = 8 would lose speed on 32-bit CPUs that do not have
vectorized 16-bit or 8-bit shifts. Taking w = 64 would interfere with Gimli’s
ability to work within a quarter-state for some time (see below), and we do not
see a compensating advantage.

State size. On common 32-bit ARM microcontrollers, there are 14 easily usable
integer registers, for a total of 448 bits. The 512-bit states in Salsa20, ChaCha,
NORX, etc. produce significant load-store overhead, which Gimli avoids by (1)
limiting its state to 384 bits (three 128-bit vectors), i.e., 12 registers, and (2)
fitting temporary variables into just 2 registers.

Limiting the state to 256 bits would provide some benefit in hardware area,
but would produce considerable slowdowns across platforms to maintain an
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acceptable level of security. For example, 256-bit sponge-based hashing at a 2100

security level would be able to absorb only 56 message bits (22% of the state)
per permutation call, while 384-bit sponge-based hashing at the same security
level is able to absorb 184 message bits (48% of the state) per permutation call,
presumably gaining more than a factor of 2 in speed, even without accounting for
the diffusion benefits of a larger state. It is also not clear whether a 256-bit state
size leaves an adequate long-term security margin against multi-user attacks (see
[16]) and quantum attacks; more complicated modes can achieve high security
levels using small states, but this damages efficiency.

One of the SHA-3 requirements was 2512 preimage security. For sponge-based
hashing this requires at least a 1024-bit permutation, or an even larger permu-
tation for efficiency, such as Keccak’s 1600-bit permutation. This requirement
was based entirely on matching SHA-512, not on any credible assertion that 2512

preimage security will ever have any real-world value. Gimli is designed for use-
ful security levels, so it is much more comparable to, e.g., 512-bit Salsa20, 400-bit
Keccak-f [400] (which reduces Keccak’s 64-bit lanes to 16-bit lanes), 384-bit C-
Quark [4], 384-bit SPONGENT-256/256/128 [12], 320-bit Ascon, and 288-bit
Photon-256/32/32 [17].

Working locally. On the popular low-end ARM Cortex-M0 microcontroller,
many instructions can access only 8 of the 14 32-bit registers. Working with more
than 256 bits at a time incurs overhead to move data around. Similar comments
apply to the 8-bit AVR microcontroller.

Gimli performs many operations on the left half of its state, and separately
performs many operations on the right half of its state. Each half fits into 6
32-bit registers, plus 2 temporary registers.

It is of course necessary for these 192-bit halves to communicate, but this
communication does not need to be frequent. The only communication is Big-
Swap, which happens only once every 4 rounds, so we can work on the same
half-state for several rounds.

At a smaller scale, Gimli performs a considerable number of operations
within each column (i.e., each 96-bit quarter-state) before the columns com-
municate. Communication among columns happens only once every 2 rounds.
This locality is intended to reduce wire lengths in unrolled hardware, allowing
faster clocks.

Parallelization. Like Keccak and Ascon, Gimli has degree just 2 in each round.
This means that, during an update of the entire state, all nonlinear operations are
carried out in parallel: a nonlinear operation never feeds into another nonlinear
operation.

This feature is often advertised as simplifying and accelerating masked imple-
mentations. The parallelism also has important performance benefits even if side
channels are not a concern.

Consider, for example, software using 128-bit vector instructions to apply
Salsa20 to a single 512-bit block. Salsa20 chains its 128-bit vector operations: an
addition feeds into a rotation, which feeds into an xor, which feeds into the next
addition, etc. The only parallelism possible here is between the two shifts inside
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a shift-shift-or implementation of the rotation. A typical vector unit allows more
instructions to be carried out in parallel, but Salsa20 is unable to take advantage
of this. Similar comments apply to BLAKE [3] and ChaCha20.

The basic NORX operation a ⊕ b ⊕ ((a ∧ b) � 1) is only slightly better,
depth 3 for 4 instructions. Gimli has much more internal parallelism: on average
approximately 4 instructions are ready at each moment.

Parallel operations provide slightly slower forward diffusion than serial oper-
ations, but experience shows that this costs only a small number of rounds.
Gimli has very fast backward diffusion.

Compactness. Gimli is intentionally very simple, repeating a small number
of operations again and again. This gives implementors the flexibility to create
very small “rolled” designs, using very little area in hardware and very little
code in software; or to unroll for higher throughput.

This simplicity creates three directions of symmetries that need to be broken.
Gimli is like Keccak in that it breaks all symmetries within the permutation,
rather than (as in Salsa, ChaCha, etc.) relying on attention from the mode
designer to break symmetries. Gimli puts more effort than Keccak into reducing
the total cost of asymmetric operations.

The first symmetry is that rotating each input word by any constant number
of bits produces a near-rotation of each output word by the same number of
bits; “near” accounts for a few bits lost from shifts. Occasionally (after rounds
24, 20, 16, etc.) Gimli adds an asymmetric constant to entry 0 of the first row.
This constant has many bits set (it is essentially the golden ratio 0x9e3779b9,
as used in TEA), and is not close to any of its nontrivial rotations (never fewer
than 12 bits different), so a trail applying this symmetry would have to cancel
many bits.

The second symmetry is that each round is identical, potentially allowing
slide attacks. This is much more of an issue for small blocks (as in, e.g., 128-
bit block ciphers) than for large blocks (such as Gimli’s 384-bit block), but
Gimli nevertheless incorporates the round number r into the constant mentioned
above. Specifically, the constant is 0x93e77900 ⊕ r. The implementor can also
use 0x93e77900+r since r fits into a byte, or can have r count from 0x93e77918
down to 0x93e77900.

The third symmetry is that permuting the four input columns means permut-
ing the four output columns; this is a direct effect of vectorization. Occasionally
(after rounds 24, 20, 16, etc.) Gimli swaps entries 0, 1 in the first row, and swaps
entries 2, 3 in the first row, reducing the symmetry group to 8 permutations
(exchanging or preserving 0, 1, exchanging or preserving 2, 3, and exchanging or
preserving the halves). Occasionally (after rounds 22, 18, 14, etc.) Gimli swaps
the two halves of the first row, reducing the symmetry group to 4 permutations
(0123, 1032, 2301, 3210). The same constant distinguishes these 4 permutations.

We also explored linear layers slightly more expensive than these swaps. We
carried out fairly detailed security evaluations of Gimli-MDS (replacing a, b, c, d
with s ⊕ a, s ⊕ b, s ⊕ c, s ⊕ d where s = a ⊕ b ⊕ c ⊕ d), Gimli-SPARX (as in
[14]), and Gimli-Shuffle (with the swaps as above). We found some advantages
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in Gimli-MDS and Gimli-SPARX in proving security against various types of
attacks, but it is not clear that these advantages outweigh the costs, so we opted
for Gimli-Shuffle as the final Gimli.

Inside the SP-box: choice of words and rotation distances. The bottom
bit of the T-function adds y to z and then adds x to y. We could instead add
x to y and then add the new y to z, but this would be contrary to our goal of
parallelism; see above.

After the T-function we exchange the roles of x and z, so that the next
SP-box provides diffusion in the opposite direction. The shifted parts of the T-
function already provide diffusion in both directions, but this diffusion is not
quite as fast, since the shifts throw away some bits.

We originally described rotations as taking place after the T-function, but
this is equivalent to rotation taking place before the T-function (except for a rota-
tion of the input and output of the entire permutation). Starting with rotation
saves some instructions outside the main loop on platforms with rotated-input
instructions; also, some applications reuse portions of inputs across multiple
permutation calls, and can cache rotations of those portions. These are minor
advantages but there do not seem to be any disadvantages.

Rotating all three of x, y, z adds noticeable software cost and is almost equiv-
alent to rotating only two: it merely affects which bits are discarded by shifts.
So, as mentioned above, we rotate only two. In a preliminary Gimli design we
rotated y and z, but we found that rotating x and y improves security by 1
round against our best integral attacks; see below.

This leaves two choices: the rotation distance for x and the rotation distance
for y. We found very little security difference between, e.g., (24, 9) and (26, 9),
while there is a noticeable speed difference on various software platforms. We
decided against “aligned” options such as (24, 8) and (16, 8), although it seems
possible that any security difference would be outweighed by further speedups.

4 Security Analysis

4.1 Diffusion

As a first step in understanding the security of reduced-round Gimli, we consider
the following two minimum security requirements:

– the number of rounds required to show the avalanche effect for each bit of
the state.

– the number of rounds required to reach a state full of 1 starting from a state
where only one bit is set. In this experiment we replace bitwise exclusive or
(XOR) and bitwise logical and by a bitwise logical or.

Given the input size of the SP-box, we verify the first criterion with the
Monte-Carlo method. We generate random states and flip each bit once. We
can then count the number of bits flipped after a defined number of rounds.
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Experiments show that 10 rounds are required for each bit to change on the
average half of the state (see Table 5 in Appendix F).

As for the second criterion, we replace the T-function in the SP-box by the
following operations:

x′ ← x ∨ (z � 1) ∨ ((y ∨ z) � 2)
y′ ← y ∨ x ∨ ((x ∨ z) � 1)
z′ ← z ∨ y ∨ ((x ∨ y) � 3)

By testing the 384 bit positions, we prove that a maximum of 8 rounds are
required to fill up the state.

4.2 Differential Cryptanalysis

To study Gimli’s resistance against differential cryptanalysis we use the same
method as has been used for NORX [1] and Simon [20] by using a tool-assisted
approach to find the optimal differential trails for a reduced number of rounds.
In order to enable this approach we first need to define the valid transitions of
differences through the Gimli round function.

The non-linear part of the round function shares similarities with the NORX
round function, but we need to take into account the dependencies between the
three lanes to get a correct description of the differential behavior of Gimli. In
order to simplify the description we will look at the following function which
only covers the non-linear part of Gimli:

x′ ← y ∧ z

f(x, y, z) : y′ ← x ∨ z

z′ ← x ∧ y

(1)

where x, y, z ∈ W. For the Gimli SP-box we only have to apply some additional
linear functions which behave deterministically with respect to the propagation
of differences. In the following we denote (Δx,Δy,Δz) as the input difference
and (Δx′ ,Δy′ ,Δz′) as the output difference. The differential probability of a
differential trail T is denoted as DP(T ) and we define the weight of a trail as
w = − log2(DP(T )).

Lemma 1 (Differential Probability). For each possible differential through
f it holds that

Δx′ ∧ (Δy ∨ Δz) = 0
Δy′ ∧ (Δx ∨ Δz) = 0
Δz′ ∧ (Δx ∨ Δy) = 0

(Δx ∧ Δy ∧ ¬Δz) ∧ ¬(Δx′ ⊕ Δy′) = 0
(Δx ∧ ¬Δy ∧ Δz) ∧ (Δx′ ⊕ Δz′) = 0

(¬Δx ∧ Δy ∧ Δz) ∧ ¬(Δx′ ⊕ Δy′) = 0
(Δx ∧ Δy ∧ Δz) ∧ ¬(Δx′ ⊕ Δy′ ⊕ Δz′) = 0.

(2)
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The differential probability of (Δx,Δy,Δz)
f−→ (Δx′ ,Δy′ ,Δz′) is given by

DP((Δx,Δy,Δz)
f−→ (Δx′ ,Δy′ ,Δz′)) = 2−2·hw(Δx∨Δy∨Δz). (3)

A proof for this lemma is given in Appendix G. We can then use these
conditions together with the linear transformations to describe how differences
propagate through the Gimli round functions. For computing the differential
probability over multiple rounds we assume that the rounds are independent.
Using this model we then search for the optimal differential trails with the
SAT/SMT-based approach [1,20].
We are able to find the optimal differential trails up to 8 rounds of Gimli

(see Table 1). After more rounds this approach failed to find any solution in a
reasonable amount of time. The 8-round differential trail is given in Table 6 in
Appendix G.

Table 1. The optimal differential trails for a reduced number of rounds of Gimli.

Rounds 1 2 3 4 5 6 7 8

Weight 0 0 2 6 12 22 36 52

In order to cover more rounds of Gimli we restrict our search to a good
starting difference and expand it in both directions. As the probability of a
differential trail quickly decreases with the Hamming weight of the state it is
likely that any high probability trail will contain some rounds with very low
Hamming weight. In Table 2, we show the results when starting from a single bit
difference in any of the words. Interestingly, the best trails match the optimal
differential trails up to 8 rounds given in Table 1.

Table 2. The optimal differential trails when expanding from a single bit difference in
any of the words.

Rounds 1 2 3 4 5 6 7 8 9

r = 0 0 2 6 14 28 58 102

r = 1 0 0 2 6 12 26 48 88

r = 2 - 0 2 6 12 22 36 66 110

r = 3 - - 8 10 14 32 36 52 74

r = 4 - - - 26 28 32 38 52 74

Using the optimal differential for 7 rounds we can construct a 12-round dif-
ferential trail with probability 2−188 (see Table 7 in Appendix G). If we look at
the corresponding differential, this means we do not care about any intermedi-
ate differences; many trails might contribute to the probability. In the case of
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our 12-round trail we find 15800 trails with probability 2−188 and 20933 trails
with probability 2−190 contributing to the differential. Therefore, we estimate
the probability of the differential to be ≈ 2−158.63.

4.3 Algebraic Degree and Integral Attacks

Since the algebraic degree of the round function of Gimli is only 2, it is impor-
tant how the degree increases by iterating the round function. We use the (bit-
based) division property [28,29] to evaluate the algebraic degree, and the propa-
gation search is assisted by mixed integer linear programming (MILP) [32]. See
Appendix H.

We first evaluated the upper bound of the algebraic degree on r-round Gimli,
and the result is summarized as follows.

# rounds 1 2 3 4 5 6 7 8 9

2 4 8 16 29 52 95 163 266

When we focus on only one bit in the output of r-round Gimli, the increase
of the degree is slower than the general case. Especially, the algebraic degree of
z0 in each 96-bit value is lower than other bits because z0 in rth round is the
same as x6 in (r−1)th round. All bits except for z0 is mixed by at least two bits
in (r−1)th round. Therefore, we next evaluate the upper bound of the algebraic
degree on four z0 in r-round Gimli, and the result is summarized as follows.

# rounds 1 2 3 4 5 6 7 8 9 10 11

1 2 4 8 15 27 48 88 153 254 367

In integral attacks, a part of the input is chosen as active bits and the other
part is chosen as constant bits. Then, we have to evaluate the algebraic degree
involving active bits. From the structure of the round function of Gimli, the
algebraic degree will be small when 96 entire bits in each column are active.
We evaluated two cases: the algebraic degree involving si,0 is evaluated in the
first case, and the algebraic degree involving si,0 and si,1 is evaluated in the
second case. Moreover, all z0 in 4 columns are evaluated, and the following table
summarizes the upper bound of the algebraic degree in the weakest column in
every round.

The above result implies that Gimli has 11-round integral distinguisher when
96 bits in si,0 are active and the others are constant. Moreover, when 192 bits in
si,0 and si,1 are active and the others are constant, Gimli has 13-round integral
distinguisher.
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# rounds 3 4 5 6 7 8 9 10 11 12 13 14

Active 0 0 0 4 8 15 28 58 89 95 96 96 96

Columns 0 and 1 0 0 7 15 30 47 97 153 190 191 191 192

5 Implementations

This section reports the performance of Gimli for several target platforms. See
Tables 3 and 4 for cross-platform overviews of hardware and software perfor-
mance.

5.1 FPGA and ASIC

We designed and evaluated three main architectures to address different hard-
ware applications. These different architectures are a tradeoff between resources,
maximum operational frequency and number of cycles necessary to perform the
full permutation. Even with these differences, all 3 architectures share a common
simple communication interface which can be expanded to offer different opera-
tion modes. All this was done in VHDL and tested in ModelSim for behavioral
results, synthesized and tested for FPGAs with Xilinx ISE 14.7. In case of ASICs
this was done through Synopsis Ultra and Simple Compiler with 180 nm UMC
L180, and Encounter RTL Compiler with ST 28 nm FDSOI technology.

The first architecture, depicted in Fig. 4, performs a certain number of rounds
in one clock cycle and stores the output in the same buffer as the input. The
number of rounds it can perform in one cycle is chosen before the synthesis
process and can be 1, 2, 3, 4, 6, or 8. In case of 12 or 24 combinational rounds,
optimized architectures for these cases were done, in order to have better results.
The rounds themselves are computed as shown in Fig. 5. In every round there is
one SP-box application on the whole state, followed by the linear layer. In the
linear layer, the operation can be a small swap with round constant addition, a
big swap, or no operation, which are chosen according to the two least significant
bits of the round number. The round number starts from 24 and is decremented
by one in each combinational round block.

Fig. 4. Round-based architecture
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Fig. 5. Combinational round in round-based architecture

Besides the round and the optimized half and full combinational architec-
tures, the other one is a serial-based architecture illustrated in Fig. 6. The serial-
based architecture performs one SP-box application per cycle, through a circular-
shift-based architecture, therefore taking in total 4 cycles. In case of the linear
layer, it is still executed in one cycle in parallel. The reason of not being done
in a serial based manner, is because the parallel version cost is very low.

Fig. 6. Serial-based architecture

All hardware results are shown in Table 3. In case of FPGAs the lowest
latency is the one with 4 combinational rounds in one cycle, and the one with best
Resources×Time/State is the one with 2 combinational rounds. For ASICs the



Gimli: A Cross-Platform Permutation 313

Table 3. Hardware results for Gimli and competitors. Gates Equivalent(GE). Slice(S).
LUT(L). Flip-Flop(F). * Could not finish the place and route.

Perm. State Version Cycles Resources Period (ns) Time (ns) Res.×Time/

size State

FPGA – Xilinx Spartan 6 LX75

Ascon 320 2 732 S(2700 L+325 F) 34.570 70 158.2

Gimli 384 12 2 1224 S(4398 L+389 F) 27.597 56 175.9

Keccak 400 2 1520 S(5555 L+405 F) 77.281 155 587.3

C-quark* 384 2 2630 S(9718 L+389 F) 98.680 198 1351.7

Photon 288 2 2774 S(9430 L+293 F) 74.587 150 1436.8

Spongent* 384 2 7763 S(19419 L+389 F) 292.160 585 11812.7

Gimli 384 24 1 2395 S(8769 L+385 F) 56.496 57 352.4

Gimli 384 8 3 831 S(2924 L+390 F) 24.531 74 159.3

Gimli 384 6 4 646 S(2398 L+390 F) 18.669 75 125.6

Gimli 384 4 6 415 S(1486 L+391 F) 8.565 52 55.5

Gimli 384 3 8 428 S(1587 L+393 F) 10.908 88 97.3

Gimli 384 2 12 221 S(815 L+392 F) 5.569 67 38.5

Gimli 384 1 24 178 S(587 L+394 F) 4.941 119 55.0

Gimli 384 Serial 108 139 S(492 L+397 F) 3.996 432 156.2

28 nm ASIC – ST 28nm FDSOI technology

Gimli 384 12 2 35452GE 2.2672 5 418.6

Ascon 320 2 32476GE 2.8457 6 577.6

Keccak 400 2 55683GE 5.6117 12 1562.4

C-quark 384 2 111852GE 9.9962 20 5823.4

Photon 288 2 296420GE 10.0000 20 20584.7

Spongent 384 2 1432047GE 12.0684 25 90013.1

Gimli 384 24 1 66205GE 4.2870 5 739.1

Gimli 384 8 3 25224GE 1.5921 5 313.7

Gimli 384 6 4 21675GE 2.1315 9 481.2

Gimli 384 4 6 14999GE 1.0549 7 247.2

Gimli 384 3 8 14808GE 2.0119 17 620.6

Gimli 384 2 12 10398GE 1.0598 13 344.4

Gimli 384 1 24 8097GE 1.0642 26 538.5

Gimli 384 Serial 108 5843GE 1.5352 166 2522.7

180 nm ASIC – UMC L180

Gimli 384 12 2 26685 9.9500 20 1382.9

Ascon 320 2 23381 11.4400 23 1671.7

Keccak 400 2 37102 22.4300 45 4161.0

C-quark 384 2 62190 37.2400 75 12062.1

Photon 288 2 163656 99.5900 200 113183.8

Spongent 384 2 234556 99.9900 200 122151.9

Gimli 384 24 1 53686 17.4500 18 2439.6

Gimli 384 8 3 19393 7.9100 24 1198.4

Gimli 384 6 4 15886 12.5100 51 2070.0

Gimli 384 4 6 11008 10.1700 62 1749.1

Gimli 384 3 8 10106 10.0500 81 2115.8

Gimli 384 2 12 7112 15.2000 183 3377.8

Gimli 384 1 24 5314 9.5200 229 3161.4

Gimli 384 Serial 108 3846 11.2300 1213 12146.0
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results change as the lowest latency is the one with full combinational setting, and
the one with best Resources×Time/State is the one with 8 combinational rounds
for 180 nm and 4 combinational rounds for 28 nm. This difference illustrates that
each technology can give different results, making it difficult to compare results
on different technology.

Hardware variants that do 2 or 4 rounds in one cycle appear to be attractive
choices, depending on the application scenario. The serial version needs 4.5 times
more cycles than the 1-round version, while saving around 28% of the gate
equivalents (GE) in the 28 nm ASIC technology, and less in the other ASIC
technology and FPGA. If resource constraints are extreme enough to justify the
serial version then it would be useful to develop a new version optimized for the
target technology, for better results.

To compare the Gimli permutation to other permutations in the literature,
we synthesized all permutations with similar half-combinational architectures,
taking exactly 2 cycles to perform a permutation. The permutations that were
chosen for comparison were selected close to Gimli in terms of size, even though
in the end the final metric was divided by the permutation size to try to “nor-
malize” the results.

The best results in Resources×Time/State are from 24-round Gimli and 12-
round Ascon-128, with Ascon slightly more efficient in the FPGA results and
Gimli more efficient in the ASIC results. Both permutation in all 3 technologies
had very similar results, while Keccak-f [400] is worse in all 3 technologies. The
permutations SPONGENT-256/256/128, Photon-256/32/32 and C-Quark have
a much higher resource utilization in all technologies. This is because they were
designed to work with little resources in exchange for a very high response time
(e.g., SPONGENT is reported to use 2641 GE for 18720 cycles, or 5011 GE for
195 cycles), therefore changing the resource utilization from logic gates to time.
Gimli and Ascon are the most efficient in the sense of offering a similar security
level to SPONGENT, Photon and C-Quark, with much lower product of time
and logic resources.

5.2 SP-box in Assembly

We now turn our attention to software. Subsequent subsections explain how to
optimize Gimli for various illustrative examples of CPUs. As a starting point,
we show in Listing 5.2 how to apply the Gimli SP-box to three 32-bit registers
x, y, z using just two temporary registers u, v.

# Rotate
x ← x ≪ 24
y ← y ≪ 9
u ← x
.
.

# Compute x
v ← z � 1
x ← y ∧ z
x ← x � 2
x ← x ⊕ v
x ← x ⊕ u

# Compute y
v ← y
y ← u ∨ z
y ← y � 1
y ← y ⊕ u
y ← y ⊕ v

# Compute z
u ← u ∧ v
u ← u � 3
v ← v ⊕ u
z ← v ⊕ z
.

Listing 5.2: SP-box assembly instructions
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5.3 8-bit Microcontroller: AVR ATmega

The AVR architecture provides 32 8-bit registers (256 bits). This does not allow
the full 384-bit Gimli state to stay in the registers: we are forced to use loads
and stores in the main loop.

To minimize the overhead for loads and stores, we work on a half-state (two
columns) for as long as possible. For example, we focus on the left half-state for
rounds 21, 20, 19, 18, 17, 16, 15, 14. Before doing this, we focus on the right
half-state through the end of round 18, so that the Big-Swap at the end of round
18 can feed 2 words (64 bits) from the right half-state into the left half-state.
See Appendix C for the exact order of computation.

A half-state requires a total of 24 registers (6 words), leaving us with 8
registers (2 words) to use as temporaries. We can therefore use the same order
of operations as defined in Listing 5.2 for each SP-box. In a stretch of 8 rounds
on a half-state (16 SP-boxes) there are just a few loads and stores.

We provide two implementations of this construction. One is fully unrolled
and optimized for speed: it runs in just 10 264 cycles, using 19 218 bytes of ROM.
The other is optimized for size: it uses just 778 bytes of ROM and runs in 23 670
cycles. Each implementation requires about the same amount of stack, namely
45 bytes.

5.4 32-bit Low-End Embedded Microcontroller: ARM Cortex-M0

ARM Cortex-M0 comes with 14 32-bit registers. However orr, eor, and-like
instructions can only be used on the lower registers (r0 to r7). This forces us to
use the same computation layout as in the AVR implementation. We split the
state into two halves: one in the lower registers, one in the higher ones. Then we
can operate on each during multiple rounds before exchanging them.

5.5 32-bit High-End Embedded Microcontroller: ARM Cortex-M3

We focus here on the ARM Cortex-M3 microprocessor, which implements the
ARMv7-M architecture. There is a higher-end microcontroller, the Cortex-M4,
implementing the ARMv7E-M architecture; but our Gimli software does not
make use of any of the DSP, (optional) floating-point, or additional saturated
instructions added in this architecture.

The Cortex-M3 features 16 32-bit registers r0 to r15, with one register used
as program counter and one as stack pointer, leaving 14 registers for free use. As
the Gimli state fits into 12 registers and we need only 2 registers for temporary
values, we compute the Gimli permutation without requiring any load or store
instructions beyond the initial loads of the input and the final stores of the
output.

One particularly interesting feature of various ARM instruction sets includ-
ing the ARMv7-M instruction set are free shifts and rotates as part of arithmetic
instructions. More specifically, all bit-logical operations allow one of the inputs
to be shifted or rotated by an arbitrary fixed distance for free. This was used,
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e.g., in [26, Sec. 3.1] to eliminate all rotation instructions in an unrolled imple-
mentation of BLAKE. For Gimli this feature gives us the non-cyclic shifts by
1, 2, 3 and the rotation by 9 for free. We have not found a way to eliminate
the rotation by 24. Each SP-box evaluation thus uses 10 instructions: namely, 9
bit-logical operations (6 xors, 2 ands, and 1 or) and one rotation.

From these considerations we can derive a lower bound on the amount of
cycles required for the Gimli permutation: Each round performs 4 SP-box eval-
uations (one on each of the columns of the state), each using 10 instructions,
for a total of 40 instructions. In 24 rounds we thus end up with 24 · 40 = 960
instructions from the SP-boxes, plus 6 xors for the addition of round constants.
This gives us a lower bound of 966 cycles for the Gimli permutation, assuming
an unrolled implementation in which all Big-Swap and Small-Swap operations
are handled through (free) renaming of registers. Our implementation for the
M3 uses such a fully unrolled approach and takes 1 047 cycles.

5.6 32-bit Smartphone CPU: ARM Cortex-A8 with NEON

We focus on a Cortex-A8 for comparability with the highly optimized Salsa20
results of [9]. As a future optimization target we suggest a newer Cortex-A7 CPU
core, which according to ARM has appeared in more than a billion chips. Since
our Gimli software uses almost purely vector instructions (unlike [9], which
mixes integer instructions with vector instructions), we expect it to perform
similarly on the Cortex-A7 and the Cortex-A8.

The Gimli state fits naturally into three 128-bit NEON vector registers, one
row per vector. The T-function inside the Gimli SP-box is an obvious match for
the NEON vector instructions: two ANDs, one OR, four shifts, and six XORs.
The rotation by 9 uses three vector instructions. The rotation by 24 uses two
64-bit vector instructions, namely permutations of byte positions (vtbl) using
a precomputed 8-byte permutation. The four SP-boxes in a round use 18 vector
instructions overall.

A straightforward 4-round-unrolled assembly implementation uses just 77
instructions for the main loop: 72 for the SP-boxes, 1 (vrev64.i32) for Small-
Swap, 1 to load the round constant from a precomputed 96-byte table, 1 to xor
the round constant, and 2 for loop control (which would be reduced by further
unrolling). We handle Big-Swap implicitly through the choice of registers in two
vtbl instructions, rather than using an extra vswp instruction. Outside the main
loop we use just 9 instructions, plus 3 instructions to collect timing information
and 20 bytes of alignment, for 480 bytes of code overall.

The lower bound for arithmetic is 65 · 6 = 390 cycles: 16 arithmetic cycles
for each of the 24 rounds, and 6 extra for the round constants. The Cortex-A8
can overlap permutations with arithmetic. With moderate instruction-scheduling
effort we achieved 419 cycles, just 8.73 cycles/byte. For comparison, [9] says that
a “straightforward NEON implementation” of the inner loop of Salsa20 “cannot
do better than 11.25 cycles/byte” (720 cycles for 64 bytes), plus approximately
1 cycle/byte overhead. [9] does better than this only by handling multiple blocks
in parallel: 880 cycles for 192 bytes, plus the same overhead.
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Table 4. Cross-platform software performance comparison of various permuta-
tions. “Hashing 500 bytes”: AVR cycles for comparability with [5]. “Permutation”:
Cycles/byte for permutation on all platforms. AEAD timings from [8] are scaled to
estimate permutaton timings.

Hashing 500 bytes Cycles ROM Bytes RAM Bytes

AVR ATmega

Spongent [5] 25 464 000 364 101

Keccak-f [400] [5] 1 313 000 608 96

Gimli-Hashb (this paper) small 805 110 778 44

Gimli-Hashb (this paper) fast 362 712 19 218 45

Permutation Cycles/B ROM Bytes RAM Bytes

AVR ATmega

Gimli (this paper) small 413 778 44

ChaCha20 [31] 238 –a 132

Salsa20 [19] 216 1 750 266

Gimli (this paper) fast 213 19 218 45

AES-128 [22] small 171 1 570 –a

AES-128 [22] fast 155 3 098 –a

ARM Cortex-M0

Gimli (this paper) 49 4 730 64

ChaCha20 [23] 40 –a –a

Chaskey [21] 17 414 –a

ARM Cortex-M3/M4

Spongent [12,24] (c-ref, our measurement) 129 486 1 180 –a

Ascon [15] (opt32, our measurement) 196 –a –a

Keccak-f [400] [30] 106 540 –a

AES-128 [25] 34 3 216 72

Gimli (this paper) 21 3 972 44

ChaCha20 [18] 13 2 868 8

Chaskey [21] 7 908 –a

ARM Cortex-A8

Keccak-f [400] (KetjeSR) [8] 37.52 –a –a

Ascon [8] 25.54 –a –a

AES-128 [8] many blocks 19.25 –a –a

Gimli (this paper) single block 8.73 480 –a

ChaCha20 [8] multiple blocks 6.25 –a –a

Salsa20 [8] multiple blocks 5.48 –a –a

Intel Haswell

Gimli (this paper) single block 4.46 252 –a

NORX-32-4-1 [8] single block 2.84 –a –a

Gimli (this paper) two blocks 2.33 724 –a

Gimli (this paper) four blocks 1.77 1227 –a

Salsa20 [8] eight blocks 1.38 –a –a

ChaCha20 [8] eight blocks 1.20 –a –a

AES-128 [8] many blocks 0.85 –a –a

ano data
bSponge construction[10] with c = 256 bits, r = 128 bits and 256 bits of output.
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5.7 64-bit Server CPU: Intel Haswell

Intel’s server/desktop/laptop CPUs have had 128-bit vectorized integer instruc-
tions (“SSE2”) starting with the Pentium 4 in 2001, and 256-bit vectorized inte-
ger instructions (“AVX2”) starting with the Haswell in 2013. In each case the
vector registers appeared in CPUs a few years earlier supporting vectorized
floating-point instructions (“SSE” and “AVX”), including full-width bitwise logic
operations, but not including shifts. The vectorized integer instructions include
shifts but not rotations. Intel has experimented with 512-bit vector instructions
in coprocessors such as Knights Corner and Knights Landing, and has announced
a 512-bit instruction set that includes vectorized rotations and three-input log-
ical operations, but we focus here on CPUs that are commonly available from
Intel and AMD today.

Our implementation strategy for these CPUs is similar to our implementa-
tion strategy for NEON: again the state fits naturally into three 128-bit vec-
tor registers, with Gimli instructions easily translating into the CPU’s vector
instructions. The cycle counts on Haswell are better than the cycle counts for the
Cortex-A8 since each Haswell core has multiple vector units. We save another
factor of almost 2 for 2-way-parallel modes, since 2 parallel copies of the state
fit naturally into three 256-bit vector registers. As with the Cortex-A8, we out-
perform Salsa20 and ChaCha20 for short messages.

References

1. Aumasson, J.-P., Jovanovic, P., Neves, S.: Analysis of NORX: investigating dif-
ferential and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) LATIN-
CRYPT 2014. LNCS, vol. 8895, pp. 306–324. Springer, Cham (2015). doi:10.1007/
978-3-319-16295-9 17. 308, 309

2. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 2. 304

3. Aumasson, J., Meier, W., Phan, R.C., Henzen, L.: The Hash Function BLAKE.
Information Security and Cryptography. Springer, Heidelberg (2014). 306

4. Aumasson, J.-P., Knellwolf, S., Meier, W.: Heavy Quark for secure AEAD. In:
DIAC 2012: Directions in Authenticated Ciphers (2012). 305

5. Balasch, J., Ege, B., Eisenbarth, T., Gérard, B., Gong, Z., Güneysu, T., Heyse,
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The full version of the paper is online at https://gimli.cr.yp.to. See the full
version for appendices.
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