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Abstract. While information-flow security is a well-established area,
there is an unsettling gap between heavyweight information-flow con-
trol, with formal guarantees yet limited practical impact, and lightweight
tainting techniques, useful for bug finding yet lacking formal assurance.
This paper proposes a framework for exploring the middle ground in
the range of enforcement from tainting (tracking data flows only) to
fully-fledged information-flow control (tracking both data and control
flows). We formally illustrate the trade-offs between the soundness and
permissiveness that the framework allows to achieve. The framework is
deployed in a staged fashion, statically embedding a dynamic monitor,
being parametric in security policies, as they do not need to be fixed
until the final deployment. This flexibility facilitates a secure app store
architecture, where the static stage of verification is performed by the
app store and the dynamic stage is deployed on the client. To illustrate
the practicality of the framework, we implement our approach for a core
of Java and evaluate it on a use case with enforcing privacy policies in the
Android setting. We also show how a state-of-the-art dynamic monitor
for JavaScript can be easily adapted to implement our approach.

Keywords: Language-based security · Information-flow control · Taint
tracking

1 Introduction

Motivation. The sheer bulk of sensitive information that software manipulates
makes security a major concern. A recent report shows that several of the top
10 most popular flashlight apps on the Google Play store may send sensitive
information such as pictures and video, users’ location, and the list of contacts,
to untrusted servers [49]. Unfortunately, trusted code also incurs serious security
flaws, as proven by the Heartbleed bug [51] found in the OpenSSL library.

Information-flow control [44] offers an appealing approach to security assur-
ance by design. It helps tracking the flow of information from confidential/un-
trusted sources to public/trusted sinks, ensuring, for confidentiality, that confi-
dential inputs are not leaked to public outputs, and, for integrity, that untrusted
inputs do not affect trusted outputs.
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Background. Applications can leak information through programming-
language constructs, giving rise to two basic types of information flows: explicit
and implicit flows [21]. Consider a setting with variables secret and public
for storing confidential (or high) and public (or low) information, respectively.
Explicit flows occur whenever sensitive information is passed explicitly by an
assignment, e.g., as in public := secret. Implicit flows arise via control-flow
structures of programs, e.g. conditionals and loops, as in if secret then public :=
0 else public := 1. The final value of public depends on the initial value of secret
because of a low assignment, i.e., assignment to a low variable, made in a high
context, i.e., branch of a conditional with a secret guard.

Information-flow control is typically categorized as static and dynamic:
(1) Static techniques mainly impose Dennings’ approach [21] by assigning secu-
rity labels to input data, e.g. variables, APIs, and ensuring separation between
secret and public computation, essentially by maintaining the invariant that
no low assignment [32,44,56] occurs in a high context. Other static tech-
niques include program logics [10,13], model checking [8,23], abstract interpreta-
tions [27] and theorem proving [20,40]. However, static techniques face precision
(high false-positive rate) challenges, rejecting many secure programs. These chal-
lenges include dynamic code evaluation and aliasing, as illustrated by the snip-
pet x.f := 0 ; y.f := secret ; out(L, x.f). A non-trivial static analysis would
have to approximate whether object references x and y are aliases. Moreover,
the fact that security policies are to be known at verification time makes them
less suitable in dynamic contexts. (2) Dynamic techniques use program runtime
information to track information flows [5,26,43]. The execution of the analyzed
program is monitored for security violations. Broadly, the monitor enforces the
invariant that no assignment from high to low variables occurs either explic-
itly or implicitly. Dynamic techniques are particularly useful in highly dynamic
contexts and policies, where the code is often unknown until runtime. However,
since the underlying semantic condition, noninterference [28], is not a trace
property [38], dynamic techniques face challenges with branches not taken by
the current execution. Consider the secure program that manipulates location
information: if (MIN ≤ loc) && (loc ≤ MAX ) then tmp := loc else skip. If
the user’s (secret) location loc is within an area bound by constants MIN and
MAX , the program stores the exact location in a temporary variable tmp, with-
out ever sending it to a public observer. A dynamic analysis, e.g. No-Sensitive
Upgrade [5,58], incorrectly rejects the program (due to a security label upgrade
in a high context), although neither loc nor tmp are ever sent to an attacker.
Permissive Upgrade [6] increases precision, however, it will incorrectly rule out
any secure program that subsequently branches on variable tmp.

Combining dynamic and static analysis, hybrid approaches have recently
received increased attention [18,31,36,37,39]. While providing strong formal
guarantees, to date the practical impact of all these approaches has been limited,
largely due to low precision (or permissiveness). Moreover, static, dynamic, and
hybrid information-flow analysis require knowledge of the control-flow graph to
properly propagate the program counter security label that keeps track of the
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sensitivity of the context. This label is difficult to recover whenever code has
undergone heavyweight optimization and obfuscation, e.g. to protect its intel-
lectual property, or in presence of reflection.

In contrast, taint tracking is a practical success story in computer security,
with many applications at all levels of hardware and software stack [45,47]. Taint
tracking is a pure data dependency analysis that only tracks explicit flows. It is
successful thanks to its lightweight nature, ignoring any control-flow dependen-
cies that would be otherwise required for fully-fledged information-flow control.
On the downside, taint tracking is mainly used as a bug finding technique, pro-
viding, with a few exceptions [45,46,57], no formal guarantees. Importantly,
implicit flows may occur not only in malicious code [33,42], but also in trusted
programs (written by a trusted programmer) [11,34,35,50].

These considerations point to an unsettling gap between heavyweight tech-
niques for information-flow control, with formal guarantees yet limited practical
impact, and lightweight tainting techniques that are useful for bug finding yet
lacking formal assurance.

Approach. By considering the trade-offs between soundness and permissive-
ness, this paper explores the middle ground, by a framework for a range of
enforcement mechanisms from tainting to fully-fledged information-flow control.
We address trusted and malicious code. However, we make a key distinction
between two kinds of implicit flows: observable implicit flows and hidden implicit
flows, borrowing the terminology of Staicu and Pradel [50]. Observable implicit
flows arise whenever a variable is updated under a high security context and
later output to an attacker. Not all implicit flows are, however, observable, since
also the absence of a variable update can leak information (cf. Fig. 3); we call
these hidden implicit flows. Tracking explicit flows and observable implicit flows
raises the security bar for trusted code [50]. It allows for permissive, lightweight
and purely dynamic enforcement in the spirit of taint tracking, yet providing
higher security assurance. To evaluate soundness and permissiveness of the tech-
nique, we propose observable secrecy, a novel security condition that captures
the essence of observable implicit flows. It helps us answer the question: “what
is the security price we pay for having fewer false positives for useful programs”?
We remark that the distinction between observable and hidden implicit flows is
purely driven by ease of enforcement and permissiveness. Moreover, we leverage
existing techniques and extend the framework to account for hidden implicit
flows, thus addressing malicious code. We then present a family of flow-sensitive
dynamic monitors that enforce a range of security policies by adapting a stan-
dard information-flow monitor from the literature [5,43].

The framework is deployed in a staged fashion. We statically embed dynamic
monitors for (observable and/or hidden) implicit flows into the program code
by lightweight program transformation, and leverage a dynamic taint tracker to
enforce stronger policies. For malicious code, we use the cross-copying technique,
originally proposed by Vachharajani et al. [53] for systems code, to transform
hidden implicit flows into observable implicit flows. The transformations and
soundness proofs for theorems can be found in the full version of the paper [14].
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Fig. 1. Secure App Store architecture

Secure App Store. The flexibility of the approach on the policy and enforce-
ment side facilitates a secure app store architecture, depicted in Fig. 1. Devel-
opers deliver the code to the App Store, which computes sources and sinks, and
leverages the control-flow graph to convert implicit flows into explicit flows. For
trusted (non-malicious) apps, a lightweight transformation converting observable
implicit flows into explicit may be sufficient, otherwise cross copying is needed.
Subsequently, the App Store can perform code optimizations and obfuscations,
and publish the resulting APK file (together with sources and sinks) on behalf of
the developer. Finally, end users can download the app, define their own security
policies and run the app on a dynamic taint tracker, remarkably, with no need
of the program’s control-flow graph. Alternatively, end users can leverage static
taint trackers [1,29] to verify their policies against the code.

We implement the transformations for a core of Java and evaluate them on
the use case of a Pedometer app. We run the transformed app on TaintDroid [24]
and check it against user-defined policies. We also show how JSFlow [30], a
dynamic monitor for JavaScript, can provide higher precision by changing the
security condition to observable secrecy.

Structure and Contributions. In summary, the paper makes the following
contributions: (i) observable secrecy, a security condition for validating sound-
ness and precision wrt. observable implicit and explicit flows (Sect. 2); (ii) a
framework that allows expressing a range of enforcement mechanisms from taint-
ing to information-flow control (Sect. 3); (iii) lightweight transformations that
leverage dynamic taint tracking for higher security assurance (Sect. 4); (iv) a
flexible app store architecture and a prototype implementation for Android apps
(Sect. 5).

2 Security Framework

We employ knowledge-based definitions [4,9,10] to introduce security conditions
ranging from weak/explicit secrecy [45,57] to noninterference [28].

2.1 Language

Consider a simple imperative language with I/O primitives, SIMPL. The lan-
guage expressions consist of variables x ∈ Var , built-in values n ∈ Val such as
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Fig. 2. SIMPL language grammar

integers and booleans, binary operators ⊕ and unary operators �. We write tt
for boolean value true and ff for boolean value false. The language constructs
contain skip, assignment, conditional, loops, input and output. The full grammar
of SIMPL can be found in Fig. 2.

We use input and output channels to model communication of the program
with the external world. We label input and output channels with security lev-
els � (defined below) that indicate the confidentiality level of the information
transmitted on the corresponding channel. We denote the set of SIMPL pro-
grams by P. We write x̄ for a set of variables {x1, · · · , xn} such that for all
1 ≤ i ≤ n, xi ∈ Var , and V ars(e) for the set of free variables of expression e.

We assume a bounded lattice of security levels (L,�,�,�). A level � ∈ L
represents the confidentiality of a piece of data present on a given channel or
program variable. We assume that there is one channel for each security level
� ∈ L. As usual, � denotes the ordering relation between security levels and,
� and � denote the join and meet lattice operators, respectively. We write 	
and ⊥ to denote the top and the bottom element of the lattice. In the exam-
ples, we use a two-level security lattice L = {L,H} consisting of level H (high)
for variables/channels containing confidential information and level L (low) for
variables/channels containing public information, and L � H. We focus on con-
fidentiality, noting that integrity is similar through dualization [16].

We model input by environments E ∈ Env mapping channels to streams
of input values. For simplicity, we consider one stream for each level � ∈ L.
An environment E : L → N → Val maps levels to infinite sequences of values.
Two environments E1 and E2 are �-equivalent, written E1 ≈� E2, iff ∀�′. �′ �
� ⇒ E1(�′) = E2(�′). Another source of input are the initial values of program
variables. We model memory as a mapping m : Var → Val from variables to
values. We use m,m0,m1, . . . to range over memories. We write m[x �→ n] to
denote a memory m with variable x assigned the value n. We write m(e) for the
value of expression e in memory m. A security environment Γ : Var �→ L is a
mapping from program variables to lattice elements. The security environment
assigns security levels to the memory through program variables. We use the
terms security level and security label as synonyms. Two memories m1 and m2

are �-equivalent, written m1 ≈� m2, iff ∀x ∈ Var . Γ (x) � � ⇒ m1(x) = m2(x).
An observation α ∈ Obs is a pair of a security level and a value, i.e. Obs = L×

Val , or the empty observation ε. A trace τ is a finite sequence of observations. We
write τ.τ ′ for concatenation of traces τ and τ ′, and |τ | for the length of a trace τ .
We denote by τ �� the projection of trace τ at security level �. Formally, we have
ε ��= ε and (�′, n).τ ′ ��= (�′, n).(τ ′ ��) if �′ � �; otherwise (�′, n).τ ′ ��= τ ′ ��.
Two traces τ1, τ2 are �-equivalent, written τ1 ≈� τ2, iff τ1 ��= τ2 ��.
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2.2 Semantics

The operational semantics of SIMPL is standard and it is reported in the full
version [14]. A state (E ,m) is a pair of an environment E ∈ Env and a memory
m ∈ Mem. A configuration E � 〈P,m〉 consists of an environment E , a program
P and a memory m. We write E � 〈P,m〉 α−→ E ′ � 〈P ′,m′〉 to denote that a
configuration E � 〈P,m〉 evaluates in one step to configuration E ′ � 〈P ′,m′〉,
producing an observation α ∈ Obs. We write −→∗ or τ−→∗

to denote the reflexive

and transitive closure of −→. We write E � 〈P,m〉 τ ′
−→ whenever the configuration

is unimportant. We use ε to denote program termination.

2.3 Defining Secrecy

The goal of this subsection is to provide an attacker-centric definition of secrecy.
The condition requires that the knowledge acquired by observing program out-
puts does not enable the attacker to learn sensitive information about the initial
program state (inputs and memories). We assume the attacker knows the pro-
gram code and has perfect recall of all the past observations. We first illustrate
the security condition by an example, and then provide the formal definition.

Example 1. Let P = if h then out(L, 1) else out(L, 2) be a SIMPL program
and h a secret variable, i.e. Γ (h) = H. Depending on the initial value of h, the
program outputs either out(L, 1) or out(L, 2) on a channel of security level L.

An attacker at security level L can reason about the initial value of h as
follows: (i) Before seeing any output, the attacker considers any boolean value
as possible for h, therefore the knowledge is h ∈ {tt,ff}. (ii) If the statement
out(L, 1) is executed, the attacker can refine the knowledge to h ∈ {tt} and thus
learn the initial value of h. (iii) Similarly, if the statement out(L, 2) is executed,
the attacker learns that h was initially false. Hence, the program is insecure.

We now define the knowledge that an attacker at level � acquires from observing
a trace of a program P . We capture this by considering the set of initial states
that the attacker considers possible based on their observations. Concretely, for a
given initial state (E0,m0) and a program P , an initial state (E ,m) is considered
possible if E ≈� E0, m ≈� m0, and it matches the trace produced by E0 � 〈P,m0〉.
We define the attacker’s knowledge in the standard way [4]:

Definition 1 (Knowledge). The knowledge set for program P , initial state
(E0,m0), security level � and trace τ is given by k(P, E0,m0, τ) = {(E ,m) | E ≈�

E0 ∧ m ≈� m0 ∧ (∃P ′, E ′,m′, τ ′. E � 〈P,m〉 τ ′
−→∗ E ′ � 〈P ′,m′〉 ∧ τ ≈� τ ′)}.

We focus on progress-insensitive security, which ignores information leaks
through the observation of computation progress, e.g. program divergence [3].
To this end, we relax the requirement that the attacker learns nothing at each
execution step, by allowing leaks that arise from observing the progress of com-
putation. Concretely, we define progress knowledge as the set of initial states
that the attacker considers possible based on the fact that some output event
has occurred, independently of what the exact output value was.
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Definition 2 (Progress Knowledge). The progress knowledge set for pro-
gram P , initial state (E0,m0), level �, and trace τ is given by kP (P, E0,m0, τ) =
{(E ,m) | E ≈� E0 ∧ m ≈� m0 ∧ (∃P ′, E ′,m′, τ ′, α �= ε. E � 〈P,m〉 τ ′

−→∗ E ′ �
〈P ′,m′〉 α−→∗ ∧ α ��= α ∧ τ ≈� τ ′)}.

We can now define a progress-insensitive secrecy by requiring that progress
knowledge after observing a trace τ is the same as the knowledge obtained after
observing the trace τ.α. Consequently, what the attacker learns from observ-
ing the exact output value is the same as what they learn from observing the
computation progress, i.e. that some output event has occurred.

Definition 3 (Progress-insensitive Secrecy). A program P satisfies
Progress-insensitive Secrecy at level �, written Sec(�) � P , iff whenever E �
〈P,m〉 τ.α−−→∗ E ′ � 〈P ′,m′〉 ∧ α ��= α ∧ α �= ε, we have kP (P, E ,m, τ) =
k(P, E ,m, τ.α). P satisfies Progress-insensitive Secrecy, written Sec |= P iff
Sec(�) � P , for all �.

We can see that the program in Example 1 does not satisfy progress-
insensitive secrecy at security level L, as the progress knowledge of observing
some output, i.e. either out(L, 1) or out(L, 2), is h ∈ {tt,ff}, while the knowl-
edge of observing the exact output, e.g. out(L, 1), is h ∈ {tt}.

2.4 Security Conditions

Information-flow monitors can enforce progress-insensitive secrecy, thus prevent-
ing both implicit and explicit flows. Taint tracking, on the other hand, is an
enforcement mechanism that only prevents explicit flows, otherwise ignores any
control-flow dependencies [21]. In contrast to noninterference, security conditions
for taint tracking [45,57] serve more as semantic criteria for evaluating soundness
and precision of the underlying enforcement mechanism rather than providing
an intuitive meaning of security. Driven by the same motivation, we propose
a family of security conditions that allows exploring the space of enforcement
mechanisms from taint tracking to information-flow control.

Our security conditions rely on the observational power of an attacker over
the program code and executions. We model attackers with respect to their per-
run view of the program code and extract the program slice that an attacker
considers possible for any concrete execution. This allows to re-use the same
condition as in Definition 3 for the program slice that the attacker can observe.

Fig. 3. Leaking through label upgrades

Concretely, a security condition for
taint tracking can be modelled as secrecy
with respect to an attacker that only
observes explicit statements (input, out-
put and assignment) extracted from any
concrete execution of a program P . Simi-
larly, (termination-insensitive) noninter-
ference [3] corresponds secrecy for an
attacker that has a whole view of P .
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We will use the example in Fig. 3 to illustrate the security conditions. Con-
sider the program P with boolean variable h of level H and boolean variables
l1, l2 of level L. It can be seen that P outputs the initial value of variable h to
an observer at security level L through a sequence of control flow decisions. In
fact, the program does not satisfy the condition in Definition 3.

We introduce extraction contexts C as a gadget to model the observational
power of an attacker over the program code. Extraction contexts provide a mech-
anism to leverage the operational semantics of the language and extract the
program slice that an attacker observes for any given concrete execution.

C ::= [] | skip | x := e | x ← in(�) | out(�, e) | C;C | if e then C else C

Syntactically, extraction contexts are programs that may contain holes []. For
our purposes, contexts will contain at most one hole that represents a placeholder
for the program statements that are yet to be evaluated by the program execution
at hand. We extend the operational semantics to transform contexts in order to
extract programs for weak secrecy and observable secrecy.

Weak Secrecy. Weak secrecy [57], a security condition for taint tracking, states
that every sequence of explicit statements executed by any program run must be
secure. We formalize weak secrecy as secrecy (cf. Definition 3) for the program,
i.e. the sequence of explicit statements, extracted from any (possibly incomplete)
execution of the original program. We achieve this by extending the configura-
tions with extraction contexts. Here we discuss a few interesting rules as reported
in Fig. 4. The complete set of rules can be found in [14].

Fig. 4. Excerpt of extraction rules for weak secrecy

Each program execution starts with the empty context []. To extract explicit
statements, we propagate assignment and output commands into the context,
while conditionals are simply ignored (cf. the context remains unchanged).
Sequential composition ensures that the sequence of explicit statements is prop-
agated correctly. It can be shown that complete (terminated) executions contain
no holes and incomplete executions contain exactly one hole.

We define weak secrecy in terms of secrecy for explicit statements extracted
from any program execution. We write C[skip] to denote the result of replacing
the hole with command skip in a context C. Otherwise, if the context contains
no hole, we have C[skip] = C. This is needed because the security condition is
defined for any execution, including complete and incomplete executions.
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Definition 4 (Weak secrecy). A program P satisfies weak secrecy for ini-
tial state (E ,m), written WS �E,m P , iff whenever E � 〈P,m, []〉 τ−→∗ E ′ �
〈P ′,m′, C〉, we have Sec |= C[skip]. A program P satisfies weak secrecy, writ-
ten WS � P , iff WS �E,m P for all states (E ,m).

Consider the program from Fig. 3 and an initial state (E0,m0). Depending
on whether m0(h) = tt and m0(h) = ff, we extract program (5) or program (6),
respectively, shown in Fig. 5.

Fig. 5. Extracted programs

We can see that none
of the programs contains
variable h, hence they
both satisfy secrecy (Def-
inition 3). As a result, the
original program P satis-
fies weak secrecy.

Observable Secrecy. We now present a novel security condition, dubbed
observable secrecy, that captures the intuition of observable implicit flows.
Observable implicit flows are implicit flows that arise whenever a variable is
modified in the high branch that is currently executed by the program, and later
it is output to the attacker. Preventing observable implicit flows is of interest
for purely dynamic mechanisms as it provides higher security compared to weak
secrecy, yet allowing for dynamic monitors that are more permissive than moni-
tors for noninterference. Permissiveness, however, comes at the price of ignoring
hidden implicit flows. The following program, where h has security level H, con-
tains an observable implicit flow whenever m0(h) = tt, otherwise the flow is
hidden.

l := ff ; if h then {l := tt} else {skip} ; out(L, l)

The security condition considers an attacker that only observes the instruc-
tions (both control-flow and explicit statements) executed by the concrete pro-
gram execution, otherwise it ignores (i.e. replaces with skip) any instruction
occurring in the untaken branches. To capture these flows, we extend the small-
step operational semantics to extract the program code observable by this
attacker, as shown in Fig. 6.

The rules for assignment, input, output and sequential composition are the
same as for weak secrecy. Rules for conditionals propagate the observable condi-
tional into the context C to keep track of the executed branch and replace the
untaken branch with skip. The new hole [] ensures that the commands under
the executed branch are properly modified by the new context. We unfold loop
statements into conditionals and handle them similarly. Sequential composition
ensures that the sequence of observable statements is propagated correctly. When
rule O-SeqEmpty is applied, the context C does not contain any holes, hence
a new hole is introduced to properly handle the remaining command P2.

Definition 5 (Observable secrecy). A program P satisfies observable secrecy
for initial state (E ,m), written OS �E,m P , iff whenever E � 〈P,m, []〉 τ−→∗ E ′ �
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Fig. 6. Extraction rules for observable secrecy

〈P ′,m′, C〉, we have Sec |= C[skip]. A program P satisfies observable secrecy,
written OS � P , iff OS �E,m P for all states (E ,m).

For the above example, the operational semantics rules for observable secrecy
yield the programs:

l := ff ; if h then {l := tt} else {skip} ; out(L, l)
l := ff ; if h then {skip} else {skip} ; out(L, l)

The first program does not satisfy secrecy (Definition 3), while the second
program does. Therefore the original program does not satisfy observable secrecy.

Full Secrecy. Full secrecy is a security condition that models secrecy with
respect to an attacker that has a complete knowledge of program code and there-
fore can learn information through explicit and (observable or hidden) implicit
flows. This corresponds to progress-insensitive noninterference (Definition 3).

Definition 6 (Full secrecy). A program P satisfies full secrecy for initial state
(E ,m), written FS �E,m P , iff whenever E � 〈P,m〉 τ−→∗ E ′ � 〈P ′,m′〉, we have
Sec |= P . A program P satisfies full secrecy, written FS � P , iff FS �E,m P for
all states (E ,m).

3 Enforcement Framework

We employ variants of flow-sensitive dynamic monitors (trackers) to enforce the
security conditions presented in the last section. Compared to existing work
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(cf. Sect. 6), we use semantic security conditions, weak secrecy and observ-
able secrecy, to justify soundness of weak tracking and observable tracking
mechanisms.

Figure 7 presents the instrumented semantics which is parametric on the
security labels, transfer functions and constraints. By instantiating each of the
parameters (Table 1), we show how the semantics implements sound dynamic
trackers for weak secrecy (Theorem 1), observable secrecy (Theorem 2) and full
secrecy (Theorem 3). All proofs are reported in the full version [14].

Fig. 7. Instrumented semantics

The instrumented semantics assumes a bounded lattice (L,�,�,�) and an
initial security environment Γ , as defined in Sect. 2.1. We use a program counter
stack of security levels pc to keep track of the security context, i.e. the security
level of conditional and loop expressions, at a given execution point. We write
� :: pc to denote a stack of labels, where the label � is its top element. Abusing
notation, we also write pc to represent the upper bound on the security levels
of the stack elements. The monitored semantics introduces the special instruc-
tion end to remember the join points in the control flow and update the pc
stack accordingly. Instrumented configurations Γ, pc, E � 〈P,m〉 extend original
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configurations with the security environment Γ and security context stack pc.
We write Γ, pc, E � 〈c,m〉 α−→→ Γ ′, pc′, E ′ � 〈c′,m′〉 to denote that an instru-
mented configuration Γ, pc, E � 〈c,m〉 evaluates in one step to instrumented
configuration Γ ′, pc′, E ′ � 〈c′,m′〉, producing observations α ∈ Obs. We write
−→→∗ or τ−→→∗ to denote the reflexive and transitive closure of α−→→. We write Γ (e)
for �x∈V ars(e)Γ (x) and E for abnormal termination.

In what follows, we use the constraints in Table 1 to instantiate the rules in
Fig. 7, and present a family of dynamic monitors for weak tracking (known as
taint tracking), observable tracking, and full tracking (known as No-Sensitive
Upgrade [5]). The monitors implement the failstop strategy and terminate the
program abnormally (cf. rules for E) whenever a potentially insecure statement is
executed. Note that abnormal termination does not produce any observable event
and it is treated as a progress channel, similarly to nontermination. We write
I �E,m P for an execution of a monitored program P from initial state (E ,m),
initial security environment Γ and initial stack ⊥, where I ∈ {WS,OS, FS}.

Monitored executions may change the semantics of the original program by
collapsing insecure executions into abnormal termination. To account for the
monitored semantics, we instantiate the security conditions from Sect. 2.4 with
the semantics of instrumented executions and, abusing notation, write I |=E,m P
to refer to an execution of P under the instrumented semantics. We then show
that any program executed under an instrumented execution, i.e., I �E,m P ,
satisfies the security condition, i.e., I |=E,m P .

Weak Tracking. Weak tracking is a dynamic mechanism that prevents explicit
flows from sources of higher security levels to sinks of lower security levels. Weak
tracking allows leaks through implicit flows. The second column in Table 1 gives
the set of constraints that a typical taint analysis would implement for our
language.

Table 1. Constraints for Monitors in Fig. 7

Rule Weak Observable Full

φasgT tt tt pc � Γ (x)

φasgF ff ff pc �� Γ (x)

φoutT Γ (e) � � Γ (e) � pc � � Γ (e) � pc � �

φoutF Γ (e) �� � Γ (e) �� pc � � Γ (e) �� pc � �

φinT tt pc � � pc � �

φinF ff pc �� � pc �� �

φend tt pc = � :: pc′ pc = � :: pc′

φif/φwh tt �′ = pc � Γ (e)
pc′ = �′ :: pc

�′ = pc�Γ (e)
pc′ = �′ :: pc

Since the analysis ignores all
implicit flows, the pc stack is
redundant and we never update
it during the monitor execu-
tion. For the same reason, we
apply no side conditions to the
rules for conditionals and loops.
Rule S-Assign propagates the
security level of the expression
on the right-hand side to the
variable on the left-hand side
to track potential explicit flows,
while rule S-Assign-F never applies. Rule S-Out ensures that only direct flows
from lower levels affect a given output level. If the constraint is not satisfied, the
program terminates abnormally (cf. S-Out-F).

To illustrate the weak tracking monitor, consider the program from Fig. 3.
Initially, the security environment Γ assigns the label L to variables l1 and l2, and
the label H to variable h. After the execution of line (1), the security environment
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Γ ′ does not change since pc = L and, Γ (n) = L for all n ∈ Val , therefore
Γ ′(l1) = Γ ′(l2) = L�Γ (ff) = L (cf. rule S-Assign). Moreover, the lines (2) and
(3) do not modify Γ ′ (cf. rules S-IfTrue and S-IfFalse). Finally, the output
in line (4) is allowed since Γ (l2) = L � L (cf. rule S-Out). In fact, the program
satisfies weak secrecy (Definition 4), and it is accepted by weak tracking.

We show that any program that is executed under the weak tracking monitor,
i.e. I = WS, satisfies weak secrecy.

Theorem 1. WS �E,m P ⇒ WS �E,m P

Observable Tracking. Observable tracking is a dynamic security mechanism
that accounts for explicit flows and observable implicit flows. Observable implicit
flows occur whenever a low security variable that is updated in a high security
context is later output to a low security channel. The condition justifies the secu-
rity of a program with respect to an attacker that only knows the control-flow
path of the current execution. Observable tracking has the appealing property of
only propagating the security label of variables in a concrete program execution,
without analyzing variables modified in the untaken branches. This is remark-
able as it sidesteps the need for convoluted static analysis otherwise required
for languages with dynamic features such as reflection. Moreover, as we discuss
later, observable tracking is more permissive than existing enforcement mech-
anisms such as NSU [5] or Permissive Upgrade [6]. Permissiveness is achieved
at the expense of enforcing a different security condition, i.e. observable secrecy,
instead of full secrecy. For trusted code, observable secrecy might be sufficient to
determine unintentional security bugs. Otherwise, for malicious code, we present
a transformation (Sect. 4) that enables observable tracking to enforce full secrecy,
yet being more permissive than full tracking.

The instrumented semantics for observable tracking (cf. third column in
Table 1) strengthens the constraints for weak tracking by: (i) introducing the
pc stack to properly track changes of security labels for variables updated in a
high context; (ii) disallowing input from low security channels in a high context;
(iii) and constraining the output on a low channel by disallowing low expressions
that depend on a high context.

Consider again the program in Fig. 3 under the instrumented semantics for
observable tracking. After executing the assignments in (1), the variables l1 and
l2 have security level L. If h is tt, the variable l1 has security level H after the
first conditional in (2) (cf. S-IfTrue rule). As a result, the guard of the second
conditional in (3) is false, and we execute the else branch. The security level of
the variable l2 remains L, therefore the output on the L channel in (4) is allowed
(cf. S-Out rule). Otherwise, if h is ff, then the else branch is executed and l1
has security level L. The second conditional does not change the security level of
l2, although the then branch is executed. In fact, the guard only depends on L
variables, i.e. l1, hence security level of l2 remains L and the subsequent output
is allowed. The program, in fact, satisfies observable secrecy.

We prove that any program that is executed under the observable tracking
monitor, i.e. I = OS, satisfies observable secrecy.
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Theorem 2. OS �E,m P ⇒ OS �E,m P

Full Tracking. Full tracking, best known as No-Sensitive Upgrade [5,58], pre-
vents both explicit and (observable or hidden) implicit flows from sources of
higher security levels to sinks of lower security levels. This is achieved by dis-
allowing changes of variables’ security labels in high contexts (as opposed to
the strategy followed by observable tracking). While sound for full secrecy, this
strategy incorrectly terminates any program that updates a low security variable
in a high security context, even if that variable is never output to low channel.
This is unfortunate as it rejects secure programs that only use sensitive data for
internal computations without ever sending them on low channels.

The semantics for full tracking adds additional constraints to the rules for
observable tracking (cf. fourth column in Table 1). In particular, rule S-Assign
only allows low assignments in low security contexts, i.e. whenever pc � Γ (x).

Consider again the program in Fig. 3 and the semantics for full tracking. As
before, initially Γ (l1) = Γ (l2) = L, and Γ (h) = H. If the value of h is true,
the then branch of the first conditional is executed, and the program is stopped
because of a low assignment in a high context. This is a sound behavior of full
tracking as the original program does not satisfy full secrecy. Unfortunately,
full tracking will also stop any secure programs that contain the conditional
statement in (2). For example, if we replace the output statement in (4) with
out(L, 1) or out(H, l2), the resulting program clearly satisfies full secrecy. How-
ever, whenever h is true, full tracking will incorrectly stop the program.

We show that any program that is executed under the full tracking monitor,
i.e. I = FS, satisfies full secrecy.

Theorem 3. FS �E,m P ⇒ FS �E,m P

4 Staged Information-Flow Control

Two main factors hinder the adoption of dynamic information-flow control in
practice: challenging implementation and permissiveness. To properly update
the program counter stack at runtime, observable and full tracking require the
knowledge of the program’s control-flow graph. This requirement is unrealistic for
unstructured, heavily optimized or obfuscated code, such as the code delivered
to end users (cf. Sect. 1). In contrast, weak tracking disregards the control-flow
graph and only considers explicit statements. As a result, the enforcement is
more permissive and easier to implement.

In the full version [14], we present a staged analysis that first applies light-
weight program transformations to convert implicit flows into explicit flows,
thus delegating the task of enforcing observable and full secrecy to a weak
tracker. Concretely, we inline the program counter stack into the source code
in a semantics-preserving manner by introducing fake dependencies that cause a
weak tracker to capture potential observable and/or hidden implicit flows. The
transformation is completely transparent to the underlying security policy, which
makes it suitable for the scenarios envisioned in Sect. 1.
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Table 2. Permissiveness

Program Γ (h) = H, Γ (l) = Γ (k) = L
and h = tt

Weak Full PU OT

P0 l := tt ; if h then {l := h} ; out(L, l) − − − −
P1 if h then l := tt + − + +

P2 if h then l := tt ; if l then skip + − − +

P3 l := tt ; k := tt ; if h then {l := ff} ;
if l then {k := ff} ; out(L, 1)

+ − − +

P4 if h then out(L, 1) else out(L, 1) + − − −
P5 l := tt ; k := tt ; if h then {l := ff} ;

if l then {k := ff} ; out(L, k)
+ ✗ ✗ +

Soundness vs Permissiveness. We use the examples in Table 2 to illustrate
soundness and permissiveness for existing dynamic trackers.

Fig. 8. Soundness vs Permissiveness

Except for the program P5,
all programs are secure for full
secrecy. We summarize the rela-
tions between the security conditions
(solid ovals) and enforcement mech-
anisms (dashed ovals) in Fig. 8. The
security conditions are incompara-
ble, as shown by the programs P0, P4

and P5 from Table 2. Moreover, there
is a strict inclusion between the set
of secure programs accepted by the
trackers (cf. Table 2).

Theorem 4. FT �E,m P ⇒ OT �E,m P ⇒ WT �E,m P

Table 2 illustrates permissiveness for the state-of-the-art purely dynamic
trackers. All trackers account for explicit flows, however, as illustrated by pro-
gram P0, they can be imprecise (cf. “−”) due to approximation. P1 will be
rejected by full tracking, i.e. NSU [5], while program P2 will be rejected by Per-
missive Upgrade [6], although none of them performs any outputs. P3 encodes
the value of the high boolean variable h into the final value of variable k through
hidden implicit flows, however, k is never output. Observable tracking (column
6 and 7) correctly accepts the program, thus decreasing the number of false pos-
itives that the other trackers would otherwise report. P0 and P4 will be rejected
by most trackers due to over-approximation. Arguably, program patterns like P0

and P4 are unlikely to be used, and, for trusted code, they can be fixed, e.g. by
code transformations.

These considerations make a good case for using observable tracking as a
permissive purely dynamic mechanism for security testing. However, programs
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may still leak through hidden implicit flows. The insecure program P5 will be
correctly rejected by NSU and Permissive Upgrade (cf. “✗”) and, it will be
correctly accepted by observable tracking.

5 Implementation and Evaluation

Implementation. Our tool is a prototype built on top of the Soot frame-
work [54] and it uses an intermediate bytecode language, Jimple [54], to imple-
ment the static transformations presented in Sect. 3. We provide a description of
Jimple and discuss advanced language features in the full version [14]. We imple-
mented the code transformation for Android applications. The instrumented
applications are then run using TaintDroid [24]. The code of the implementa-
tion is available online [14]. Overall, the implementation of static transforma-
tions proved to be straight-forward, due to the use of Jimple as an intermediate
language and the modularity of the transformations. This indicates that this
approach is indeed lightweight compared to elaborate information-flow trackers.

Use Case: Pedometer. To evaluate our approach, we apply the presented
implementation to an open-source step counting application [41] from the popu-
lar F-Droid repository. By default, the application performs no network output.
To check if illegal flows are properly detected, we add network communication in
a number of scenarios. We give condensed forms of these examples in this section
to abstract from Android-specific issues regarding sensor queries; we refer the
reader to the implementation’s source code for the full examples [14].

Usage statistics: The step counting application may want to report usage infor-
mation to the developer. However, a user may not want the actual step count
to be reported to the developer. By tracking observable implicit flows, reporting
usage information in a low context does not generate a false positive. However,
disclosing the actual step count or reporting that the app was used on certain
day in a high context will yield an error (Fig. 9).

Fig. 9. Step counter example

Declassifying average pace: The appli-
cation may additionally send the aver-
age pace to a server to provide com-
parisons with other users. However,
the actual step count should still
not be disclosed. We implement a
where-style declassification policy as
described in [14].

Location information: To show the user more detailed information, we also
extended the application with rudimentary location tracking to allow for display-
ing information such as the number of steps per city. As location information is
sensitive, our transformation ensures that nothing about the user’s coordinates
is leaked through explicit or observable implicit flows. We then modified the
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program to leak location information through hidden implicit flows as in Fig. 3.
Again, our cross-copying transformation ensured that such leaks are prevented.

Use Case: JSFlow. Existing information-flow tools, such as JSFlow [30], can
be easily modified to enforce observable secrecy instead of noninterference. For
the latest release of JSFlow, version 1.1, it was sufficient to comment out as few
as 4 lines of code to change to enforcing observable secrecy.

Work on value sensitivity in the context of JSFlow [31] points out precision
issues due to the No-Sensitive Upgrade policy, as in examples like (x := 1 ;
if h then x := 2 else skip ; out(L, 1)). A standard information-flow monitor
such as JSFlow would stop this program to avoid upgrading the label of x in a
secret context, even though x is never output later in the program. Modifying
JSFlow to enforce observable secrecy however accepts the program.

6 Related Work

Referring to the surveys on language-based information-flow security [44] and
taint tracking [47], we only discuss the most closely related work.

Information-Flow Policies. Contrasting noninterference [28], Volpano [57]
introduces weak secrecy, a security condition for taint tracking. Schoepe et al.
generalize weak secrecy by explicit secrecy [45] and enforce it by faceted val-
ues [46]. Our work explores observable secrecy as the middle ground. Similarly
to weak secrecy and noninterference, observable secrecy is not a trace property.

Several authors study knowledge-based conditions [3,4,9,10]. We explore the
attacker’s view of program code to discriminate polices, relating in particular
to the forgetful attackers by Askarov and Chong [2], though the exact relation
is subject to further investigation. While implicit flows in the wild are impor-
tant [33,42], they can also appear in trusted code [34,35]. By tracking explicit
and observable implicit flows, we raise the security bar wrt. taint tracking.

Staged Analysis. Our work takes inspiration from Beringer [15], who pro-
vides formal arguments of using taint tracking to enforce noninterference policies.
Beringer also leverages the cross copying technique to consider hidden implicit
flows. By contrast, we justify soundness of the enforcement mechanism in terms
of semantic conditions like weak secrecy with respect to uninstrumented seman-
tics. On the other hand, Beringer introduces a notion of path tracking to account
for termination-sensitive noninterference, and supports the theory (for an imper-
ative language without I/O) by a formalization in Coq. Our work distinguishes
between malicious and trusted code, providing security conditions and enforce-
ment mechanisms for both settings (including a prototype implementation).

Rifle [53] treats implicit flows by cross-copying program instrumentation and
taint tracking, with separate taint registers for explicit and implicit flows. The
focus is on efficiency, as soundness is only justified informally. Like Beringer’s,
our work gives formal and practical evidence for the usefulness of Rifle’s ideas.
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Other works leverage the cross-copying technique to enforce noninterference
policies. Le Guernic [36] uses cross-copying in a hybrid monitor for noninterfer-
ence, and refers to observable and hidden implicit flows as implicit and explicit
indirect flows, respectively. Chugh et al. [19] present a hybrid approach to han-
dling JavaScript code. Their approach first computes statically a dynamic resid-
ual, which is checked at runtime in a second stage. For trusted code, Kang et
al. [34] study targeted (called culprit) implicit flows. Bao et at. [11] identify strict
control dependences and evaluate their effectiveness for taint tracking empiri-
cally. These works illuminate the benefits of observable implicit flows.

Dynamic Enforcement and Inlining. Fenton [26] studies purely dynamic
information-flow monitors. Austin and Flanagan [5] leverage No-Sensitive
Upgrade [58] to enforce noninterference for JavaScript and propose Permissive
Upgrade [6] to improve precision. We show that NSU can be too restrictive, and
propose solutions to improve precision for malicious and trusted code. Chudnov
and Naumann [18] and Magazinius et al. [37] propose information-flow monitor
inlining, integrating the NSU strategy into program’s code. Bielova and Rezk [17]
survey recent work in (information-flow) monitor inlining. Our transformations
can be seen as lightweight inlining of dynamic monitors, for (observable and/or
hidden) implicit flows. Russo and Sabelfeld [43] discuss trade-offs between static
and dynamic flow-sensitive analysis. We leverage their flow-sensitive monitor.

Secure multi-execution [22] and faceted values [7] enforce noninterference:
programs are executed as many times as there are security levels, with outputs
at each level computed by the respective runs. Barthe et al. [12] study pro-
gram transformations to implement secure multi-execution. These techniques
are secure by construction and provide high precision. However, they require
synchronization between computations at different security levels, and face chal-
lenges for languages with side-effects and I/O. Also, they may modify the seman-
tics and introduce crashes, thus making it difficult to detect attacks. By con-
trast, we focus on failstop monitoring, trading full permissiveness to avoids such
pitfalls.

Static and Hybrid Enforcement. Volpano et al. [56] formalize the soundness
of Dennings’ static analysis [21] with respect to noninterference by a security
type system, extended by further work with advanced features [44]. Hunt and
Sands [32] present flow-sensitive security types. Our work leverages dynamic
analysis to enforce similar policies. Other analysis for information flow include
program logics [10,13], model checking [8,23], abstract interpretations [27] and
theorem proving [20,40]. While more precise than security type systems, these
approaches may face several challenges with scalability.

Hybrid enforcement combines static and dynamic analysis. Le Guernic [36]
proposes hybrid flow-sensitive mechanisms supporting for sequential and con-
current languages. Venkatakrishnan et al. [55] present a hybrid monitor for
a language with procedures and show that it enforces noninterference. Shroff
et al. [48] present a monitor with dynamic dependency analysis for a language
with heap. Tripp et al. [52] study hybrid security for JavaScript code by com-
bining static analysis and dynamic partial evaluation. Moore and Chong [39]
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propose two optimizations of hybrid monitors for efficiency: selective tracking
of variable security levels and memory abstractions for languages with dynamic
memory. Hybrid approaches use static analysis to approximate computational
effects for program paths that are not visited by a given execution. This can be
challenging for languages with complex features, e.g. reflection, and unstructured
control flow. We strike the balance by performing static analysis for implicit flows
(basically boolean expressions) and delegating the resolution of complex features
to a dynamic taint tracker.

Mobile App Security. There exists a large body of works on information-flow
analysis in the mobile app domain. The majority of these analysis only accounts
for explicit flows. This is due to the presence of complex language features and
highly dynamic lifecycles, however, for potentially malicious and trusted code,
implicit flows are important to address. Our proposal in Fig. 1 enables existing
work to provide stronger guarantees in a flexible manner. TaintDroid [24] is a
dynamic taint tracker developed to capture privacy violations in Android apps.
We use TaintDroid as dynamic component in our implementation. Most static
analysis works certify security with respect to weak secrecy [1,29]. Despite the
great progress in improving precision, the false positive rate remains high [29].

Ernst et al. [25] propose collaborative verification of information-flow require-
ments for a high-integrity app store. Developers and the app store collaborate
to reduce the overall verification cost. Concretely, developers provide the source
code with information-flow specifications (security types), while the app store
verifies their correctness. Our model is complementary and, by contrast, user-
centric, allowing for more flexible policies and reducing the developers’ burden.

7 Conclusion

We have presented a framework of information-flow trackers, allowing us to relate
a range of enforcement from taint tracking to information-flow control. We have
explored the middle ground by distinguishing malicious and trusted code and
considering trade-offs between soundness and permissiveness. We have deployed
the framework in a staged fashion by combining lightweight static analysis with
dynamic taint tracking, enabling us to envision a secure app store architecture.
We have experimented with the approach by a prototype implementation.

Future work includes dynamic security policies and case studies from the
F-Droid repository. While the current framework allows for parametric policies
on users’ side, we conjecture that the static transformations, being transparent
to the underlying policy, can be extended to handle rich dynamic policies.

Acknowledgments. This work was partly funded by the European Community under
the ProSecuToR project and the Swedish research agency VR.
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Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46–67. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49635-0 3

18. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: CSF (2010)
19. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for

javascript. In: PLDI (2009)
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