
Source Code Authorship Attribution Using Long
Short-Term Memory Based Networks

Bander Alsulami1(B), Edwin Dauber1(B), Richard Harang2,
Spiros Mancoridis1, and Rachel Greenstadt1

1 Drexel University, Philadelphia, USA
{bma48,egd34,spiros,rachel.a.greenstadt}@drexel.edu

2 Sophos, Abingdon, UK
richard.harang@sophos.com

Abstract. Machine learning approaches to source code authorship attri-
bution attempt to find statistical regularities in human-generated source
code that can identify the author or authors of that code. This has appli-
cations in plagiarism detection, intellectual property infringement, and
post-incident forensics in computer security. The introduction of fea-
tures derived from the Abstract Syntax Tree (AST) of source code has
recently set new benchmarks in this area, significantly improving over
previous work that relied on easily obfuscatable lexical and format fea-
tures of program source code. However, these AST-based approaches rely
on hand-constructed features derived from such trees, and often include
ancillary information such as function and variable names that may be
obfuscated or manipulated.

In this work, we provide novel contributions to AST-based source code
authorship attribution using deep neural networks. We implement Long
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Mem-
ory (BiLSTM) models to automatically extract relevant features from
the AST representation of programmers’ source code. We show that our
models can automatically learn efficient representations of AST-based
features without needing hand-constructed ancillary information used by
previous methods. Our empirical study on multiple datasets with differ-
ent programming languages shows that our proposed approach achieves
the state-of-the-art performance for source code authorship attribution
on AST-based features, despite not leveraging information that was pre-
viously thought to be required for high-confidence classification.

Keywords: Source code authorship attribution · Code stylometry ·
Long short-term memory · Abstract syntax tree · Security · Privacy

1 Introduction

Source code authorship attribution has demonstrated to be a valuable instru-
ment in multiple domains. In legal cases, lawyers often need to dispute source
code partnership conflicts and intellectual property infringement [6,28,57].
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 65–82, 2017.
DOI: 10.1007/978-3-319-66402-6 6

66 B. Alsulami et al.

In educational institutions, detecting plagiarisms among students’ submitted
assignments is a growing interest [14,49]. In software engineering, source code
authorship attribution is used to study software evolution through dynamic
updates [26,36]. Source code stylometry is also used for code clone detection,
automatic re-factorization, complexity measurement, and code design patterns
enforcement [1,4,11,24,27,55]. In computer security, source code authorship
attribution can be used to identify malware authors in post-incident forensic
analysis [31,32]. Research has shown that syntactical features from the original
source code can be recovered from decompiling the binary executable files [8].
However, building a profile for malware authors is still a challenging problem
due to the lack of ground truth code samples. In the privacy domain, the abil-
ity to identify the author of anonymous code presents a privacy threat to some
developers. Programmers might prefer to maintain their anonymity for certain
security projects for political and safety reasons [7,8]. Even small contributions to
public source code repositories can be used to identify the anonymous program-
mers [12]. Recent advances in source code stylometry comes from hand-crafted
AST-based features.

This paper presents our contributions to source code authorship attribution
using AST-based features. We demonstrate that our LSTM-based neural net-
work models, that require only the structural syntactic features of the AST as
input, learns improved features that substantially improve upon the performance
of manually constructed ones. We measure the generalization of our models on
different datasets with different programming languages. We also show the clas-
sification accuracy and performance scalability of our models on a large number
of authors. The remainder of this paper is organized as follows: Sect. 2 describes
the related work that is relevant to source code authorship attribution. Section 3
describes common obfuscation techniques used in source code. Section 4 describe
background information about the AST features and the neural network models
used by our models. The model architecture and the algorithm used for learning
the feature of AST are described in Sect. 5. The experimental setup, training and
testing data, and the evaluation of the results are described in Sects. 6 and 7.
Section 8 summarizes our conclusions and potential future work.

2 Related Work

Source code authorship attribution is inspired by the classic literature author-
ship attribution problem. While natural languages have more flexible grammat-
ical rules than programming languages, programmers still have a large degree of
flexibility to reveal their distinguishing styles in the code they write. For exam-
ple, experienced programmers exhibit different coding styles than exhibited by
novice programmers [7]. Early work uses plain textual features of the source
code to identify the authors of the source code. A popular feature extraction
technique is using N-grams to extract the frequency of sequences of n-characters
from the source code. N-gram techniques approach source code authorship attri-
bution as a traditional text classification problem with the source code files as

Source Code Authorship Attribution 67

text documents [15]. Other works use layout and format features of the source
code as metrics to improve the accuracy of the authors’ classification. Layout
features include the length of a line of code, or the number of spaces in a line of
code, and the frequency of characters (underscores, semicolons, and commas) in
a line of code. Researchers often measure the statistical distributions, frequen-
cies, and average measurements of the layout features [14]. For instance, some
researchers use the statistical distribution of the length of lines, number of lead-
ing spaces, underscores per line, semicolons, commas per line, and words per line
as discriminative features. They use Shannon’s entropy to highlight important
features, and a probabilistic Bayes classifier to identify the authors [28,41].

Latter work expands on source code features to lexical and style features
to avoid the limitation of format features. Lexical features are based on the
tokens of the source code for a particular programming language grammar. A
token can be an identifier, function, class, keyword, or a language-specific symbol
such as a bracket. The naming convention for classes, functions, and identifiers
can also be used as lexical features. The naming convention feature has shown
success in authorship identification [7,14,29,52]. For instance, researchers use
the average length of variable names, the number of variables, the number of for
loop statements and the total number of all loop statements in a feature set, and
use C4.5 decision trees to detect outsourced student programming assignments
[14]. Other work combines 6-grams of source code tokens such as keywords and
operators with multiple similarity measurement methods to create a profile for
students based on their submitted C/C++/Java source code files [49].

Recently, syntactic features, have shown significant success in source code
authorship attribution [7,29,52]. The main syntax feature derived from source
code is the Abstract Syntax Tree (AST). Syntactic features avoid many defects
related to format and style features. For instance, ASTs capture the structural
features of the source code regardless of the source code format or the devel-
opment environment used for the writing of the code. AST-based features have
been used to detect partial clones in C source code programs [29]. In that paper,
the authors extract an AST tree for each program and then create a hash code for
each subtree. Subtrees with similar hash values are grouped together to reduce
the storage requirement and improve the speed of the code clone detection.

Previous studies combine different types of features to improve the accuracy
of source code authorship attribution. Some early works combine format and
lexical features and implement a feature selection technique to remove the least
significant features [14,49]. Recent works use a large variety of format, lexical,
and syntactic features, and use an Information gain and Random Forest ensem-
ble to select the most important features to identify the authors of a source
code file [7,52]. Because of the large number of features, the feature selection
process becomes critical in the model’s performance for source code authorship
attribution. Our work is different from these efforts primarily in that we focus
on identifying the authors of source code using only the abstract structure of the
AST. We ignore the format and lexical features of source code. We also discard
the attributes in the AST nodes such as identifiers, numeric constants, string

68 B. Alsulami et al.

literals, and keywords. We avoid the hand-tuned feature engineering process by
building deep neural network models that automatically learn the efficient fea-
ture representations of the AST. By using only AST features, we aim to build
source code authorship attribution models that are resilient against source code
obfuscation techniques, and are language-independent so that they can be auto-
matically extended to programming language that supports AST.

3 Source Code Obfuscation

Obfuscation is the process of obscuring source code to decrease a human’s abil-
ity to understand it. Programmers may use obfuscation to conceal parts of its
functionality from a human or computer analysis. For instance, malware authors
use obfuscation techniques to hide the malicious behavior of their programs and
avoid detection from static malware detection [3,35]. Obfuscation also decreases
the usability of reverse-engineering binary executable files. Commercial software
might use obfuscation to increase the difficulty of reverse engineering their soft-
ware and protect their software licensing [43].

Trivial source code obfuscation techniques can easily obscure the format fea-
tures of the source code. For instance, they may remove/add random text to com-
ment sections. They may also randomly eliminate the indentations and spaces
in the source code files. Modern IDEs format source code file content based on
particular formatting conventions. This results in a consistent coding style across
all source code written using the same development tools. This reduces the con-
fidence of using format features to identify the authors of source code. Advanced
obfuscation tools target more sophisticated features such as lexical and style
features of the source code. For example, variable, function, and class names
can be changed to arbitrary random names that are hard to be interpreted by a
human. Stunnix1, an obfuscation tool for programs written in C/C++ languages,
uses a cryptographic hash function to obfuscate identifier names, a hexadecimal
encoding function to obfuscate strings literals, a random generation function to
obfuscate source code file names. ProGuard2, an obfuscation tool for Java, uses
random names for classes, methods, identifiers, configuration files, and libraries.

Despite efforts to harden program source code from static analysis using vari-
ous obfuscation techniques, the semantics of the program remain the same. That
is, the structure of the AST and the control flow of the program remain largely
intact. Control flow obfuscation techniques work on low-level machine code and
incur performance and storage overhead [2]. This leads developers to use triv-
ial obfuscation techniques without affecting the performance of their programs.
Therefore, inferring a programmer’s coding styles using structural features of
an AST is more robust and resilient to most automatic obfuscation techniques.
Obfuscating the syntactic features of the source code of a high-level programming
language while preserving the program’s behavior requires code refactorization.
Fully automated code refactorization suffers from reliability issues which makes
1 http://stunnix.com/prod/cxxo/.
2 https://www.guardsquare.com/en/proguard.

http://stunnix.com/prod/cxxo/
https://www.guardsquare.com/en/proguard

Source Code Authorship Attribution 69

it inefficient and unfeasible in most cases [9,33]. Code refactorization requires
human interference to guarantee the correctness of the refactorization process.

4 Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a tree that represents the syntactic structure
of a program’s source code written in a programming language. An AST is an
abstract representation of the source code that omits information such as com-
ments, special characters, and string delimiters. Each AST node has a specific
type and might hold auxiliary information about the source code such as an
identifier’s name and type, string literals, and numeric values. Nodes in an AST
can have multiple children that represent the building blocks of a program.

An AST is constructed by the compiler in the early stages of the compi-
lation process. It represents information about the source code that is needed
for later stages such as semantic analysis and code generation. Therefore, an
AST contains no information about the format of the source code. Integrated
Development Environments (IDEs) and source code editors enforce conventional
formatting and naming conventions to improve the readability of source code.
In the context of authorship identification, code formatting tools might conta-
minate and negatively affect the source code formatting features. In contrast,
ASTs are less prone to the influence of development tools and can capture the
programmer’s coding style directly. Therefore, it is more reliable for authorship
identification techniques to analyze a program using its AST rather than its
source code.

Figures 1 and 2 show a code example in Python and its corresponding AST.
Module represents the root node of the AST and has two child nodes: Function-
Def and Expr. Each node in the AST has a label that specifies a code block in
the source code. Some AST nodes such as Name and Num have extra attributes
(square) and a numeric constant (2), respectively. AST nodes often have a vari-
able number of children depending on their type and context in the source code.
For instance, Call nodes, in this example, have two children because function
square is declared with only one argument. However, in other contexts, Call can
have more than two child nodes when the function is declared with more than
one parameter.

AST is tree-structured data that requires models that naturally operates on
trees to extract useful features of the AST representation. Feature extraction
techniques such as n-grams are limited and lose information over long-distance
dependencies [42,58]. While a tree-like variant of the Long Short-Term Memory
(LSTM) such as Tree-Structured Long Short-Term Memory Networks (Tree-
LSTM) and Long Short-Term Memory Over Recursive Structures (S-LSTM)
seem intuitive, the nature of ASTs, which often have a large number of child
nodes in each subtree, presents a challenge for Tree-LSTM and S-LSTM imple-
mentations [47,59]. Tree variant networks have shown to be successful in mod-
eling tree structure data with fixed number of children [30,47,59]. Long Short-
Term Memory (LSTM) networks are a unique architecture of Recurrent Neural

70 B. Alsulami et al.

1 de f square (arg1) :
2 re turn arg1 ∗∗

2
3

4 square (square (10))

Fig. 1. Python code example

Module

FunctionDef(square)

Arguments

Arg(arg1)

Return

BinOp

Name(arg1)

Load

Pow Num(2)

Expr

Call

Name(square)

Load

Call

Name(square)

Load

Num(10)

Fig. 2. Abstract Syntax Tree for Python code example

Networks (RNN) [16,20,25]. An LSTM network has an internal state that allows
it to learn the dynamic temporal behavior of long sequences over time. LSTM-
based networks differ in architecture based on gate connections and informa-
tion propagation. One successful architecture used for sequence classifications is
the Bidirectional LSTM (BiLSTM). In contrast to the standard unidirectional
LSTM, BiLSTM processes sequences in two different directions: forward and
backward. Therefore, at each time step, the BiLSTM network has access to the
past and future information.

5 Model Architecture

Our models traverse an AST using a Depth First Search algorithm. The model
starts from the root node (the top node) of the AST and recursively examines
all its inner nodes (nodes that have children) until it reaches a leaf node (a
node with no child). An Inner node along with its children nodes is called a
subtree. Therefore, an AST can be viewed as a root node with multiple subtrees.
The model passes the leaf node to the Embedding Layer to generate a vector
representation of that node. This process continues recursively for all the nodes in
the AST. When all the vector representations of a subtree’s nodes are retrieved,
the model passes the subtree vectors to the Subtree Layer. The Subtree Layer
encodes the subtree and returns a vector representation of that subtree. The
model continues to encode each subtree as a vector, eventually, the AST is
reduced into a final state vector representation that is passed into the final layer
of the model (Softmax Layer). The Softmax Layer returns the predicted author
for the AST. Algorithm1 shows how to integrate the three layers in our models
to learn the structural syntactic features of ASTs. The following subsections
explain each layer’s role in our model.

Source Code Authorship Attribution 71

Algorithm 1. The Algorithm to learn the structural syntactic features of an
AST.
1: procedure DFS(ast)
2: count ← Number of children in ast
3: if count = 0 then
4: return EmbeddingLayer(ast)
5: end if
6: treevec ← EmptyTree()
7: for i ← 1, count do
8: treevec.child[i] ← DFS(ast.child[i])
9: end for

10: treevec.root ← EmbeddingLayer(ast.root)
11: return SubtreeLayer(treevec)
12: end procedure

5.1 Embedding Layer

The Embedding Layer maps individual AST nodes to their corresponding embed-
ding vector representations. An embedding vector is a continuous fixed-length
real-valued vector that can be trained with other parameters in the model. The
number of embedding vectors defined in the model is equivalent to the num-
ber of unique nodes in the AST. The layer uses the node label to look up
its corresponding embedding vector. Embedding representations have shown to
improve the generalization of neural networks to multiple complex learning tasks
[34,39,44,51].

5.2 Subtree Layer

The Subtree Layer encodes each subtree into a single vector representation.
When the layer receives a subtree and its vector representation, the layer flattens
the subtree into a sequence. That is, the layer processes the subtree sequentially
in a pre-order fashion. Therefore, the root of the subtree is the first node in
the sequence and the rest of the child nodes in the subtree are placed in the
sequence from left to right. Subtree Layer can be implemented with any RNN
architecture. In our work, we use LSTM and BiLSTM architectures and name
them Subtree LSTM and Subtree BiLSTM, respectively.

Subtree LSTM processes the sequence of vector representations in a forward
direction. The last hidden state in the sequence is used as a vector representa-
tion of the subtree. Subtree LSTM applies dropout on that hidden state, and
propagates the results to the higher subtree. Subtree LSTM also resets its mem-
ory state before processing the next sequence. In the case of multi-layer Subtree
LSTMs, the lower layer passes the hidden state vector of each time step, after
applying dropout, as an input to the higher layer.

72 B. Alsulami et al.

(a) LSTM

(b) BiLSTM

Fig. 3. An example of how the Subtree LSTM and the Subtree BiLSTM layers encode
an AST.

Subtree BiLSTM processes subtrees as two sequences in two different direc-
tions. Similar to Subtree LSTM, the first sequence is processed forward from left
to right. However, the second sequence is processed in backward, from right to
left. The hidden states resulting from the forward and the backward passes are
concatenated to generate a new vector representation that is used as an input for
the next step. In the case of multi-layer BiLSTM Subtree, the lower layer passes
the hidden states, after applying dropout, as an input to the higher layer at each
step. The last hidden state of the highest layer is the final vector representation
of the subtree.

Figure 3 gives an example on how the Subtree LSTM and the Subtree BiL-
STM encode a subtree of an AST. The Subtree LSTM starts encoding the left-
most subtree as a sequence of 2, 4, and 5. A dropout is then applied on the last
hidden state h1, and the result is used as a vector representation of the subtree.
h1 replaces the subtree and becomes a new child node in the AST. Next, the
Subtree LSTM resets its memory state and encodes the rightmost subtree as h2

vector representation. Finally, Subtree LSTM encodes the AST as a sequence of
1, h1, and h2. The hidden state h3 is used as the final vector representation of
the AST. On the other hand, Subtree BiLSTM encodes the leftmost subtree as
two sequences. The forward sequence is 2, 4, and 5, and the backward sequence
is 5, 4, and 2. The last hidden state h1 results from the merge of the last hidden
states of the forward and backward sequences. A dropout is applied to h1 and
the result is used as a representation of the subtree and substitution in the AST.
Next, the Subtree BiLSTM resets its memory states and encodes the rightmost
subtree into h2 vector representation. Finally, the Subtree BiLSTM encodes the

Source Code Authorship Attribution 73

AST as forward and backward sequences of 1, h1, and h2 and h2, h1, and 1,
respectively. The hidden state h3 is used as the final vector representation of
the AST.

5.3 Softmax Layer

The Softmax Layer is a linear layer with the Softmax activation function. The
Softmax function is a generalized logistic regression function that is used for
multi-class classification problems. The Softmax Layer generates a normalized
probability distribution of the candidate source code authors. Given the last
hidden state of the AST, the Softmax Layer applies a linear transformation on
the input followed by the Softmax function to extract the probability distribu-
tion of authors. The author with the highest probability is selected as the final
prediction of the model.

6 Experimental Setup

6.1 Data Collection

In this experiment, we collect two datasets for two different programming lan-
guages. The first and second datasets contain source code files from Python and
C++, respectively. Our goal is to empirically evaluate the classification efficiency
and the generalization of our models on different programming languages with
different AST structures. The Python dataset is collected from Google Code Jam
(GCJ)3. Google Code Jam is an annual international coding competition hosted
by Google. The contestants are presented with programming problems and need
to provide solutions to these problems in a timely manner. The Python dataset
has 700 source code files from 70 programmers and 10 programming problems.
Programmers work individually on each of the 10 problems. Therefore, each
problem has 70 source code solutions with different programming styles. The
C++ dataset is collected from Github4. Github is an online collaboration and
sharing platform for programmers. We crawl Github starting from a set of pro-
lific programmers and spidering out through other programmers they collaborate
with, cloning any repositories for which over 90% of the lines of code are from
the same programmer. We then group C++ files by author. To create sufficient
training examples, we exclude any C++ file whose AST’s depth is less than
10 levels or has 5 branches at most. The final dataset has 200 files from 10
programmers and 20 files per programmer.

Python AST files are extracted using a Python module called ast. The mod-
ule is built into the Python 2.7 framework5. Each AST contains one root node
called Module and represents a single Python source code file, as shown in Fig. 2.

3 https://code.google.com/codejam.
4 https://github.com.
5 https://docs.python.org/2/library/ast.html.

https://code.google.com/codejam
https://github.com
https://docs.python.org/2/library/ast.html

74 B. Alsulami et al.

The number of unique AST node types in Python 2.7 are 130 nodes. In addi-
tion, C++ AST files are extracted using the third party fuzzy parser joern [54].
Joern parses the C++ file, outputs the data into a graph database, and then
python scripts can be used to explore the database to write machine-readable
files containing AST information. A fuzzy parser performs the same basic func-
tion as a regular parser, but can operate on incomplete or uncompilable code [5].
Using such a parser allows us to attribute programs which are either incomplete
or contain syntax errors, but more importantly, it means that we do not parse
external libraries which are likely written by a different programmer. In contrast
to Python ASTs, there are 53 unique node types for C++ ASTs. Each C++
source code file may contain multiple ASTs. The tool creates a separate AST for
the global definition of a class, a struct, or a function. However, we merge each
of these into a single AST per C++ file. That is, we create a root node called
Program that includes the global blocks as children.

6.2 Training Models

Our models are trained using Stochastic Gradient Descent (SGD) with Momen-
tum and compute the derivatives for the gradient using Backpropagation
Through Structure [19,40,45]. SGD is an incremental optimization algorithm
for minimizing the parameters of an objective function, also known as the loss
function. The loss function in our models is the cross-entropy loss function.
SGD computes the gradient of the parameters with respect to the instances in
the training dataset. After computing the gradient, the parameters are updated
in the direction of the negative gradient. Momentum is an acceleration technique
that keeps track of the past updates with an exponential decay. Momentum has
been successfully used to train large deep neural networks [22,45,46,48].

At the beginning of the training process, we set the learning rate to 1×10−2

and the momentum factor to 0.9. The models are trained up to 500 epochs with
an early stopping technique to prevent overfitting [10]. We also use L2 weight
decay regularization with a factor of 0.001 to reduce overfitting [17]. We use a
gradient clipping technique to prevent the exploding gradient during training
[37]. The models’ parameters are initialized with Glorot initialization to speed
up the convergence during the training [18]. The biases for all gates in the LSTM
and BiLSTM models are set to zero, while the bias for the forget gate is set to 1
[56]. We set the dropout rate to 0.2 and use inverted dropout to scale the input
at training time and remove the overhead at test time. We use Chainer, a deep
neural framework, to implement our LSTM and BiLSTM models [50].

7 Evaluation

In this section, we evaluate the complexity of our models and compare their
classification accuracy and scaling capability to the state-of-the-art models in
source code authorship attributions.

Source Code Authorship Attribution 75

7.1 Model Complexity

We evaluate the complexity of LSTM and BiLSTM models by varying the recur-
rent architecture, the number of layers, and hidden units on 25 and 70 authors
from the Python dataset. We examine the effectiveness of (1, 2) layers and (100,
250, 500) hidden units for LSTM and BiLSTM models. Figure 4 shows the effect
of increasing the hidden unit size on the one and two layers of LSTM and BiL-
STM models using 70 authors from the Python dataset. For the one layer models,
the LSTM and BiLSTM models continue to improve their performance accuracy
while increasing the hidden units until they reach 100 units. After that, the clas-
sification accuracy of the models decreases when more hidden units are added.
However, the decline in the classification accuracy is minimal after exceeding
250 hidden units. Therefore, increasing the size of the hidden units to more than
100 does not improve the performance for one layer LSTM and BiLSTM models.
On the contrary, two layers LSTM and BiLSTM models improve their classifica-
tion accuracy until they reach 250 hidden units. However, the accuracy declines
sharply when adding more hidden units. We think that larger layers might be
over-fitting the training data. Therefore, 250 hidden units are the optimal size
for two layered LSTM and BiLSTM models.

Fig. 4. The classification accuracy for
(1,2) layers of LSTM and BiLSTM mod-
els with (50, 100, 250, 500) for 70 authors
on the Python dataset.

Fig. 5. The classification accuracy for
one layer LSTM and BiLSTM with 100
hidden units on the Python test dataset.

Choosing the optimal recurrent architecture of RNN is crucial for improv-
ing the classification accuracy of our models. In our research, BiLSTM models
show superior performance to LSTM models. These results are in agreement
with recent experiments using LSTM-based networks [21,53]. Figure 5 shows
the accuracy of the one layer LSTM and BiLSTM models with 100 hidden units

76 B. Alsulami et al.

during the training process. We split the 70 authors from the Python dataset
into 80% training and 20% testing sets with a balanced distribution of authors.
We measure the accuracy of the models on the test dataset after each epoch for
500 epochs. As shown, the BiLSTM model achieves higher classification accuracy
and converges quicker than the LSTM model.

7.2 Author Classification

We compare our LSTM and BiLSTM models to the state-of-the-art in source
code authorship attribution [7,52]. The work in both research experiments uses
a combination of layout, lexical, and syntactic features. We exclude the lay-
out and lexical features from the evaluation and only include the syntactic fea-
tures that are relevant to the structure of the AST. While excluding layout and
lexical features degrades the accuracy of prior work, it enables a fair compari-
son between the structural/syntactic AST-based features of their work, and the
structural/syntactic AST-based features we are developing. In [7], researchers
use information gain as a feature selection to select the most important features
and use Random Forest as the classifier. The work in [52] uses a greedy feature
selection method and Linear SVM as the final classifier. We implement the clas-
sifiers using the Scikit-Learn machine learning framework [38]. We use a grid
search technique to select the optimal hyperparameters for Random Forest and
SVM. We evaluate the models on 25 and 70 authors from the Python dataset,
and 10 authors from the C++ dataset. We split the datasets into 80% train-
ing and 20% testing sets with a balanced distribution of authors. We select one
layer LSTM and BiLSTM with 100 hidden units for comparisons based on their
superior performance.

Table 1. The classification accuracy for (1,2) layers of LSTM and BiLSTM with 100
hidden units, Linear SVM, and Random Forest models using 25 and 70 authors on the
Python dataset, and 10 authors on the C++ dataset.

Dataset

Python C++

25 (Authors) 70 (Authors) 10 (Authors)

Random forest* 86.00 72.90 75.90

Linear SVM* 77. 2 61.28 73.50

LSTM 92.00 86.36 80.00

BiLSTM 96.00 88.86 85.00

* The accuracy results differ from the results in the papers (Refer to Sect. 7.2)

Table 1 shows the results of the four authorship attribution models: Random
Forest, Linear SVM, LSTM, and BiLSTM. The BiLSTM model achieves the
best classification accuracy. The LSTM model achieves the second best accuracy.

Source Code Authorship Attribution 77

As mentioned earlier, the accuracy results of Linear SVM and Random Forest
models differ from the results in the original works because we focused only on
the AST-based features and excluded extra features such as the layout and style
features. The results show that LSTM and BiLSTM models can efficiently learn
the abstract representation of ASTs for a large number of authors who have
coded using different programming languages.

7.3 Scaling Author Classification

Large source code datasets often have a large number of authors. Deep neural
networks have shown the capability to scale effectively to large datasets with
a large number of labels [13,23,53]. A source code authorship classifier needs
to handle a large number of different authors with a sufficient classification
accuracy. In this experiment, we measure the effect of increasing the number
of authors on the classification accuracy of our models. We vary the number of
selected authors consecutively to 5, 25, 55, and 70 from the Python datasets. We
use the one layer LSTM and BiLSTM models with 100 hidden units and compare
the results to the Random Forest and Linear SVM models [7,52]. We obtain this
results using 80% training and 20% testing sets with a balanced distribution of
authors.

Figure 6 shows the performance of LSTM, BiLSTM, Linear SVM, and Ran-
dom Forest models when increasing the number of authors in the Python dataset.
In general, all the models suffer an inevitable loss in the classification accuracy
when the number of authors is increased. However, LSTM and BiLSTM models
suffer the least decrease and maintain a robust performance accuracy when the
number of authors is large. The Random Forest model achieves an adequate per-
formance, and the Linear SVM model suffers the most significant deterioration
in classification accuracy.

7.4 Top Authors Predication

Random Forest, LSTM, and BiLSTM models predict the author with the high-
est probability as the potential author of an AST. In some cases, researchers
increase the prediction to include the top n potential authors for further analy-
sis, especially, when the difference between the authors’ prediction probabilities
is insignificant. Thus, researchers sometimes include the top n highest probabili-
ties in the prediction process [46]. In this experiment, we measure the classifica-
tion accuracy of our models when we pick the top n predictions for source code
authors. We measure the ability of our models to narrow down the search for
the potential authors. We compare the top 1, 5, 10, 15, and 20 predictions of the
LSTM and BiLSTM models to the Random Forest [7]. We select one layer LSTM
and BiLSTM with 100 hidden units and evaluate the models on 70 authors from
the Python dataset. We obtain this results using 80% training and 20% testing
sets with a balanced distribution of authors on the Python dataset.

Figure 7 shows the result of increasing the number of the predicted authors in
the final prediction. The Random Forest model gains the largest improvement

78 B. Alsulami et al.

in the classification accuracy when the top 5 candidate authors are included.
The classification accuracy of the Random Forest model continues to improve as
the number of top candidate authors increases. Surprisingly, the Random Forest
model exceeds the BiLSTM model in the classification accuracy when including
the top 20 predicted authors. For the LSTM model, the classification accuracy
improves steadily while increasing the number of top candidate authors. The
classification accuracy reaches its peak to a nearly perfect accuracy at 15 candi-
dates. The LSTM model also exceeds the BiLSTM model after including the top
5 candidate authors. The BiLSTM model reaches its peak classification accuracy
at 15 candidate authors. The BiLSTM model achieves lower classification accu-
racy than the LSTM model after including the top 5 predicted authors and less
than the Random Forest model after including the top 15 predicted authors.

Fig. 6. The classification accuracy for
one layer LSTM and BiLSTM with 100
hidden units, Random Forest, and Linear
SVM models for 5, 25, 55, and 70 authors
in the Python dataset.

Fig. 7. The top predictions of one
layer LSTM and BiLSTM models with
100 hidden units and Random Forest
classifier.

8 Conclusions and Future Work

We present a novel approach to AST-based source code authorship attribution
using LSTM and BiLSTM models. We show that our models are efficient at
learning the structural syntactic features of ASTs. We evaluate our models on
multiple datasets and programming languages. We improve the performance
results from the previous state-of-the-art on source code authorship attribution
using ASTs. We evaluate the scaling capability of our models on a large number
of authors.

In the future, we would like to study source code with multiple authors,
as large source code projects have multiple programmers collaborating on the

Source Code Authorship Attribution 79

same code section. We would like to evaluate our models on ASTs with multiple
authors. We would also like to harden our models against advanced obfuscation
techniques that use code factorization for source code.

Acknowledgments. This work is supported by a Fellowship from the Isaac L.
Auerbach Cybersecurity Institute at Drexel University, and by an appointment to the
Student Research Participation Program at the U.S Army Research Laboratory admin-
istered by the Oak Ridge Institute for Science and Education through an interagency
agreement between the U.S. Department of Energy and USARL.

References

1. Antoniol, G., Fiutem, R., Cristoforetti, L.: Using metrics to identify design patterns
in object-oriented software. In: Proceedings of Fifth International Symposium on
Software Metrics, 1998, pp. 23–34. IEEE (1998)

2. Balachandran, V., Tan, D.J., Thing, V.L., et al.: Control flow obfuscation for
android applications. Comput. Secur. 61, 72–93 (2016)

3. Barford, P., Yegneswaran, V.: An inside look at botnets. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 171–191. Springer, Boston, MA (2007). doi:10.
1007/978-0-387-44599-1 8

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: 1998 Proceedings of International Conference on Software
Maintenance, pp. 368–377. IEEE (1998)

5. Bischofberger, W.R.: Sniff (abstract): a pragmatic approach to a c++ programming
environment. ACM SIGPLAN OOPS Messenger 4(2), 229 (1993)

6. Burrows, S., Uitdenbogerd, A.L., Turpin, A.: Application of information retrieval
techniques for source code authorship attribution. In: Zhou, X., Yokota, H.,
Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 699–713. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00887-0 61

7. Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi,
F., Greenstadt, R.: De-anonymizing programmers via code stylometry. In: 24th
USENIX Security Symposium (USENIX Security), Washington, DC (2015)

8. Caliskan-Islam, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck, K., Greenstadt,
R., Narayanan, A.: When coding style survives compilation: De-anonymizing pro-
grammers from executable binaries. arXiv preprint (2015). arXiv:1512.08546

9. Calliss, F.W.: Problems with automatic restructurers. ACM SIGPLAN Notices
23(3), 13–21 (1988)

10. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation,
conjugate gradient, and early stopping. In: NIPS, pp. 402–408 (2000)

11. Chilowicz, M., Duris, E., Roussel, G.: Syntax tree fingerprinting for source code
similarity detection. In: 2009 IEEE 17th International Conference on Program
Comprehension, ICPC 2009, pp. 243–247. IEEE (2009)

12. Dauber, E., Caliskan-Islam, A., Harang, R., Greenstadt, R.: Git blame who?:
stylistic authorship attribution of small, incomplete source code fragments. arXiv
preprint (2017). arXiv:1701.05681

13. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)

http://dx.doi.org/10.1007/978-0-387-44599-1_8
http://dx.doi.org/10.1007/978-0-387-44599-1_8
http://dx.doi.org/10.1007/978-3-642-00887-0_61
http://arxiv.org/abs/1512.08546
http://arxiv.org/abs/1701.05681

80 B. Alsulami et al.

14. Elenbogen, B.S., Seliya, N.: Detecting outsourced student programming assign-
ments. J. Comput. Sci. Coll. 23(3), 50–57 (2008)

15. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.E., Howald, B.S.: Iden-
tifying authorship by byte-level n-grams: the source code author profile (SCAP)
method. Int. J. Dig. Evid. 6(1), 1–18 (2007)

16. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

17. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks archi-
tectures. Neural Comput. 7(2), 219–269 (1995)

18. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

19. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. In: 1996 IEEE International Conference on
Neural Networks, vol. 1, pp. 347–352. IEEE (1996)

20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

21. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

22. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. (2016)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

24. Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic design pattern detec-
tion. In: 2003 11th IEEE International Workshop on Program Comprehension, pp.
94–103. IEEE (2003)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

26. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: ICSE, vol. 7, pp. 333–343 (2007)

27. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 2006 13th Working Conference on Reverse Engineering, WCRE 2006,
pp. 253–262. IEEE (2006)

28. Kothari, J., Shevertalov, M., Stehle, E., Mancoridis, S.: A probabilistic approach
to source code authorship identification. In: 2007 Fourth International Conference
on Information Technology, ITNG 2007, pp. 243–248. IEEE (2007)

29. Lazar, F.M., Banias, O.: Clone detection algorithm based on the abstract syntax
tree approach. In: 2014 IEEE 9th International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI), pp. 73–78. IEEE (2014)

30. Li, J., Luong, M.T., Jurafsky, D., Hovy, E.: When are tree structures necessary for
deep learning of representations? arXiv preprint (2015). arXiv:1503.00185

31. Marquis-Boire, M., Marschalek, M., Guarnieri, C.: Big Game Hunting: The Pecu-
liarities in Nation-State Malware Research. Black Hat, Las Vegas (2015)

32. Meng, X.: Fine-grained binary code authorship identification. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 1097–1099. ACM (2016)

33. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126–139 (2004)

34. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint (2013). arXiv:1301.3781

http://arxiv.org/abs/1503.00185
http://arxiv.org/abs/1301.3781

Source Code Authorship Attribution 81

35. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detec-
tion. In: 2007 Twenty-Third Annual Computer security Applications Conference,
ACSAC 2007, pp. 421–430. IEEE (2007)

36. Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source code evolution using
abstract syntax tree matching. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5
(2005)

37. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. ICML 3(28), 1310–1318 (2013)

38. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

39. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

40. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cogn. Model. 5(3), 1 (1988)

41. Russell, S., Norvig, P., Intelligence, A.: A Modern Approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs (1995). pp. 25, 27

42. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In: Interspeech, pp. 338–
342 (2014)

43. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Pro-
tecting software through obfuscation: can it keep pace with progress in code analy-
sis? ACM Comput. Surv. (CSUR) 49(1), 4 (2016)

44. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector
grammars. In: ACL, vol. 1, pp. 455–465 (2013)

45. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of ini-
tialization and momentum in deep learning. In: ICML (3), vol. 28, pp. 1139–1147
(2013)

46. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

47. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint (2015).
arXiv:1503.00075

48. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architec-
tures. arXiv preprint (2016). arXiv:1603.08029

49. Tennyson, M.F.: A replicated comparative study of source code authorship attri-
bution. In: 2013 3rd International Workshop on Replication in Empirical Software
Engineering Research (RESER), pp. 76–83. IEEE (2013)

50. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source
framework for deep learning. In: Proceedings of Workshop on Machine Learning
Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Infor-
mation Processing Systems (NIPS) (2015)

51. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image
caption generator. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3156–3164 (2015)

52. Wisse, W., Veenman, C.: Scripting DNA: identifying the javascript programmer.
Dig. Invest. 15, 61–71 (2015)

http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1603.08029

82 B. Alsulami et al.

53. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: bridging the gap between human and machine translation. arXiv preprint
(2016). arXiv:1609.08144

54. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P) (2014)

55. Yu, D.Q., Peng, X., Zhao, W.Y.: Automatic refactoring method of cloned code
using abstract syntax tree and static analysis. J. Chin. Comput. Syst. 30(9), 1752–
1760 (2009)

56. Zaremba, W.: An empirical exploration of recurrent network architectures (2015)
57. Zhang, F., Jhi, Y.C., Wu, D., Liu, P., Zhu, S.: A first step towards algorithm plagia-

rism detection. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, pp. 111–121. ACM (2012)

58. Zhou, C., Sun, C., Liu, Z., Lau, F.: A C-LSTM neural network for text classifica-
tion. arXiv preprint (2015). arXiv:1511.08630

59. Zhu, X.D., Sobhani, P., Guo, H.: Long short-term memory over recursive struc-
tures. In: ICML, pp. 1604–1612 (2015)

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1511.08630

	Source Code Authorship Attribution Using Long Short-Term Memory Based Networks
	1 Introduction
	2 Related Work
	3 Source Code Obfuscation
	4 Abstract Syntax Tree
	5 Model Architecture
	5.1 Embedding Layer
	5.2 Subtree Layer
	5.3 Softmax Layer

	6 Experimental Setup
	6.1 Data Collection
	6.2 Training Models

	7 Evaluation
	7.1 Model Complexity
	7.2 Author Classification
	7.3 Scaling Author Classification
	7.4 Top Authors Predication

	8 Conclusions and Future Work
	References

