
Secure Authentication in the Grid:
A Formal Analysis of DNP3: SAv5

Cas Cremers, Martin Dehnel-Wild(B), and Kevin Milner

Department of Computer Science, University of Oxford, Oxford, UK
{cas.cremers,martin.dehnel-wild,kevin.milner}@cs.ox.ac.uk

Abstract. Most of the world’s power grids are controlled remotely.
Their control messages are sent over potentially insecure channels,
driving the need for an authentication mechanism. The main communica-
tion mechanism for power grids and other utilities is defined by an IEEE
standard, referred to as DNP3; this includes the Secure Authentication
v5 (SAv5) protocol, which aims to ensure that messages are authenti-
cated. We provide the first security analysis of the complete DNP3: SAv5
protocol. Previous work has considered the message-passing sub-protocol
of SAv5 in isolation, and considered some aspects of the intended security
properties. In contrast, we formally model and analyse the complex com-
position of the protocol’s three sub-protocols. In doing so, we consider
the full state machine, and the possibility of cross-protocol attacks. Fur-
thermore, we model fine-grained security properties that closely match
the standard’s intended security properties. For our analysis, we leverage
the Tamarin prover for the symbolic analysis of security protocols.

Our analysis shows that the core DNP3: SAv5 design meets its
intended security properties. Notably, we show that a previously reported
attack does not apply to the standard. However, our analysis also leads
to several concrete recommendations for improving future versions of the
standard.

1 Introduction

Most of the world’s power grids are monitored and controlled remotely. In prac-
tice, power grids are controlled by transmitting monitoring and control messages,
between authorised operators (‘users’) that send commands from control cen-
ters (‘master stations’), and substations or remote devices (‘outstations’). The
messages may be passed over a range of different media, such as direct serial
connections, ethernet, Wi-Fi, or un-encrypted radio links. As a consequence, we
cannot assume that these channels guarantee confidentiality or authenticity.

The commands that are passed over these media are critical to the security of
the power grid: they can make changes to operating parameters such as increases
or decreases in voltage, opening or closing valves, or starting or stopping motors
[13]. It is therefore desirable that an adversary in control of one of these media
links should not be able to insert or modify messages. This has motivated the
need for a way to authenticate received messages.
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 389–407, 2017.
DOI: 10.1007/978-3-319-66402-6 23

390 C. Cremers et al.

The DNP3 standard, more formally known as IEEE 1815–2012, the “Stan-
dard for Electric Power Systems Communications – Distributed Network Pro-
tocol” [3], is used by most of the world’s power grids for communication, and
increasingly for other utilities such as water and gas.

Secure Authentication version 5 (SAv5) is a new protocol family within
DNP3, and was standardised in 2012 (Chap. 7 of IEEE 1815–2012 [3], based
on IEC/TS 62351-5 [4]). SAv5’s goal is to provide authenticated communica-
tion between parties within a utility grid. For example, this protocol allows a
substation or remote device within a utility grid to verify that all received com-
mands were genuinely sent by an authorised user, that messages have not been
modified, and that messages are not being maliciously replayed from previous
commands.

Given the security-critical nature of the power grid, one might expect that
DNP3: SAv5 would have attracted substantial scrutiny. Instead, there has been
very little analysis, except for a few limited works. One possible explanation is
the inherent complexity of the DNP3: SAv5 protocol, as it consists of three inter-
acting sub-protocols that maintain state to update various keys, which results
in a very complex state machine for each of the participants. Such protocols are
notoriously hard to analyse by hand, and the complex looping constructions pose
a substantial challenge for protocol security analysis tools. Moreover, it is not
sufficient to analyse each sub-protocol in isolation. While this has been known in
theory for a long time [17], practical attacks that exploit cross-protocol interac-
tions have only been discovered more recently, e.g., [11,19]. In general, security
protocol standards are very hard to get right, e.g. [10,21].

Contributions. In this work, we perform the most comprehensive analysis of
the full DNP3 Secure Authentication v5 protocol yet, leveraging automated tools
for the symbolic analysis of security protocols. In particular:

– We provide the first formal models of two of the SAv5 sub-protocols that had
not been modelled previously.

– We provide the first analysis of the complex combination of the three sub-
protocols, thereby considering cross-protocol attacks as well as attacks on
any of the sub-protocols. The security properties that we model capture the
standard’s intended goals in much greater detail than previous works.

– Despite the complexity of the security properties and the protocol, and in
particular its complex state-machine and key updating mechanisms, and con-
sidering unbounded sessions and loop iterations, we manage to verify the
protocol using the Tamarin prover. We conclude that the standard meets its
intended goals if implemented correctly, increasing confidence in this security-
critical building block of many power grids.

– Notably, our findings contradict a claimed result by an earlier analysis; in
particular, our findings show that an attack claimed by other work is not
possible in the standard as defined.

– Our analysis naturally leads to a number of recommendations for improving
future versions of the standard.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 391

Paper Structure. We start by describing the Secure Authentication v5 stan-
dard in Sect. 2. We describe the sub-protocols’ joint modelling in Sect. 3, and
their analysis and results in Sect. 4. We present our recommendations in Sect. 5,
survey previous analyses of DNP3 in Sect. 6, before concluding in Sect. 7. Further
modelling issues, choices, and examples can be found in [12].

2 The DNP3 Standard

The DNP3 standard [3] gives both high level and semi-formal descriptions, to
serve as an implementation guide, as well as providing an informal problem
statement and conformance guidelines. The Secure Authentication v5 protocol
is described in Chap. 7 of [3]. We give an overview of the system and its sub-
protocols, before describing the threat model from SAv5.

2.1 System and Sub-protocols

There are three types of actor in SAv5: the (single) Authority, the Users (oper-
ating from a Master station), and the Outstations. The Authority decides who
are legitimate users, and generates new (medium-term) Update Keys for these
users. Users send control packets to outstations, who act upon them if they
are successfully authenticated. Outstations send back (similarly authenticated)
monitoring packets. Each user can communicate with multiple outstations, and
each outstation can communicate with multiple users. Users regularly generate
new (short-term) Session Keys for each direction of this communication, and
transport these keys to the outstations. Session keys are distributed and updated
using long-term Authority Keys and medium-term Update keys. These three
different keys are used by three sub-protocols: the Session Key Update proto-
col, the Critical ASDU Authentication protocol, and the Update Key Change
protocol. See Fig. 1 for an overview of the sub-protocols’ relationships.

Initial Key Distribution: Before any protocols are run, a long-term Authority
Key and an initial medium-term update key must be pre-distributed to each
party. These keys are distributed “over a secure channel” (e.g. via USB stick) to
the respective parties. N.B. Session Keys are not pre-distributed.

The Session Key Update Protocol: Before parties can exchange control or
monitoring messages, the user and outstation must initialise session keys. This
sub-protocol initialises (and later updates) a new, symmetric Session Key for
each communication direction.

After �15 min or �1,000 critical messages (both configurable) the session keys
will expire. The user and outstation run the Session Key Update Protocol again,
where the user generates fresh symmetric session keys, and sends them to the
outstation, encrypted with their current update key. These session keys must
remain secret, but the secrecy of new keys importantly does not rely on the
secrecy of previous session keys.

392 C. Cremers et al.

AK

UK0(USR,O)

Update Key Change

Session
Key Update

Critical ASDU
Authentication

UKi(USR,O), i > 0

CDSKj(USR,O),
MDSKj(USR,O), j ≥ 0

Fig. 1. Relationships between sub-
protocols, the flow of keys between
them (vertical), and required pre-
shared keys (horizontal).

User, USR
UKi(USR,O)

Outstation, O
UKi(USR,O)

S1
USR

Fresh CDj

Increment KSQ

S2

SKSMj := KSQ, USR,
KeyStatus [= ‘NOT INIT’], CDj

Fresh CDSKj(USR,O),
MDSKj(USR,O)

S3

SKCMj := KSQ, USR,
{| CDSKj(USR,O),MDSKj(USR,O),

SKSMj |}sUKi(USR,O)

Fresh CDj+1

Increment KSQ

S4S5

SKSMj+1 := KSQ+1, USR,
KeyStatus [= ‘OK’], CDj+1,
HMACMDSKj (USR,O)(SKCMj)

Fig. 2. The Session Key Update Pro-
tocol . The labels S1–5 identify the pro-
tocol rules described in Sect. 2.2.1

All sub-protocols use sequence numbers and freshly generated Challenge Data
with the aim of preventing replay attacks.

The Critical ASDU Authentication Protocol: Outstations use this sub-
protocol to verify that received control packets were genuinely sent by a legiti-
mate user. Vice-versa, this sub-protocol allows a user to confirm that received
monitoring packets were genuinely sent by a legitimate outstation. As this is an
authentication-only protocol, Critical ASDUs are not confidential.

After this sub-protocol’s first execution, the faster ‘Aggressive Mode’ may
be performed: this cuts the non-aggressive mode’s three messages to just one by
sending the ASDU and a keyed HMAC in the same message.

The Update Key Change Protocol: After a longer time, the update key
may expire. The user and outstation (helped by the Authority) will execute the
Update Key Change Protocol . A new update key is created by the Authority,
and sent to both the user and outstation.

2.2 Protocol Descriptions

We now give more detailed descriptions of the three symmetric-key sub-protocols
in Secure Authentication v5. We consider the optional asymmetric mode out of
scope for this analysis. {|m |}sk denotes the symmetric encryption of term m under
key k; similarly HMACk (m) denotes the HMAC of term m keyed by k.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 393

User, USR
CDSKj(USR,O)

Outstation, O
CDSKj(USR,O)

(Critical) ASDU1

A1

Fresh CD
Increment CSQ

A2
AC1 := CSQ, USR, CD

A3

CSQ, USR,
HMACCDSKj(USR,O)(AC1, ASDU1)

A4

Aggressive Only:
Increment CSQ

AgRq

CSQ+1, USR,
HMACCDSKj(USR,O)(‘Aggr’,

CSQ+1, AC1, ASDU2)
AgRcv

Fig. 3. The Critical ASDU Authentica-
tion Protocol , Control Direction, Non-
Aggressive and Aggressive Modes. The
labels A1–4 identify the protocol rules
described in Sect. 2.2.2

Authority, A
AK

User, USR
AK

Outstation, O
AK

Fresh CDa

USR, CDa
U1

Fresh CDb

Increment KSQ

KSQ, USR, CDb
U2

KSQ, USR, CDb
U3

Fresh UKi(USR,O)

UKC
U4

UKC,
HMACUKi(USR,O)(‘User’,
CDa,CDb, KSQ, USR)

U5

HMACUKi(USR,O)(‘O’,
CDb,CDa, KSQ, USR)

U6U7

Fig. 4. The Update Key Change Proto-
col . The labels U1–7 identify the proto-
col rules described in Sect. 2.2.3. In U4
and U5, UKC is the tuple KSQ, USR,
{|USR,UKi(USR,O),CDb |}sAK

2.2.1 Session Key Update Protocol : See Fig. 2. This is also the first sub-
protocol run after a system restarts, to initialise the shared session keys.

S1. The user sends a Session Key Status Request. The user moves from “Init”
to the state “Wait for Key Status”.

S2. The outstation generates fresh challenge data CDj , and increments its Key
Change Sequence Number, KSQ. It sends a Session Key Status message
(SKSMj) to the user, containing the KSQ value, user ID, USR, Key Status,
and CDj . The outstation moves from “Start” to the state “Security Idle”.

S3. The user generates two new session keys (one for each direction), CDSK
and MDSK, and sends a Session Key Change Message to the outstation
(SKCMj). This contains the KSQ and USR values, and the encryption of the
new keys and the previously received SKSMj message from the outstation,
encrypted with the current symmetric update key. The user moves to the
state “Wait for Key Change Confirmation”.

S4. The outstation decrypts this with the shared update key, and checks that
SKSMj is the same as it previously sent. If so, the outstation increments
KSQ, and generates new challenge data, CDj+1; it sends another Session
Key Status Message (this time SKSMj+1), but as session keys have been
set, the message now also includes an HMAC of SKCMj , keyed with the
MDSK.

394 C. Cremers et al.

S5. The user verifies that the received HMAC was generated from SKCMj . If
so, the user and outstation start to use the new session keys. If not, the
user and outstation mark the keys as invalid, and retry the protocol. The
user state moves to “Security Idle”.

2.2.2 Critical ASDU Authentication Protocol : See Fig. 3. This is the
main data authentication protocol, and is used to verify the authenticity of
critical ASDUs. This can only run after the first execution of the Session Key
Update Protocol , and it can run in both the control and monitoring directions,
User→Outstation and Outstation→User respectively. Here we present it in the
control direction; the direction determines which key is used for the HMAC in
the final message, i.e. CDSK or MDSK. First, the non-aggressive mode; both
parties start in the state “Security Idle”:

A1. The user sends a critical ASDU, which the outstation must authenticate.
A2. On receipt of this ASDU, the outstation increments its Challenge Sequence

Number, CSQ, and sends an Authentication Challenge (AC), which contains
the user’s ID, USR, fresh challenge data, CD, and the CSQ value. The
outstation moves to the state “Wait for Reply”.

A3. The user sends an Authentication Reply message, which contains the CSQ,
USR, and an HMAC of the previously received Authentication Challenge
message, AC, and the critical ASDU it seeks to authenticate. This HMAC
is keyed with the Control Direction Session Key, CDSK.

A4. The outstation verifies that the HMAC was constructed with the AC mes-
sage it sent, the critical ASDU, and keyed with the current CDSK. If it suc-
ceeds, the outstation acts upon this critical ASDU; if it fails, it does not exe-
cute it. Regardless of the outcome, the outstation returns to “Security Idle”.

Aggressive Mode: Once the non-aggressive sub-protocol has run once, the user
may send an Aggressive Mode Request (‘AgRq’ in Fig. 3). This contains both
the new ASDU to be authenticated, the incremented CSQ, and an HMAC in the
same message. This HMAC is calculated over the last Authentication Challenge
message the user received, and the entire preceding message it is being sent in.

The outstation then checks (‘AgRcv’ in Fig. 3) that the HMAC was con-
structed with the last Authentication Challenge, and that the CSQ is incre-
mented from the last message. If so, it accepts and acts upon the ASDU.

2.2.3 Update Key Change Protocol : See Fig. 4. This allows users and
outstations to change the symmetric update key used by the previous protocol.
Both devices start in “Security Idle”; the outstation always remains here.

U1. The user sends an Update Key Change Request message, containing the
user’s ID, USR, and freshly generated challenge data, CDa. The user moves
to the state “Wait for Update Key Reply”.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 395

U2. Upon receipt of this message, the outstation increments its Key Change
Sequence Number (the same variable as in the previous sub-protocol), and
also generates fresh challenge data, CDb. It sends the new value of KSQ,
USR and CDb to the user in an Update Key Change Reply message.

U3. The user forwards this message on to the Authority.1
U4. The Authority creates a new update key. It encrypts the key, USR, and CDb

with the Authority Key, and transmits it, KSQ, and USR back to the user.
U5. The user decrypts this, and forwards both this message (Update Key

Change), and an Update Key Change Confirmation (UKCC) message to
the outstation. This is an HMAC of the user’s full name, both challenge
data (CDa and CDb), KSQ, and USR, and it is keyed with the new update
key. The user moves to the state “Wait for Update Key Confirmation”.

U6. The outstation decrypts the first part of the message to learn the new update
key, and verifies that the UKCC HMAC was created with the correct chal-
lenge data and KSQ from step U2. If so, it sends back its own UKCC
message (also keyed with the new update key), but with the order of the
challenge data swapped, and with its name, rather than the user’s.

U7. If the user can validate this HMAC (by checking that it was created with
the challenge data and KSQ values from this same protocol run, keyed with
the new update key), then it accepts the message, and both parties start
to use the new update keys. If this fails, the parties retry the protocol.
Regardless of outcome (except timeout), the user moves back to the state
“Security Idle”.

2.3 Threat Model and Security Properties

In this section we describe how we arrived at the threat model and security prop-
erties that we formally analyse. This is not as straightforward as one might think,
as security properties are often informally and minimally described in protocol
standards. For transparency, we will quote the original standards where possible.
We use colored boxes to denote verbatim quotations from other documents.

The standard has a “Problem description” section [3, p. 13] that describes
“the security threats that this specification is intended to address”. We reproduce
this section in its entirety below:

5.2 Specific threats addressed (from IEEE 1815–2012 [3] p. 13)

This specification shall address only the following security threats, as defined in
IEC/TS 62351-2:

– spoofing;
– modification;
– replay
– eavesdropping — on exchanges of cryptographic keys only, not on other data.

Additionally, the general principles section contains a subsection “Perfect
forward secrecy” that suggests an implicit security requirement. We could not
determine any other sections that would imply security requirements.
1 U3 and U4 are technically out of scope for DNP3: SAv5.

396 C. Cremers et al.

The wording of the above section suggests that all listed terms are defined in
IEC/TS 62351-2 [2]. This is not the case: [2] defines only some of these concepts.
In particular, “modification” and (perfect) “forward secrecy” are not defined.
We address the listed concepts in turn, starting from the ones which are defined.
Spoofing. The standard specifies that spoofing is defined through [2] as:

2.2.191 Spoof (from IEC/TS 62351-2 [2] p. 39)

Pretending to be an authorized user and performing an unauthorized action.
[RFC 2828]

While this definition references RFC 2828 [22], there is a difference, in
that [22] equates spoofing and masquerading, but does not reference unautho-
rized actions:
spoofing attack (from RFC 2828 [22])

(I) A synonym for “masquerade attack”.

where masquerade is defined in the RFC as

masquerade attack (from RFC 2828 [22])

a type of attack in which one system entity illegitimately poses as (assumes the
identity of) another entity. (see: spoofing attack.)

Thus, the RFC equates spoofing and masquerading. Analogously, the DNP3
standard directly relies on [2], which defines masquerading as

2.2.131 Masquerade (from IEC/TS 62351-2 [2] p. 30

The pretence by an entity to be a different entity in order to gain unauthorized
access. [ATIS]

Here, ATIS [5] is a glossary from which this particular definition is taken.
Hence it seems that within the context of DNP3, spoofing and masquerading are
interchangeable, similar to the statements in RFC 2828. However, the definitions
in the DNP3 standard [4] are closer to [5] than to [22], since they additionally
include the aspect of unauthorized access/action. Note that the DNP3 standard
has no explicit concept of authorization; this seems out of the standard’s scope.

Replay
2.2.159 Replay Attack (from IEC/TS 62351-2 [2] p. 35)

1. A masquerade which involves use of previously transmitted messages.
[ISO/IEC 9798-1:1997]

This is a verbatim copy of a similar section in the reference ISO/IEC 9798-
1:1997 [16], and suggests that replay is a special case of masquerading/spoofing.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 397

Eavesdropping
2.2.92 Eavesdropping (from IEC/TS 62351-2 [2] p. 25)

Passive wiretapping done secretly, i.e., without the knowledge of the originator or
the intended recipients of the communication. [RFC 2828]

This is a verbatim copy from the definition in the reference RFC 2828 [22].
However, DNP3 adds the specific restriction to the confidentiality of keys, as
the main purpose of the standard is to authenticate messages that are not
confidential.
Modification. There is no explicit definition: we interpret this as an integrity
requirement: adversaries must not be able to modify transmitted messages.
Perfect Forward Secrecy. The general design text contains:
5.4.10 Perfect forward secrecy (from IEEE 1815–2012 [3] p. 16)

This specification follows the security principle of perfect forward secrecy, as defined
in IEC/TS 62351-2. If a session key is compromised, this mechanism only puts data
from that particular session at risk, and does not permit an attacker to authenticate
data in future sessions.

Surprisingly, IEC/TS 62351-2 [2] does not mention the concept of (perfect)
forward secrecy. However, the informal explanation suggests that the loss of some
session keys should not affect authentication of future sessions with, presumably,
different session keys.
Adversary Capabilities. The standard states that communications might be
performed over insecure channels, and this suggests the threat model includes
adversaries that can manipulate or insert messages.

The standard additionally states that “if update keys are entered or stored
on the device in an insecure fashion, the entire authentication mechanism is
compromised” ([3, p. 21]). This suggests that some forms of compromise might
be considered (e.g., of session keys), but not the full compromise (in which all
stored data is compromised) of a party involved of a session.

3 Formal Model of SAv5 in Tamarin

Our modelling and analysis of Secure Authentication v5 used the Tamarin secu-
rity protocol verification tool [20]. Tamarin is a symbolic tool which supports
both falsification and unbounded verification of security protocols specified as
multiset rewriting systems with respect to (temporal) first-order properties. We
give a brief overview of Tamarin in Sect. 3.3, and an example of its syntax can
be found in the appendices of [12]; for more detail on the theory and use of
Tamarin see [20] and https://tamarin-prover.github.io.

3.1 Symbolic Modelling Assumptions

Symbolic analysis does not consider computational attacks on a protocol, instead
focusing on the logic of protocol interactions. This requires us to make assump-
tions about the primitives used in the protocol, which restricts the power of the
analysis. We make the following assumptions:

https://tamarin-prover.github.io

398 C. Cremers et al.

0 1 2 3

4

5

6S1 S3 S5

Expire Session Keys

A2A4

U1U3

U5

U7

Fig. 5. A simplified version of the user’s state machine as defined in the standard,
excluding error transitions and the monitoring direction of the Critical ASDU Authen-
tication Protocol . Note that although many transitions occur from the same state,
they are conditional on additional state that is not represented in the state machine
as described by the standard.

– Dolev-Yao Adversary: the adversary controls the network.
– Symbolic Representation: information is contained in terms. Any party

(including the adversary) can either know a term in its entirety, or not know
it, a party cannot learn e.g. a single bit of a term.

– Perfect Cryptography: we assume that the cryptographic primitives used are
perfect. This means that e.g. an adversary can only learn the term m from
the symmetrically encrypted {|m |}sk term if it knows the key, k.

– Hash Functions: we assume that hash functions are one-way and injective.
– Randomness: we assume all freshly generated random terms are unpre-

dictable, and unique (no two fresh terms generated separately are equal).

3.2 Complexity of the Protocol

Each of the protocols within Secure Authentication v5 are individually straight
forward; however, much more complexity becomes apparent when they interact.
To give an indication of the state machines, see Fig. 5 for a diagram showing the
state transitions performed by the user. The system starts in state 0; each node
is the state the user is in before it executes a rule along one of the outgoing edges.
These edges are labelled with the name of the rule which the user executes during
the transition into another state (these names are the same as in the Message
Sequence Charts). This diagram demonstrates how multiple loops can occur in
many different orders, with very little determined structure, and how little of
the relevant state is represented by the standard’s state machines. Each protocol
can loop many times (below certain large thresholds), making the possible routes
through the state machines and state-space very large and complex indeed.

As there is stored data associated with each of these states, we do not get
injective correspondence with the named states from the SAv5 specification.

3.3 Protocol Modelling in Tamarin

In Tamarin, protocols are modelled as a collection of labelled multiset rewrit-
ing rules; these consist of Premises, Actions (or labels), and Conclusions.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 399

The premises of a rule are facts which must exist in the multiset prior to the
rule’s execution, and conclusions are facts which are added to the multiset by
executing the rule. Individual facts may be either linear or persistent; if a fact is
linear then it is consumed when used in the premise of a rule. Actions are used to
label execution traces: when a rule is executed at a particular point, the actions
are associated to that time point, and can be referenced to describe properties
of traces.

All three sub-protocols’ rules and interactions were modelled as rules in
Tamarin’s operational semantics; the final model comprises 30 multiset rewrit-
ing rules in �450 SLoC. The model and associated theorems are contained in
the file dnp3.m4, which can be found at [1]. We give an example of a SAv5 rule
modelled in Tamarin in the appendices of [12].

The state machines described in [3] (corresponding to the transitions dis-
cussed in Sect. 2.2) capture very little of the protocol logic, as the allowed tran-
sitions depend more on values in memory than on the current state machine
‘state’. As an example, the outstation remains entirely in the named state “Secu-
rity Idle” throughout the Update Key Change Protocol ; however, the outstation
can only respond to certain messages from the user dependent on data from pre-
viously sent or received terms. Our Tamarin models include this much larger
range of transitions, as well as their associated errors and timeouts.

4 Analysis and Results

4.1 Modelling the Threat Model and Security Properties

In Tamarin, security properties are modelled as (temporal) first-order logical
formulae. These are evaluated over so-called action traces that are generated by
the protocol model. Protocol rules have as their second parameter a multiset
of actions; when the rewrite system makes a transition based on a ground rule
instance, the rule’s actions are appended to the action trace. Thus, the action
trace can be considered to be a log of the actions defined by the transition
rules, in a particular execution. The modeller chooses what is logged, and this
enables us to log appropriate events that enable the specification of the desired
properties.

Modelling Adversary Capabilities. As described in Sect. 2.3, the standard
assumes that communication channels are not secure, so we assume the worst:
the adversary fully controls the network, i.e., it can drop and inject arbitrary
messages, and eavesdrop all sent messages. This model is known within symbolic
security verification as the network part of the Dolev-Yao attacker model.

Based on the general principle of perfect forward secrecy, we additionally
provide the adversary with the ability to compromise some (but not all) keys. In
particular, when considering authentication or confidentiality properties, we will
allow the adversary to compromise all session keys except for the CDSK/MDSK
used for this particular critical ASDU. As a result, our model also considers

400 C. Cremers et al.

any attacks on the authentication property that are based on the compromise
of (different) earlier session keys, as described in the standard.

Modelling the Security Properties. We now revisit each of the properties
defined in Sect. 2.3 and describe how we interpret them for modelling purposes,
resulting in three properties called AUTH1, AUTH2, and CONF.

Spoofing: AUTH1. The main security goal of SAv5 seems to be to prevent
spoofing, i.e. to ensure that all critical ASDUs originate from the intended par-
ties. This is classically specified as an authentication property. However, there is
no canonical notion of authentication; instead, there are many subtly different
forms (See, e.g. [18]). In this particular case, we choose a form of agreement,
i.e., if party A receives a critical ASDU, then this exact message was sent by
some B who agrees on the message and some additional parameters. In partic-
ular, the additional parameters we include here are the mode (“aggressive” or
“non-aggressive”) and the direction (“control” or “monitoring”).

One complication is that classical authentication properties link identities: if
Alice receives a message, she associates the sender with an identity (say, Bob),
and the authentication property then encodes that Bob sent the message. How-
ever, in the case of SAv5, there are not always clear identities for parties, e.g.,
outstations. Instead, pairs of users and outstations are effectively linked through
their initial (pre-distributed) update keys. Thus, the best we can hope to prove
is that upon receiving a message, apparently from someone that initially had
update key k, then the message was indeed sent by someone whose initial update
key was k.

We thus model the following (relatively weak) agreement property, which we
refer to as AUTH1: if an outstation or a user receives an Authentication Reply
or Aggressive Mode Request message m in a mode x (where x is either “aggres-
sive” or “non-aggressive”) in direction y (where y is “control” or “monitoring”),
then this message m was sent in mode x for direction y by a party that had the
same initial (pre-distributed) update key.

We consider the following adversary capabilities for this property: the adver-
sary can compromise all session keys (CDSK or MDSK) except for the one used
in the message m. This covers the “perfect forward secrecy” general principle.
Additionally, we allow the adversary to compromise all update keys other than
that used to assign the current session keys.

Replay: AUTH2. Classically, replay refers to multiplicity: if Bob apparently
completes N sessions with Alice, then Alice in fact ran at least N sessions with
Bob. Phrased differently, an adversary should not be able to complete more ses-
sions with Bob than Alice actually ran. However, the definitions in the standard
suggest that replay should be interpreted as a special case of masquerading (and
thus spoofing), which uses previously transmitted messages. From this we infer
that some form of multiplicity or recentness is intended to be part of the anti-
spoofing guarantee. We encode this as AUTH2, which is strictly stronger than
AUTH1.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 401

Thus, AUTH2 additionally models so-called injective authentication, which
captures the classical notion of replay prevention. Informally, it states that for
each received message, there is a unique message sent. Thus, an attack in which
an adversary tricks Bob into receiving a message twice which Alice only sent
once violates the property.

Eavesdropping: CONF. Since the standard considers non-confidential ASDU
messages, there is no clear confidentiality requirement. However, the authentica-
tion guarantees can only be satisfied against an active adversary if the relevant
keys remain confidential. Hence, a subgoal is to require confidentiality of keys.
This should in particular hold against weaker adversaries, such as eavesdroppers.

We note that the prevention of spoofing attacks (as per the first requirement)
implies that all the relevant keys (Authority Key, Update Key, and MDSK or
CDSK) are confidential with respect to eavesdroppers. If they are not, the active
adversary can trivially use them to spoof a message. We can still model these
confidentiality requirements separately. This is useful for protocols that do not
satisfy the authentication guarantees directly.

If the user chooses, encrypts, and transmits a new Session Key (e.g., CDSK 1)
it is important that the adversary does not learn it. However, it is equally impor-
tant that the adversary cannot e.g. block the transmission of CDSK 1, imperson-
ate the user, and transmit different, adversary-chosen keys (e.g. CDSK 2) to the
outstation. In the second case, CDSK 1 might still be secret, but the adversary
can still issue ‘authentic’ commands to the outstation, HMAC’d with CDSK 2.
Since there are different key types, CONF is modelled as a set of confidentiality
properties, one of each type of key and each perspective (role).

We now give an example of a confidentiality property from our analysis; this
property models the secrecy of Session Keys from the outstation’s point of view:

lemma sessionkey_secrecy_outst:
"not (Ex AK #r . AuthorityKeyReveal(AK) @ r)

==>
(All id UK CDSK MDSK #i.

not (Ex #r . UpdateKeyReveal(UK) @ r)
& not (Ex #r . CDSKReveal(CDSK) @ r)
& not (Ex #r . MDSKReveal(MDSK) @ r)
& received_sess_keys(id, UK, CDSK, MDSK) @ i
==> not (Ex #j . K(CDSK) @ j) & not (Ex #j. K(MDSK) @ j))"

Informally this says, “assuming no authority keys have been compromised, if
the outstation has received some new un-revealed session keys encrypted under
an un-revealed update key, then the adversary cannot derive those new session
keys”. Most key-secrecy lemmas are of this form.

Modification. As stated before, this is not defined in the standard, and we
interpret it as an integrity requirement. As such, it will be covered by our authen-
tication guarantees AUTH1 and AUTH2.

Perfect Forward Secrecy. As noted in Sect. 2.3, this general principle indi-
cates an intended resilience against the compromise of other session keys, and is
covered by our adversary capabilities for the three properties.

402 C. Cremers et al.

4.2 Analysis in Tamarin

Tamarin makes use of backwards reasoning, starting from trace constraints, and
building up further constraints from the possible solutions to an open proof goal.
This has the invariant that all complete traces that fulfil the original constraints
also fulfil at least one of the new sets of constraints. For example, if the current
state contains a rule with an unsolved premise fact, then when Tamarin solves
this premise it splits the current state into several states, each containing one of
the possible conclusions which may have been the source of that fact.

To prove that a particular property holds in all traces (such as “In all traces,
X is preceded by Y”), Tamarin begins with the trace constraints from its nega-
tion (“There exists a trace in which X is not preceded by Y”). Goals are solved
until either there is a case with no goals remaining, which is a completed trace
and thus a counter-example to the property, or all possible states are contra-
dictory. In the latter case, this returns a proof that no trace can satisfy the
constraints of the negated property, and thus the property holds in all traces.

This backwards reasoning makes Tamarin very efficient in many proto-
cols, but is ill-suited to a näıve model of the SAv5 protocol. The specification
relies not only on shared state between each constituent sub-protocol, but also a
shared state machine which dictates which transitions are allowable at particular
times. Further, the majority of state transitions occur from and return to the
same state, Security Idle. Näıvely, an attempt to solve a premise requiring
the Security Idle state may find that many rules are potential sources, and
attempt to solve each of these possibilities separately. Worse, many may intro-
duce new unsolved premises that also require the Security Idle state, creating
a loop.

The key to analysing a protocol like this is to identify invariants over par-
ticular transitions and prioritize solving for the source of these as necessary. For
example, an outstation running the Critical ASDU Authentication Protocol is
making use of session keys that were set during the last Session Key Update
Protocol (rule S4, as labelled in Fig. 2) and are invariant in all other rules. We
therefore add a premise to any rule making use of the session keys so that it
directly relies on the current “session key invariant”, represented by a persistent
fact that is output when the session keys are changed, along with a fresh iden-
tifier so that it cannot unify to any other session key invariant. In solving the
premises, we can prioritize the sources of the current invariants, as the proper-
ties of the current protocol often depend only on the circumstances around the
relevant invariants.

In the Critical ASDU Authentication Protocol example, the authentication
properties depend on the properties of the last Session Key Update and the
original pairing of the user to outstation, and in the Aggressive Mode, on the last
generated challenge data. Each of these is included as an invariant. When proving
that all traces have the AUTH1 property, this allows Tamarin immediately to
solve for the source of the invariants, which adds constraints to, for example,
where the session keys were generated and assigned.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 403

4.3 Results

Section 4.1 described how the specification requires the protocol be resilient to
Spoofing, Modification, Replay, and Eavesdropping, and how these properties
translated into more formal security properties AUTH1, AUTH2, and CONF.
Our analysis in Tamarin has formally verified all three of these properties for
our model of DNP3: Secure Authentication v5; in particular, they hold for any
(unbounded) number of sessions and loop iterations. These results can be auto-
matically verified by Tamarin from the model and properties in dnp3.m4, which
can be found at [1]. On a modern PC (2.6 GHz Intel Core i7 from 2012 with
8GB RAM), these theorems in total prove in �1 m 33 s. We additionally proved
several sanity checking properties, e.g., to show that our model correctly allows
for expected behaviours.

Security Property Result

AUTH1 verified

AUTH2 verified

CONF verified

As stated in the introduction, our results seemingly contradict an attack
claimed in previous analysis; we will return to this in detail in Sect. 6.

5 Recommendations

Our analysis, while succesful in showing that the main properties hold, also
naturally leads to several recommendations. To aid clarity of implementation,
to avoid possible misinterpretation, and to allow the protocol to meet stronger
security guarantees, we propose the following changes to future versions of the
specification. We discuss the reasoning behind these recommendations in more
detail in the appendices of [12].

Recommendations Based upon Modelling and Analysis:

– Update Key Change messages (g120v13) should contain a clear indication
of intended recipient (i.e. outstation ID). This would allow for a stronger
authentication property that only relies on the secrecy of the Authority key,
not additionally on the secrecy of the new update key.

– The specification must clarify the use of Challenge Sequence Numbers:
• It is not clear whether CSQ values (per direction) should be kept on a

per Master-Outstation pair basis, or whether each device should keep one
universal CSQ value (per direction).

• The specification must clarify whether recipients of CSQ values from the
network (whether Responder or Challenger) should expect CSQ values to

404 C. Cremers et al.

be strictly increasing. The sender’s behaviour (whether in an Authenti-
cation Challenge, Authentication Reply, or Aggressive Mode Request) is
clear, but it is not clear under which conditions a device should accept
a CSQ as valid from another party. If CSQ values are not required to
be strictly increasing, then replay attacks of Aggressive Mode Requests
become possible.

Recommendations Based upon Best Cryptographic Practice:

– The specification should strongly recommend that devices support asymmet-
ric cryptography, rather just than symmetric key-transport. This should be
recommended for both the Update Key Change and Session Key Update
Protocols. Use of Elliptic Curve Cryptography (ECC) would allow stations
to benefit from the added security of asymmetric cryptography, without sig-
nificantly increasing the total amount of data transmitted. Asymmetric cryp-
tography crucially only requires each secret key to be in one location, and
ECC is viable on low-power devices [15].

– Deprecate HMAC-SHA-1. The SHA-1 algorithm is dangerously weak, and
a collision has been found [23]. HMAC-SHA-256 should be required at
minimum.

Other Recommendations:

– The standard must clarify how recipients of messages should parse them, and
the standard must clearly and precisely state how recipients should calculate
HMACs (e.g. to compare to received Authentication Replies and Aggressive
Mode Requests). This must clarify which Sequence Numbers (for both Chal-
lenges and Key Changes) should be valid under which conditions, and which
Challenge Data should be valid in which situations.

– The standard must clearly state when various data should be kept until (e.g.
Challenge Data), when it should be overwritten, and how many previous
instances of this data should be kept per User-Outstation pair.

6 Related Work

Previous work has considered the broader security of DNP3, or, in contrast, only
analysed SAv5’s Critical ASDU Authentication Protocol in isolation.

East et al. 2009 provide an interesting and thorough taxonomy of the
different types of attack against DNP3 in [14], but as this paper was published
before SAv5 was standardised, it does not consider Secure Authentication.

Tawde et al. 2015 propose a ‘bump-in-the-wire’ solution for the key-
management and encryption of critical packets within IEC/TS 62351-5 (the
protocol suite upon which DNP3: SAv5 is based), but provide no formal analy-
sis of this addition or the existing protocols [24].

Attacks Claimed: Amoah et al. 2014 and 2016 use Colored Petri-
Nets to model and analyse both the non-aggressive and aggressive modes of this

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 405

sub-protocol, discovering a denial of service attack in the non-aggressive mode
[9], and a “replay attack” when the aggressive and non-aggressive modes are
combined [7]. Both papers only consider the Critical ASDU protocol in isolation.

According to [7, p. 353], the attack works as follows: after a non-aggressive
critical ASDU request (A1 in Fig. 3), the attacker blocks the Authentication
Challenge message (A2) to the user, and sends a new one with the same challenge
data, but with an artificially incremented CSQ. The user creates an Authentica-
tion Reply (A3, containing an HMAC) with this incremented CSQ value, which
the outstation now rejects (A4). The attacker then replays this Authentication
Reply with the critical ASDU prepended, to match the format of an Aggressive
Mode Request (without modifying the HMAC), which, they claim, the outsta-
tion will now accept: valid Aggresive Mode Requests should have both the same
challenge data as the last sent Authentication Challenge message, and a CSQ
value incremented for each request sent since that challenge. As the user never
sent an Aggressive Mode Request (only a non-aggressive request), [7] claims this
violates agreement.

This attack does not work, as an outstation will not accept a non-aggressive
mode message replayed into the Aggressive Mode. Our reasoning is as follows:
HMACs within an Aggressive Mode Request must be calculated over “The entire
Application Layer fragment that this object is included in, including the Appli-
cation Layer header, all objects preceding this one, and the object header and
object prefix for this object” [3, p. 742, Table A-9]. An Aggressive Mode HMAC
must therefore include the “Object Header g120v3 Authentication Aggressive
Mode Request”, and the “Object Header g120v9 Authentication MAC”; these
two object headers must both be included in the HMAC calculation [3, A.45.9,
p. 741]. In contrast, the calculation of an HMAC within an Authentication Reply
message (g120v2) from a non-aggressive mode request contains no such Aggres-
sive Mode objects or headers. Assuming the attacker cannot successfully modify
the HMAC without access to the session key, an HMAC for an Aggressive Mode
Request will never match one calculated from the non-aggressive mode, regard-
less of whether the CSQ values and challenge data match.

We modelled this ‘attack’ in the file dnp3-aggressive-amoah-attack.

spthy. For this to succeed, we had to under-approximate the original model
significantly compared to the specification. Notably, in this model, we had to
remove anything from the specification stating or implying the mode in both
HMACs, as well as removing checks on the relationship between the CSQ in the
body of the Aggressive Mode Request, and the CSQ within the Authentication
Challenge included in the HMAC [3, p. 211 and 742].

We conclude that this claimed attack is an artefact of a model that is too
coarse, and is not possible in faithful implementations of the standard.

Amoah et al. then make the novel contribution of a method for Critical ASDU
Authentication within the Broadcast or Unicast setting, in [8]. Amoah’s 2016
thesis [6] supplements these papers by providing greater detail of the modelling
and analysis of the Critical ASDU Authentication Protocol .

406 C. Cremers et al.

7 Conclusions

In this work, we have performed the most comprehensive symbolic modelling and
analysis yet of the DNP3 Secure Authentication v5 protocol; this analysis has
considered all of the constituent sub-protocols, including cross protocol attacks.

We make use of novel modelling techniques in Tamarin, by identifying invari-
ants in DNP3’s state transitions to cope with analysis of the protocol’s inherent
complexity, extensive state, and unbounded loops and sessions.

Our findings notably contradict claimed results by earlier analyses; in par-
ticular, our findings show that the attack claimed in [7] is not possible in the
standard as defined.

While our analysis naturally leads to a number of recommendations for
improving future versions of DNP3, we conclude that the core protocol of the
standard meets its stated security goals if implemented correctly, increasing
much-needed confidence in this security-critical building block of power grids.

References

1. DNP3 Secure Authentication v5 Tamarin Model. https://www.cs.ox.ac.uk/people/
cas.cremers/tamarin/dnp3/dnp3.zip

2. IEC/TS 62351–2:2008, Power systems management and associated information
exchange - Data and communications security - Part 2: Glossary of terms. Inter-
national Electrotechnical Commission (2008)

3. IEEE Standard for Electric Power Systems Communications-Distributed Network
Protocol (DNP3). IEEE Std 1815–2012 pp. 1–821, October 2012

4. IEC/TS 62351–5:2013, Power systems management and associated information
exchange - Data and communications security - Part 5: Security for IEC 60870–5
and derivatives. International Electrotechnical Commission (2013)

5. Alliance for Telecommunications Industry Solutions: Glossary. http://www.atis.
org/glossary/definition.aspx?id=3961. Accessed Apr 2017

6. Amoah, R.: Formal security analysis of the DNP3-Secure Authentication Protocol.
Ph.D. thesis, Queensland University of Technology (2016)

7. Amoah, R., Çamtepe, S.A., Foo, E.: Formal modelling and analysis of DNP3 secure
authentication. J. Netw. Comput. Appl. 59, 345–360 (2016)

8. Amoah, R., Çamtepe, S.A., Foo, E.: Securing DNP3 broadcast communications in
SCADA systems. IEEE Trans. Ind. Inf. 12(4), 1474–1485 (2016)

9. Amoah, R., Suriadi, S., Çamtepe, S.A., Foo, E.: Security analysis of the non-
aggressive challenge response of the DNP3 protocol using a CPN model. In: IEEE
International Conference on Communications, ICC 2014, pp. 827–833 (2014)

10. Basin, D.A., Cremers, C., Miyazaki, K., Radomirovic, S., Watanabe, D.: Improving
the security of cryptographic protocol standards. IEEE Secur. Priv. 13(3), 24–31
(2015)

11. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.: Triple
handshakes and cookie cutters: breaking and fixing authentication over TLS. In:
2014 IEEE Symposium on Security and Privacy, pp. 98–113 (2014)

12. Cremers, C., Dehnel-Wild, M., Milner, K.: Secure authentication in the grid: a
formal analysis of DNP3: SAv5 (Full Technical report) (2017). http://www.cs.ox.
ac.uk/people/cas.cremers/downloads/papers/CrDeMi2017-DNP3-extended.pdf

https://www.cs.ox.ac.uk/people/cas.cremers/tamarin/dnp3/dnp3.zip
https://www.cs.ox.ac.uk/people/cas.cremers/tamarin/dnp3/dnp3.zip
http://www.atis.org/glossary/definition.aspx?id=3961
http://www.atis.org/glossary/definition.aspx?id=3961
http://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/CrDeMi2017-DNP3-extended.pdf
http://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/CrDeMi2017-DNP3-extended.pdf

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 407

13. DNP Users Group: A DNP3 Protocol Primer (Revision A) (2005). https://www.
dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf. Accessed Apr 2017

14. East, S., Butts, J., Papa, M., Shenoi, S.: A taxonomy of attacks on the DNP3
protocol. In: Palmer, C., Shenoi, S. (eds.) ICCIP 2009. IAICT, vol. 311, pp. 67–81.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04798-5 5

15. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28632-5 9

16. ISO/IEC: ISO/IEC 9798–1:1997, Part 1: General (1997). https://www.iso.org/
standard/27743.html. Accessed Apr 2017

17. Kelsey, J., Schneier, B., Wagner, D.A.: Protocol Interactions and the Chosen Pro-
tocol Attack. In: 5th Workshop on Security Protocols, pp. 91–104 (1997)

18. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43, June 1997

19. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-
protocol attack on the TLS protocol. In: ACM CCS 2012, pp. 62–72 (2012)

20. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 48

21. Paterson, K.G., Merwe, T.: Reactive and proactive standardisation of TLS. In:
Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 160–
186. Springer, Cham (2016). doi:10.1007/978-3-319-49100-4 7

22. Shirey, R.: RFC 2828 - Internet security glossary (2000). https://www.ietf.org/rfc/
rfc2828.txt. Accessed Apr 2017

23. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., et al.: Announc-
ing the first SHA1 collision (2017). https://security.googleblog.com/2017/02/
announcing-first-sha1-collision.html. Accessed Apr 2017

24. Tawde, R., Nivangune, A., Sankhe, M.: Cyber security in smart grid SCADA
automation systems. In: 2015 International Conference on Innovations in Infor-
mation, Embedded and Communication Systems (ICIIECS), pp. 1–5 (2015)

https://www.dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf
https://www.dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf
http://dx.doi.org/10.1007/978-3-642-04798-5_5
http://dx.doi.org/10.1007/978-3-540-28632-5_9
http://dx.doi.org/10.1007/978-3-540-28632-5_9
https://www.iso.org/standard/27743.html
https://www.iso.org/standard/27743.html
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-319-49100-4_7
https://www.ietf.org/rfc/rfc2828.txt
https://www.ietf.org/rfc/rfc2828.txt
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

	Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5
	1 Introduction
	2 The DNP3 Standard
	2.1 System and Sub-protocols
	2.2 Protocol Descriptions
	2.3 Threat Model and Security Properties

	3 Formal Model of SAv5 in Tamarin
	3.1 Symbolic Modelling Assumptions
	3.2 Complexity of the Protocol
	3.3 Protocol Modelling in Tamarin

	4 Analysis and Results
	4.1 Modelling the Threat Model and Security Properties
	4.2 Analysis in Tamarin
	4.3 Results

	5 Recommendations
	6 Related Work
	7 Conclusions
	References

