
Verifying Constant-Time Implementations
by Abstract Interpretation

Sandrine Blazy1(B) , David Pichardie2(B), and Alix Trieu1(B)

1 CNRS IRISA - Université Rennes 1 - Inria, Rennes, France
sandrine.blazy@irisa.fr, alix.trieu@irisa.fr

2 CNRS IRISA - ENS Rennes - Inria, Rennes, France
david.pichardie@irisa.fr

Abstract. Constant-time programming is an established discipline to
secure programs against timing attackers. Several real-world secure C
libraries such as NaCl, mbedTLS, or Open Quantum Safe, follow this
discipline. We propose an advanced static analysis, based on state-of-
the-art techniques from abstract interpretation, to report time leakage
during programming. To that purpose, we analyze source C programs and
use full context-sensitive and arithmetic-aware alias analyses to track the
tainted flows.

We give semantic evidences of the correctness of our approach on a
core language. We also present a prototype implementation for C pro-
grams that is based on the CompCert compiler toolchain and its com-
panion Verasco static analyzer. We present verification results on various
real-world constant-time programs and report on a successful verification
of a challenging SHA-256 implementation that was out of scope of pre-
vious tool-assisted approaches.

1 Introduction

To protect their implementations, cryptographers follow a very strict program-
ming discipline called constant-time programming. They avoid branchings con-
trolled by secret data as an attacker could use timing attacks, which are a broad
class of side-channel attacks that measure different execution times of a program
in order to infer some of its secret values [1,11,18,23]. They also avoid mem-
ory load/store indexed by secret data because of cache-timing attacks. Several
real-world secure C libraries such as NaCl [7], mbedTLS [26], or Open Quantum
Safe [30], follow this programming discipline.

The constant-time programming discipline requires to transform programs.
These transformations may be tricky and error-prone, mainly because they
involve low-level features of C and non-standard operations (e.g. bit-level manip-
ulations). We argue that programmers need tool assistance to use this program-
ming discipline. First, they need feedback at the source level during program-
ming, in order to verify that their implementation is constant time and also
to understand why a given implementation is not constant time as expected.
Moreover, they need to trust that their compiler will not break source security
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 260–277, 2017.
DOI: 10.1007/978-3-319-66402-6 16

http://orcid.org/0000-0002-0189-0223

Verifying Constant-Time Implementations by Abstract Interpretation 261

when translating the guarantees obtained at the source level. Indeed, compiler
optimizations could interfere with the previous constant-time transformations
performed by the programmer. In this paper, we choose to implement static
analysis at source level to simplify error reporting, but couple the analyzer to
the highly trustworthy CompCert compiler [25]. This strategic design choice
allows us to take advantage of static analysis techniques that would be hard to
apply at lowest program representation levels.

Static analysis is frequently used for identifying security vulnerabilities in
software, for instance to detect security violations pertaining to information
flow [15,21,34]. In this paper, we propose an advanced static analysis, based on
state-of-the-art techniques from abstract interpretation [12] (mainly fixpoint iter-
ations operating over source programs, use of widening operators, computations
performed by several abstract domains including a memory abstract domain
handling pointer arithmetic), to report time leakage during programming.

Data originating from a statement where information may leak is tainted
with the lowest security level. Our static analysis uses two security levels, that
we call secret (high level) and public (low level); it analyzes source C programs
and uses full context-sensitive (i.e., the static analysis distinguishes the different
invocations of a same function) and arithmetic-aware alias analyses (i.e., the
cells of an array are individually analyzed, even if they are accessed using pointer
dereferencing and pointer arithmetic) to track the tainted flows.

We follow the abstract interpretation methodology: we design an abstract
interpreter that executes over security properties instead of concrete values,
and use approximation of program executions to perform fixpoint computations.
We hence leverage the inference capabilities of advanced abstract interpretation
techniques as relational numeric abstractions [28], abstract domain collabora-
tions [19], arithmetic-aware alias analysis [9,27], to build a very precise taint
analysis on C programs. As a consequence, even if a program uses a same mem-
ory block to store both secret and public values during computations, our analy-
sis should be able to track it, without generating too many spurious false alarms.
This programming pattern appears in real-world implementations, such as the
SHA-256 implementation in NaCl that we are able to analyze.

In this paper, we make the following contributions:

– We define a new methodology for verifying constant-time security of C pro-
grams. Our static analysis is fully automatic and sound by construction.

– We instrument our approach in the Verasco static analyzer [22]. Verasco is
a formally-verified static analyzer, that is connected to the formally-verified
CompCert C compiler. We thus benefit from the CompCert correctness the-
orem, stating roughly that a compiled program behaves as prescribed by the
semantics of its source program.

– We report our results obtained from a benchmark of representative crypto-
graphic programs that are known to be constant time. Thanks to the precision
of our static analyzer, we are able to analyze programs that are out of reach
of state-of-the-art tools.

262 S. Blazy et al.

This paper is organized as follows. First, Sect. 2 presents the Verasco static ana-
lyzer. Then, Sect. 3 explains our methodology and details our abstract interpreter.
Section 4 describes the experimental evaluation of our static analyzer. Related
work is described in Sect. 5, followed by conclusions.

2 The Verasco Abstract Interpreter

Verasco is a static analyzer based on abstract interpretation that is formally veri-
fied in Coq [22]. Its proof of correctness ensures the absence of runtime errors (such
as out-of-bound array accesses, null pointer dereference, and arithmetic excep-
tions) in the analyzed C programs. Verasco relies on several abstract domains,
including a memory domain that finely tracks properties related to memory con-
tents, taking into account type conversions and pointer arithmetic [9].

Verasco is connected to the CompCert formally-verified C compiler, that is
also formally verified in Coq [25]. Its correctness theorem is a semantics preserva-
tion theorem; it states that the compilation does not introduce bugs in compiled
programs. More precisely, Verasco operates over C#minor, a C-like language that
is the second intermediate language in the CompCert compilation pipeline.

Verasco raises an alarm as soon as it detects a potential runtime error. Its
correctness theorem states that if Verasco returns no alarm, then the analyzed
program is safe (i.e., none of its observable behaviors is an undefined behav-
ior, according to the C#minor semantics). The design of Verasco is inspired by
Astrée [8], a milestone analyzer that was able to successfully analyze realistic
safety-critical software systems for aviation and space flights. Verasco follows a
similar modular architecture as Astrée, that is shown in Fig. 1.

First, at the bottom of the figure, a large hub of numerical abstract domains
is provided to infer numerical invariants on programs. These properties can be
relational as for example j +1 ≤ i ≤ j +2 in a loop (with Octagons or Polyhedra
abstract domains). All these domains finely analyze the behavior of machine
integers and floating-points (with potential overflows) while unsound analyzers
would assume ideal arithmetic. They are connected all-together via communi-
cation channels that allow each domain to improve its own precision via spe-
cific queries to other domains. As a consequence, Verasco is able to infer subtle
numerical invariants that require complex reasoning about linear arithmetic,
congruence and symbolic equalities.

Second, on top of these numerical abstractions sits an abstract memory func-
tor [9] that tracks fine-grained aliases and interacts with the numerical domains.
This functor can choose to represent each cell of a same memory block with a
single property, or to finely track each specific property of every position in the
block. Contrary to many other alias analyses, this approach allows us to reason
on local and global variables with the same level of precision, even when the mem-
ory addresses are manipulated by the programmer. Some unavoidable approxima-
tions are performed when the target of a memory dereference corresponds to sev-
eral possible targets, but Verasco makes the impact of such imprecision as limited
as possible. Because of ubiquitous pointer arithmetic in C programs (even simple

Verifying Constant-Time Implementations by Abstract Interpretation 263

array accesses are represented via pointer arithmetic in C semantics), the func-
tor needs to ask advanced symbolic numerical queries to the abstract numerical
domain below it. In return, its role is to hide the load and store operations from
them, and only communicate via symbolic numerical variables.

Third, the last piece of the analyzer is an advanced abstract interpreter
that builds a fixpoint for the analysis result. This task is a bit more complex
than in standard dataflow analysis techniques that look for the least solution of
dataflow equation systems. In such settings, each equation is defined by means
of monotone operators in a well chosen lattice without infinite ascending chains.
By computing the successive iterates of the transfer functions attached to each
equations, starting from a bottom element, the fixpoint computation always ter-
minates on the least element of the lattice that satisfies all equations. In contrast,
the Verasco abstract interpreter relies on infinite lattices, where widening and
narrowing operators [12] are used for ensuring and accelerating the convergence.
Smart iteration strategies are crucial when using such accelerating operators
because they directly impact the precision of the analysis diagnosis. Verasco
builds its strategy by following the structure of the program. On every program
loop, it builds a local fixpoint using accelerating techniques. At every function
call, it makes a recursive call of the abstract interpreter on the body of the callee.
The callee may be resolved thanks to the state abstraction functor in presence
of function pointers. The recursive nature of the abstract interpreter makes the
analysis very precise because each function is independently analyzed as many
times as there are calling contexts that invoke it.

integer and

arithmetic

CongruencesIntervals Polyhedra OctagonsSymbolic
equalities

Linearization

CompCert compiler...

statesState abstraction

Abstract interpreterOK/Alarm

Numerical abstraction

ClightCompCert C C#minor

Communication
channels

Fig. 1. Architecture of the Verasco static analyzer

264 S. Blazy et al.

Furthermore, C#minor is classically structured in functions, statements, and
expressions. Expressions have no side effects; they include reading temporary
variables (which do not reside in memory), taking the address of a non-temporary
variable, constants, arithmetic operations, and dereferencing addresses. The
arithmetic, logical, comparison, and conversion operators are roughly those of C,
but without overloading: for example, distinct operators are provided for integer
multiplication and floating-point multiplication. Likewise, there are no implicit
casts: all conversions between numerical types are explicit. Statements offer both
structured control and goto with labels. C loops as well as break and continue
statements are encoded as infinite loops with a multi-level exit n that jumps to
the end of the (n + 1)-th enclosing block.

3 Verifying Constant-Time Security

Our static analyzer operates over C#minor programs. In this paper, we use a
simpler While toy-language for clarity. It is defined in the first part of this
section. Then, we detail our model for constant-time leakage, and explain the
tainting semantics we have defined to track data dependencies in programs. Last,
we explain the main algorithm of our static analyzer.

3.1 The While Language

Our While language is classically structured in statements and expressions, as
shown in Fig. 2. Expressions include constants, addresses of variables, arithmetic
operations and dereferencing addresses, so as to model pointer aliasing. State-
ments include skip statements, stores, sequences, if and while statements.

Fig. 2. Syntax of While programs

The semantics of While is defined in Fig. 3 using a small-step style, sup-
porting the reasoning on nonterminating programs. Contrary to the C language,
the semantics is deterministic (and so is the semantics of C#minor). Given a
semantic state σ, an expression e evaluates (big-step style) in a value v (written
〈σ, e〉 → v); the execution of a statement s results in an updated state σ′ and
a new statement to execute s′ (written 〈σ, s〉 → 〈σ′, s′〉). The semantic state σ
maps memory locations (pairs l = (x, n) made of an address and an offset from
this address) to values. Values can either be locations or constants, and we write
σ(e) to denote the value of expression e in state σ (i.e. 〈σ, e〉 → σ(e)).

The reflexive transitive closure of this small-step semantics represents the
execution of a program. When the program terminates (resp. diverges, e.g. when

Verifying Constant-Time Implementations by Abstract Interpretation 265

Fig. 3. Semantics of While programs

an infinite loop is executed), it is a finite (resp. infinite) execution of steps. The
execution of a program is safe iff either the program diverges, or the program
terminates (i.e., its final semantic state is 〈σ, skip〉, meaning that there is no
more statement to execute). The execution of a program is stuck (on 〈σ, s〉) when
s differs from skip and no semantic rule can be applied.

3.2 Constant-Time Security

In our model, we assume that branching statements and memory accesses may
leak information through their execution. We use a similar definition of constant-
time security to the one given in [2]. We define a leakage model L as a map from
semantic states 〈σ, p〉 to sequences of observations L(〈σ, p〉) with ε being the
empty observation. Two executions are said to be indistinguishable when their
observations are the same:

L(〈σ0, p0〉) · L(〈σ1, p1〉) · . . . = L(〈σ′
0, p

′
0〉) · L(〈σ′

1, p
′
1〉) ·

Definition 1 (Constant-time leakage model). Our leakage model is such
that the three following equalities hold, where ∗e′

0, . . . ∗ e′
n are the read memory

accesses appearing respectively in expressions e in the first line, e in the second
line, e1 and e2 in the third line.

1. L(〈σ, if e then p1 else p2〉) = σ(e)σ(e′
0) . . . σ(e′

n)
2. L(〈σ, while e do p〉) = σ(e)σ(e′

0) . . . σ(e′
n)

3. L(〈σ, e1 = e2〉) = σ(e1)σ(e′
0) . . . σ(e′

n)

The first and second lines mean that the value of branching conditions is con-
sidered as leaked. The last line means that the address of a store access is also
considered as leaked. Additionally, all locations of read accesses are also consid-
ered as leaked.

266 S. Blazy et al.

Given this leakage model, two indistinguishable executions of a program must
necessarily have the same control flow. Moreover, one execution cannot be stuck
while the other can continue execution. Indeed, in our While language, the only
way to have a stuck execution is either to try to dereference a value that is
not a valid location (a constant or an out-of-range location), or to write in a
constant value or to branch on a non-boolean value. However, by definition of
indistinguishability and the leakage model, these values must be the same in
both executions, thus both executions have the same control flow.

Given a program, we assume that the attacker has access to the values of
some of its inputs, which we call the public input variables, and does not have
access of the other ones, which we call the secret input variables.

Definition 2 (Constant-time security). A program p0 is constant time if
for any set Xi of public input variables such that for all pair of safe executions
〈σ0, p0〉 → 〈σ1, p1〉 → . . . and 〈σ′

0, p0〉 → 〈σ′
1, p

′
1〉 → . . . such that both states

share the same public values (i.e., ∀x ∈ Xi, i ∈ N, σ0(x, i) = σ′
0(x, i)), then both

executions are indistinguishable.

This definition means that a constant-time program is such that, any pair of its
executions that only differ on its secrets must leak the exact same information.
This also gives a definition of constant-time security for infinite execution.

3.3 Reducing Security to Safety

We introduce an intermediate tainting semantics for While programs in Fig. 4,
and use the � symbol to distinguish its executions from those of the original
semantics. The tainting semantics is an instrumentation of the While seman-
tics that tracks dependencies. In the tainted semantics, a program gets stuck if
branchings or memory accesses depend on secrets. We introduce taints, either
High or Low to respectively represent secret and public values and a union opera-
tor on taints defined as follows: Low 	 Low = Low and ∀ t, High 	 t = t 	 High =
High; it is used to compute the taint of a binary expression. In the instrumented
semantics, we take into account taints in semantic values: the semantic state σ
becomes a tainted state στ , where locations are now mapped to pairs made of a
value and a taint.

Let us note that for a dereferencing expression ∗e1 to have a value, the taint
associated to e1 must be Low. Indeed, we forbid memory read accesses that
might leak secret values. This concerns dereferencing expressions (loads) and
assignment statements (store of a lvalue). Similarly, test conditions in branching
statements must also have a Low taint.

The instrumented semantics preserves the regular behavior of programs
(defined in Fig. 3), as stated by the following theorem, which can be proven
by induction on the execution relation.

Theorem 1. Any safe execution 〈στ0, p0〉 � 〈στ1, p1〉 � . . . of program p0 in
the tainting semantics implies that the execution 〈σ0, p0〉 → 〈σ1, p1〉 → . . . is
also safe in the regular semantics. Here, for all k, σk is a semantic state such

Verifying Constant-Time Implementations by Abstract Interpretation 267

Fig. 4. Tainting semantics for While programs

that for all location l where στk is defined, there exists a taint tk such that
στk(l) = (σk(l), tk). As an immediate corollary, any safe program according to
the tainting semantics is also safe according to the regular semantics.

Theorem 1 is useful to prove our main theorem relating our instrumented
semantics and the constant-time property we want to verify on programs.

Theorem 2. Any safe program w.r.t. the tainting semantics is constant time.

Proof. Let p0 be a safe program with respect to the tainting semantics. Let Xi

be a set of public variables and let 〈σ0, p0〉 → 〈σ1, p1〉 → . . . and 〈σ′
0, p0〉 →

〈σ′
1, p

′
1〉 → . . . be two safe executions of p0 such that for all x ∈ Xi and n ∈ N,

we have σ0(x, n) = σ′
0(x, n).

We now need to prove that both executions are indistinguishable. Let στ0

be such that for all x ∈ Xi, n ∈ N, στ0(x, n) = (σ0(x, n), Low) and also for all
x /∈ Xi, n ∈ N, στ0(x, n) = (σ0(x, n), High).

By safety of program p0 according to the tainting semantics, there exists some
states στ1, στ2, . . . such that 〈στ0, p0〉 � 〈στ1, p1〉 � . . . is a safe execution. Let
σn′ be such that there exists for all location l, a taint t′n such that, στn(l) =
(σn′(l), t′n). We prove by strong induction on n that σn′ = σn.

– It is clearly true for n = 0 by definition of στ0.
– Suppose it is true for all k < n and let us prove it for n. By using Theorem 1,

we know that there exists a safe execution 〈σ0, p0〉 → 〈σ1′ , p1′〉 → . . . →
〈σn′ , pn′〉 → Furthermore, the semantics is deterministic and we know
that 〈σ0, p0〉 → 〈σ1, p1〉 → Therefore, we have the following series of
equalities: σ1′ = σ1, p1′ = p1, . . . σn′ = σn, pn′ = pn.

Thus, for all k ∈ N, the state στk verifies that for all l, there exists tk
such that στk(l) = (σk(l), tk). Similarly, we define σ′

τ0, σ
′
τ1, . . . for the second

execution which also verifies the same property by construction.

268 S. Blazy et al.

Finally, we need to prove that for all n ∈ N, L(〈σn, pn〉) = L(〈σ′
n, p′

n〉). First,
we define the notation σn =L σ′

n for all n ∈ N, meaning that for all l, στn(l) =
(σn(l), Low) iff σ′

τn(l) = (σ′
n(l), Low) and σn(l) = σ′

n(l). Both environments must
agree on locations with Low taints. For all n ∈ N, let us prove by induction on
pn that if pn = p′

n and σn =L σ′
n, then pn+1 = p′

n+1 and σn+1 =L σ′
n+1.

– if pn = skip;p′, it is true because pn+1 = p′
n+1 = p′, σn+1 = σn and also

σ′
n+1 = σ′

n.
– if pn = p; p′, it is true by induction hypothesis.
– if pn = if e . . . or pn = while e . . ., we have σn+1 = σn and σ′

n+1 = σ′
n.

Furthermore, we know that there exists some v such that 〈στn, e〉 � (v, Low)
and similarly, there exists v′ such that 〈σ′

τn, e〉 � (v′, Low) because of the
safety in the tainting semantics. Since σn(e) = v, σ′

n(e) = v′ and σn =L σ′
n,

we have v = v′ and thus pn+1 = p′
n+1.

– if pn = e1 = e2, we have pn+1 = p′
n+1 = skip. By using the same reasoning

as the previous case, we can prove that σn(e1) = σ′
n(e1) = l. There exists

v, v′, t, t′ such that 〈στn, e2〉 � (v, t) and 〈σ′
τn, e2〉 � (v′, t′) and thus σn+1 =

σn[l
→ v] and σ′
n+1 = σn[l
→ v′]. If t = t′ = Low, then v = v′ and σn+1 =L

σ′
n+1. If t = t′ = High, then σn+1 =L σ′

n+1 by definition. Without loss of
generality, we can consider that t = Low and t′ = High. e2 must necessarily
contain a memory read ∗e3 such that 〈σ′

τn, ∗e3〉 � (v3, High) otherwise t′ =
Low. With a similar reasoning than before, we can prove σn(e3) = σ′

n(e3) = l′.
So, στn(l′) must have High taint by definition of σn =L σ′

n, which is absurd.

Finally, by exploiting this lemma, a simple induction proves that for all n ∈ N,
pn = p′

n and σn =L σ′
n. Furthermore, a direct consequence is that for all n ∈ N,

L(〈σn, pn〉) = L(〈σ′
n, p′

n〉).

3.4 Abstract Interpreter

To prove that a program is safe according to the tainting semantics, we design a
static analyzer based on abstract interpretation. It computes a correct approxi-
mation of the execution the analyzed program, thus if the approximative execu-
tion is safe, then the actual execution must necessarily be safe.

As our actual implementation takes advantage of the Verasco static ana-
lyzer, we reuse its memory abstraction M#. It provides target#, assert# and
assign# operators working as follows. Given an abstract environment σ# and
an expression e, target#(e, σ#) returns a list of locations l1, . . . ln corresponding
to the locations that are represented by e. It returns ⊥# if e cannot be evalu-
ated to a location. Second, suppose that we have an if statement with condition
(∗x < 5) and the abstract environment only knows that location (x, 0) has its
value in [0, 42]. The analysis can gain precision by assuming in the first (resp.
second) branch that location (x, 0) has its value in [0, 4] (resp. [5, 42]). Similarly,
if we know that (x, 0) only has its value between in [−2, 4], we do not need
to analyze the second branch. Thus, given an abstract environment σ# and an
expression e, assert#(e, σ#) returns a modified abstract environment assuming

Verifying Constant-Time Implementations by Abstract Interpretation 269

that e is true; if it is not possible (because e can only evaluate to false in σ#

for example), it returns the error state ⊥#. Third, assign#(e1, e2, σ#) is the
abstract counterpart of e1 = e2.

Now, for the analysis to track taints, we need an abstraction of taints Taint#
that we define as Low# and High#. We use Low# to indicate that a location
contains a value that has exactly a Low taint and High# to indicate that it
may be Low or High. In order to analyze the following snippet, it is necessary
to correctly approximate the taint that will be assigned to location (x, 0) after
execution.

if /* low expr */ x = /* high expr */ else x = /* low expr */

As it can either be Low or High, we use the approximation High#. We could
have used High# to indicate that a location can only have a High value, however
constant-time security is not interested in knowing that value has exactly High
taint, but only in knowing that it may have a High taint.

The analyzer is now given a new mapping τ# that maps locations to
abstract taints. Given σ#, τ# and an expression e, we define a new opera-
tor low(e, σ#, τ#) asserting that e has Low taint and contains only non-secret
dependent memory reads. It is defined recursively as follows. The tricky part is
∗e, where the operator verifies that e has a low taint to ensure that the memory
access is not secret dependent and then uses targets# to ensure that all possible
accessed locations contain Low values.

– low(n, σ#, τ#) = true and low(x, σ#, τ#) = true
– low(∗e, σ#, τ#) = low(e, σ#, τ#) ∧ ∧

li∈targets#(e,σ#)(τ
#(li) = Low#)

– low(e1 ⊕ e2, σ
#, τ#) = low(e1, σ#, τ#) ∧ low(e2, σ#, τ#)

Similarly to low, we define safe(e, σ#, τ#) as asserting that e does not con-
tain secret dependent memory reads but does not check the taint of e. We also
define taint#(e, σ#, τ#) as the abstract taint of expression e. Moreover, to take
account of taintings, we then define assert#τ and assign#τ as follows.

assert#τ (e, σ#, τ#) = if low(e, σ#, τ#) then (assert#(e, σ#), τ#) else ⊥#

assign#τ (e1, e2, σ#, τ#) = if low(e1, σ#, τ#) ∧ safe(e2, σ#, τ#) then

(assign #(e1, e2, σ#),
⊔

li∈targets(e,σ#)

τ#[li
→ taint#(e, σ#, τ#)]) else ⊥#.

Finally, the abstract analysis [[p]](σ#, τ#) of program p starting with abstract
environment σ# and tainting τ# is defined in Fig. 5. To analyze (p1; p2), first
p1 is analyzed and then p2 is analyzed using the environment given by the first
analysis. Similarly, to analyze a statement (if e then p1 else p2), p1 is analyzed
assuming that e is true and p2 is analyzed assuming the opposite, 	# is then
used to get an over-approximation of both results.

The loop (while e do p) is the trickiest part to analyze, as the analysis
cannot just analyze one iteration of the loop body and then recursively analyze
the loop again since it may never terminate. It thus tries to find a loop invariant.

270 S. Blazy et al.

Fig. 5. Abstract execution of statements

The standard method in abstract interpretation is to compute a post-fixpoint of
the function iter(e, p, ·) as defined in Fig. 5. It represents a loop invariant, the
final result is thus the invariant where the test condition does not hold anymore.
In order to compute the post-fixpoint, we use pfp(f, x) which computes a post-
fixpoint of monotone function f by successively computing x, f(x), f(f(x)), . . .,
and forces convergence using a widening-narrowing operator on the M# part.
The taint part does not require convergence help because it is a finite lattice.

3.5 Correctness of the Abstract Interpreter

In order to state the correctness of our abstract interpreter, we introduce the
concept of concretization. We use v ∈ γ(v#) to say that v is in the concretization
of abstract value v#, which means that v# represents a set of concrete values of
which v is a member.

The abstract interpreter operates over a product M# × T# of abstract envi-
ronments and abstract taintings (maps from location to taints). For σ# ∈ M#,
we suppose we already have its concretization γ1(σ#) (as given in [9]). For τ# ∈
T#, we first define the concretization of abstract taints by γτ (Low#) = {Low} and
γτ (High#) = {Low, High}. For all στ , we call σ1

τ and σ2
τ the two functions such

that for all l, στ (l) = (σ1
τ (l), σ2

τ (l)). The concretization γ2(τ#) is then defined as
follows.

γ2(τ#) = {σ2
τ |∀l, σ2

τ (l) ∈ γτ (τ#(l))}
Finally, for all (σ#, τ#) ∈ M# × T#, its concretization γ(σ#, τ#) is defined as

γ(σ#, τ#) = {στ |σ1
τ ∈ γ1(σ#) ∧ σ2

τ ∈ γ2(τ#)}

The correctness theorem of the abstract interpreter intuitively means that if
the abstract interpreter does not raise an alarm, then the program must be safe
according to the tainting semantics (in which case it is also safe according to
the original semantics, because of Theorem 1). The correctness theorem can be
stated as follows.

Verifying Constant-Time Implementations by Abstract Interpretation 271

Theorem 3. For all program p, environment στ and abstract environment σ#
τ

such that στ ∈ γ(σ#
τ), if we have the execution 〈στ , p〉 �∗ 〈σ′

τ , skip〉, then we
also have σ′

τ ∈ γ([[p]]#(σ#
τ)).

In order to prove this theorem, we follow the usual methodology in abstract
interpretation and define a collecting semantics, aiming at facilitating the proof.
The semantics (not detailed in the paper) still expresses the dynamic behavior
of programs but takes a closer form to the analysis. It operates over properties
of concrete environments, thus bridging the gap between concrete environments
and abstract environments, which represent sets of concrete environments.

4 Implementation and Experiments

Following the methodology presented in Sect. 3, we have implemented a proto-
type leveraging the Verasco static analyzer. We have been able to evaluate our
prototype by verifying multiple actual C code constant-time algorithms taken
from different cryptographic libraries such as NaCl [7], mbedTLS [26], Open
Quantum Safe [10] and curve25519-donna [16].

In order to use our tool, the user simply has to indicate which variables are
to be considered secrets and the prototype will either raise alarms indicating
where secrets may leak, or indicate that the input program is constant time.
The user can either indicate a whole global variable to be considered as secret at
the start of the program, or uses the verasco any int secret built-in function
to produce a random signed integer to be considered as secret.

4.1 Memory Separation

By leveraging Verasco, the prototype has no problem handling difficult problems
such as memory separation. For example, the small example of Fig. 6 is easily
proved as constant time. In this program, an array t is initialized with random
values, such that the values in odd offsets are considered as secrets, contrary to
values in even offsets. So, the analyzer needs to be precise enough to distinguish
between the array cells and to take into account pointer arithmetic. The potential
leak happens on line 6. However, the condition on line 5 constrains i%2 == 0 to
be true, and thus i must be even on line 6, so t[i] does not contain a secret. A
naive analyzer would taint the whole array as secret and would thus not be able
to prove the program constant-time, however our prototype has no problem to
prove it.

Interestingly, an illustration of the problem can be found in real-world pro-
grams. For example, the NaCl implementation of SHA-256 is not handled by [2]
due to this. Indeed, in this program, the hashing function uses the following C
struct as an internal state that contains both secret and public values during
execution.

272 S. Blazy et al.

Fig. 6. An example program that is analyzed as constant time

typedef struct crypto_hash_sha256_state {

uint32_t state [8];

uint32_t count [2];

unsigned char buf [64]; } crypto_hash_sha256_state ;

While field count contains public values, fields state and buf can contain
both public and secret values. Only count is used in possibly leaking operations,
however the whole struct is allocated as a single memory block at low level
(i.e., LLVM) and [2] does not manage to prove the memory separation.

4.2 Cryptographic Algorithms

We report in Table 1 our results on a set of cryptographic algorithms, all exe-
cutions times reported were obtained on a 3.1 GHz Intel i7 with 16 GB of
RAM. Sizes are reported in terms of numbers of C#minor statements (i.e.,
close to C statements), lines of code are measured with cloc and execution
times are reported in seconds. The first block of lines gathers test cases for the
implementations of a representative set of cryptographic primitives including
TEA [36], an implementation of sampling in a discrete Gaussian distribution by
Bos et al. [10] (rlwe sample) taken from the Open Quantum Safe library [30],
an implementation of elliptic curve arithmetic operations over Curve25519 [6] by
Langley [16](curve25519-donna), and various primitives such as AES, DES, etc.
The second block reports on different implementations from the NaCl library [7].
The third block reports on implementations from the mbedTLS [26] library.
Finally, the last result corresponds to an implementation of MAC-then-Encode-
then-CBC-Encrypt (MEE-CBC).

All these examples are proven constant time, except for AES and DES. Our
prototype rightfully reports memory accesses depending on secrets, so these two
programs are not constant time. Similarly to [2], rlwe sample is only proven
constant time, provided that the core random generator is also constant time,
thus showing that it is the only possible source of leakage.

The last example mee-cbc is a full implementation of the MEE-CBC con-
struction using low-level primitives taken from the NaCl library. Our prototype
is able to verify the constant-time property of this example, showing that it
scales to large code bases (939 loc).

Verifying Constant-Time Implementations by Abstract Interpretation 273

Table 1. Verification of cryptographic primitives

Example Size Loc Time

aes 1171 1399 41.39

curve25519-donna 1210 608 586.20

des 229 436 2.28

rlwe sample 145 1142 30.76

salsa20 341 652 0.04

sha3 531 251 57.62

snow 871 460 3.37

tea 121 109 3.47

nacl chacha20 384 307 0.34

nacl sha256 368 287 0.04

nacl sha512 437 314 1.02

mbedtls sha1 544 354 0.19

mbedtls sha256 346 346 0.38

nbedtls sha512 310 399 0.26

mee-cbc 1959 939 933.37

Our prototype is able to verify a similar set of programs as [2], except for
the libfixedtimefixedpoint library [3] which unfortunately does not use stan-
dard C and is not handled by CompCert. The library uses extensively a GNU
extension known as statement-expressions and would require heavy rewriting to
be accepted by our tool.

On the other hand, our tool shows its agility with memory separation on the
program SHA-256 that was out of reach for [2] and its restricted alias manage-
ment. In terms of analysis time, our tool behaves similarly to [2]. On a similar
experiment platform, we observe a speedup between 0.1 and 10. This is very
encouraging for our tool whose efficiency is still in an upgradeable stage, com-
pared to the tool of [2] that relies on decades of implementation efforts for the
LLVM optimizer and the Boogie verifier.

5 Related Work

This paper deals with static program verification for information-flow track-
ing [34]. Different formal techniques have been used in this area. The type-based
approach [29] provides an elegant modular verification approach but requires pro-
gram annotations, especially for each program function. Because a same function
can be called in very different security contexts, providing an expressive anno-
tation language is challenging and annotating programs is a difficult task. This
approach has been mainly proposed for programming language with strong type
guarantees such as Java [29] or ML [31]. The deductive approach [14] is based

274 S. Blazy et al.

on more expressive logics than type systems and then allows to express sub-
tle program invariants. On the other hand, the loop invariant annotation effort
requires strong formal method expertise and is very much time consuming. The
static analysis approach only requires minimal annotation (the input taints) and
then tries to infer all the remaining invariants in the restricted analysis logic.
This approach has been followed to track efficiently implicit flows using program
dependence graphs [20,33]. We also follow a static approach but our backbone
technique is an advanced value analysis for C, that we use to infer fine-grained
memory separation properties and finely track taints in an unfolded call graph of
the program. Building a program dependence graph for memory is a well known
challenge and scaling this approach to a Verasco (or Astrée) memory analysis is
left for further work.

This paper deals however with a restricted notion of information flow:
constant-time security. Here, implicit flow tracking is simplified since we
must reject1 control-flow branching that depends on secret inputs. Our abstract
interpretation approach proposes to accompany a taint analysis with a pow-
erful value analysis. The tool tis-ct [35] uses a similar approach but based on
the Frama-C value analysis, instead of Verasco (and its Astrée architecture).
The tool is developed by the TrustInSoft company and not associated with
any scientific publication. It has been used to analyze OpenSSL. Frama-C and
Verasco value analysis are based on different abstract interpretation techniques
and thus the tainting power of tis-ct and our tool will differ. As an example
of difference, Verasco provides relational abstraction of memory contents while
tis-ct is restricted to non-relational analysis (like intervals). CacheAudit [17] is a
also based on abstract interpretation but analyze cache leakage at binary level.
Analysing program at this low level tempers the inference capabilities for mem-
ory separation, because the memory is seen as a single memory block. Verasco
benefits from a source level view where each function has its own region for
managing local variables.

In a previous work of the second author [5], C programs where compiled by
CompCert to an abstraction of assembly before being analyzed. A simple data-
flow analysis was then performed, flow insensitive for every memory block except
the memory stack, and constant-time security was verified. The precision of this
approach requires to fully inline the program before analysis. It means that
every function call was replaced by its function body until no more function call
remained. This has serious impact on the efficiency of the analysis and a program
like curve25519-donna was out of reach. The treatment of memory stack was
also very limited since no value analysis was available at this level or program
representation. There was no way to finely taint an array content if this array laid
in the stack (which occurs when C arrays are declared as local variables). Hence,
numerous manual program rewritings were required before analysis. Our current
approach releases these restrictions but requires more trust on the compiler (see
our discussion in the conclusion).

1 We could accept some of them if we were able to prove that all branches provide a
similar timing behavior.

Verifying Constant-Time Implementations by Abstract Interpretation 275

A very complete treatment of constant-time security has been recently pro-
posed by the ct-verif tool [2]. Its verification is based on a reduction of constant
time security of a program P to safety of a product program Q that simulates two
parallel executions of P . The tool is based on the LLVM compiler and operates
at the LLVM bytecode level, after LLVM optimizations and alias analyses. Once
obtained, the bytecode program is transformed into a product program which,
in turn, is verified by the Boogie verifier [4] and its traditional SMT tool suite.
In Sect. 4, we made a direct experimental comparison with this tool. We list here
the main design differences between this work and ours. First we do not perform
the analysis at a similar program representation. LLVM bytecode is interesting
because one can develop analyses that benefit from the rich collection of tools pro-
vided by the LLVM platform. For example, [2] benefits from LLVM data-structure
analysis [24] to partition memory objects into disjoint regions. Still, compiler alias
analyses are voluntarily limited because compilers translate programs in almost
linear time. Verasco (and its ancestor Astrée) follows a more ambitious approach
and tracks very finely the content of the memory. Using Verasco requires a different
tool design but opens the door for more verified programs, as for example the SHA-
256 example. Second, we target a more restricted notion of constant-time security
than [2] which relaxes the property with a so-called notion of publicly observable
outputs. The extension is out of scope of our current approach but seems promis-
ing for specific programs. Only one program in our current experiment is affected
by this limitation. At last, we embed our tool in a more foundational semantic
framework. Verasco and CompCert are formally verified. It leaves the door open
for a fully verified constant-time analyzer, while a fully verified ct-verif tool would
require to prove SMT solvers, Boogie verifier and LLVM. The Vellvm [37] is a
first attempt in the direction of verifying the LLVM platform, but it is currently
restricted to a core subset (essentially the SSA generation) of the LLVM passes,
and suffers from time-performance limitations.

Other approaches rely on dynamic analysis (e.g. [13] that extends of Valgrind
in order to check constant-address security) or on statistical analysis of execution
timing [32]. These approaches are not sound.

6 Conclusion

In this paper, we presented a methodology to ensure that a software imple-
mentation is constant time. Our methodology is based on advanced abstract
interpretation techniques and scales on commonly used cryptographic libraries.
Our implementation sits in a rich foundational semantic framework, Verasco and
CompCert, which give strong semantic guarantees. The analysis is performed at
source level and can hence give useful feedback to the programmer that needs
to understand why his program is not constant time.

There are two main directions for future work. The first one concerns seman-
tic soundness. By inspecting CompCert transformation passes, we conjecture
that they preserve the constant-time property of source programs we successfully
analyze. We left as further work a formal proof of this conjecture. The second

276 S. Blazy et al.

direction concerns expressiveness. In order to verify more relaxed properties, we
could try to mix the program-product approach of [2] with the Verasco analysis.
The current loop invariant inference and analysis of [2] are rather restricted.
Using advanced alias analysis and relational numeric analysis could strengthen
the program-product approach, if it was performed at the same representation
level as Verasco.

References

1. Aciiçmez, O., Koç, Ç.K., Seifert, J.-P.: On the power of simple branch prediction
analysis. In: ACM Symposium on Information, Computer and Communications
Security (2007)

2. Almeida, J.B., et al.: Verifying constant-time implementations. In: 25th USENIX
Security Symposium, USENIX Security 16 (2016)

3. Andrysco, M., et al.: On subnormal floating point and abnormal timing. In: Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy (2015)

4. Barnett, M., et al.: Boogie: a modular reusable verifier for object-oriented pro-
grams. In: Proceedings of FMCO 2005 (2005)

5. Barthe, G., et al.: System-level non-interference for constant-time cryptography.
In: Conference on Computer and Communications Security (CCS) (2014)

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Public Key
Cryptography - PKC 2006: 9th International Conference on Theory and Practice
in Public-Key Cryptography (2006)

7. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: International Conference on Cryptology and Information Secu-
rity in Latin America (2012)

8. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: PLDI
(2003)

9. Blazy, S., Laporte, V., Pichardie, D.: An abstract memory functor for verified C
static analyzers. In: International Conference on Functional Programming (ICFP
2016) (2016)

10. Bos, J.W., et al.: Post-quantum key exchange for the TLS protocol from the ring
learning with errors problem. In: IEEE Symposium on Security and Privacy, SP
2015 (2015)

11. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 34

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principles of Programming Languages, POPL 1977 (1977)

13. ctgrind. https://github.com/agl/ctgrind
14. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure

information flow. In: Proceedings of 2nd International Conference on Security in
Pervasive Computing (2005)

15. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19,
236–243 (1976)

16. donna. https://code.google.com/archive/p/curve25519-donna
17. Doychev, G., et al.: CacheAudit: a tool for the static analysis of cache side channels.

In: USENIX Conference on Security (2013)

http://dx.doi.org/10.1007/978-3-540-45146-4_34
https://github.com/agl/ctgrind
https://code.google.com/archive/p/curve25519-donna

Verifying Constant-Time Implementations by Abstract Interpretation 277

18. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: Symposium on Security and Privacy (SP 2013) (2013)

19. Feret, J.: Static analysis of digital filters. In: European Symposium on Program-
ming (ESOP 2004) (2004)

20. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Sec. 8,
399–422 (2009)

21. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software
Safety and Security - Tools for Analysis and Verification (2012)

22. Jourdan, J.-H., et al.: A formally-verified C static analyzer. In: Symposium on
Principles of Programming Languages, POPL 2015 (2015)

23. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Advances in Cryptology - CRYPTO 1996 (1996)

24. Lattner, C., Lenharth, A., Adve, V.S.: Making contextsensitive points-to analysis
with heap cloning practical for the real world. In: Conference on Programming
Language Design and Implementation, PLDI 2007 (2007)

25. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52, 107–115
(2009)

26. mbed TLS (formerly known as PolarSSL). https://tls.mbed.org/
27. Miné, A.: Field-sensitive value analysis of embedded C programs with union types

and pointer arithmetics. In: Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2006) (2006)

28. Miné, A.: The octagon abstract domain. In: Higher-Order and Symbolic Compu-
tation (2006)

29. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Sympo-
sium on Principles of Programming Languages, POPL 1999 (1999)

30. Open Quantum Safe. https://openquantumsafe.org/
31. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.

Lang. Syst. 25, 117–158 (2003)
32. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time. In:

Proceedings of DATE 2017 (2017)
33. Rodrigues, B., Quintão Pereira, F.M., Aranha, D.F.: Sparse representation of

implicit flows with applications to side-channel detection. In: Compiler Construc-
tion (2016)

34. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21, 5–19 (2003)

35. TIS-CT. http://trust-in-soft.com/tis-ct/
36. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Fast Soft-

ware Encryption: Second International Workshop Leuven (1995)
37. Zhao, J.: et al.: Formalizing the LLVM intermediate representation for verified

program transformation. In: Symposium on Principles of Programming Languages,
POPL 2012 (2012)

https://tls.mbed.org/
https://openquantumsafe.org/
http://trust-in-soft.com/tis-ct/

	Verifying Constant-Time Implementations by Abstract Interpretation
	1 Introduction
	2 The Verasco Abstract Interpreter
	3 Verifying Constant-Time Security
	3.1 The While Language
	3.2 Constant-Time Security
	3.3 Reducing Security to Safety
	3.4 Abstract Interpreter
	3.5 Correctness of the Abstract Interpreter

	4 Implementation and Experiments
	4.1 Memory Separation
	4.2 Cryptographic Algorithms

	5 Related Work
	6 Conclusion
	References

