
DOMPurify: Client-Side Protection Against XSS
and Markup Injection

Mario Heiderich(B), Christopher Späth, and Jörg Schwenk

Ruhr-University Bochum, Bochum, Germany
mario.heiderich@rub.de

Abstract. To prevent Cross-Site Scripting (XSS) and related attacks,
sanitation of untrusted content is usually performed either on the server
side, or by client-side filters like XSS Auditor or NoScript. However, mod-
ern web applications (including mobile apps) may not be able to rely on
these mechanisms any more since untrusted content may pass these fil-
ters as ciphertext or may completely be processed within the DOM of
the browser/app.

To cope with this problem, XSS sanitation within the Document
Object Model (DOM) is required. This poses a novel technical challenge:
A DOM-based sanitizer must rely on native JavaScript functions. How-
ever, in the DOM, any function or property can be overwritten, through
a class of attacks called DOM Clobbering.

We present a two-part solution: First we show how to embed any
server or client side filtering technology securely into the DOM. Second,
we give an example instantiation of an XSS filter which is highly efficient
when implemented in Javascript. Both parts are combined into a working
and battle-tested proof-of-concept implementation called DOMPurify.

Keywords: Cross-Site Scripting · JavaScript · DOM Clobbering ·
Expression injection · Sanitization · Webmail encryption

1 Introduction

Since their introduction to the broader debate in the year 19991, XSS and
Markup Injection attacks have been recognized as major threats to web applica-
tions. New attack classes and sub-classes of XSS are discovered and documented
regularily [1–3]. To prevent these attacks and ensure that no malicious scripts are
executed, any untrusted input must be sanitized thoroughly (removal of scripts,
event handlers, certain styles, expression syntax, and other contextually-risky
elements) prior to being rendered in the browser. At the same time, it is crucial
that a good sanitizer does not remove too much markup, keeping False Positives
at bay.

1 http://blogs.msdn.com/b/dross/archive/2009/12/15/happy-10th-birthday-cross-
site-scripting.aspx.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 116–134, 2017.
DOI: 10.1007/978-3-319-66399-9 7

http://blogs.msdn.com/b/dross/archive/2009/12/15/happy-10th-birthday-cross-site-scripting.aspx
http://blogs.msdn.com/b/dross/archive/2009/12/15/happy-10th-birthday-cross-site-scripting.aspx

DOMPurify: Client-Side Protection Against XSS and Markup Injection 117

ServerW
A
F

XSS
Filter

PHP
htmlen es()

Browser

XSS
Filter

A acker

OpenPGP
XSS

worm
XSS

worm
XSS

worm
XSS

worm
XSS

wormOpenPGP.js

XSS
worm

DOM

DOMPurify An Samy PHP built-in
func ons

XSS Auditor
NoScript

Fig. 1. Standard sanitation points, the position of DOMPurify and a possible attack
scenario for an encrypted XSS worm

The sanitization can, for example, take place at the web server, at a dedicated
web application firewall (WAF) module, or at a browser-embedded XSS detec-
tion module like MSIE’s XSS filter, the Webkit/Blink XSS Auditor or NoScript
(cf. Fig. 1). Regardless of whether server-side or client-side filters are used, the
sanitization takes place outside a browser’s Document Object Model (DOM),
which means before the HTML page is rendered and the JavaScript DOM API
is activated for this particular web page. However, sanitization may cease to be
possible, given the modern and increasingly complex web application scenar-
ios. For example, if untrusted content is encrypted when passing these filters
(see the encrypted webmail example in Sect. 2), or when untrusted content is
directly processed in the DOM of a browser/app (see Sect. A for examples).

Thus there is an urgent need for input sanitization within the DOM. Such
sanitization may range from filtering to completely rewriting the input. However,
one new challenge must be faced.

Introducing DOM Clobbering. Any sanitization function must be invoked
from JavaScript, e.g. by calling sanitize(). An adversary may now overwrite
this function by injecting an image with an appropriate name attribute, e.g. . Calls to the sanitize function will now result in a error. This
“overwriting” of important DOM methods is called DOM Clobbering, and is an
attack technique that uses global variables created by the legacy DOM Version
0 still present in all relevant browsers.

Adversarial Model. We strictly adhere to the well-established web attacker
model [4], and all our attacks are working in this model. Our adversary is thus
able to set up malicious web applications, lure victims to visit and use these
applications, may send emails, and may access any open web application on the
Internet.

DOM Sanitation Challenges. Each XSS sanitizer that shall operate within
the DOM should solve the following (sub-)challenges: (1) Security Against
XSS Attacks. We used continuous automated testing against all known attack

118 M. Heiderich et al.

vectors, and by community challenges aimed at discovering novel attack vectors.
(2) Robustness Against DOM Clobbering. No web attacker should be
able to deactivate the sanitizer, or, at the very least, such deactivation should
be detectable. (3) Low False Positive Rate. It must be tolerant towards rich
markup (e.g. novel legal HTML5 features like SVG). (4) High Performance.
This challenge may seem trivial but please note that the best server-side filters,
e.g. HTMLPurifier, rely on heavy code-rewriting, which is very performance-
intensive and can be used to cause denial-of-service attacks by using deeply
nested HTML lists or tables. (5) Easy Deployment. It must be easy to deploy
and use. A safe setting should be default but configuration options should allow
for an easy customization. (6) Broad Deployment. If the sanitizer is written
purely in JavaScript, no changes to the browser engine are required for the
sanitizer to work in any browser. The use of browser extensions, Java, Flash or
similar technologies should be avoided.

Proposed Solution. The proposed solution mainly consists of two parts: The
DOMPurify HTML sanitizer (which could be replaced by other filtering solu-
tions) to address challenge 1, and the DOMPurify DOM Clobbering Detection,
which addresses challenge 2.

To address Challenge 1 (Security against XSS), we answer the following ques-
tion: which element-attribute combinations can be considered safe and should
be white-listed?

For Challenge 2 (Robustness against DOM Clobbering) we have to investigate
which attack vectors may influence the functionality of DOMPurify and similar
DOM-based sanitizers. We describe how we protect against these attacks. Here
we concentrate on DOM Clobbering, because this has only been investigated for
complete XSS attack vectors up till now. Again please note that any DOM-based
sanitizer may be deactivated by a DOM Clobbering vector that does not trigger
an XSS attack and thus passes all known filters even if unencrypted.

Challenges 3 and 4 are in scope of an exhaustive investigation using over
1400 emails as discussed in Sect. 4.

Challenge 5 is solved by inclusion as an external script: <script type="text/

javascript" src="purify.js"></script>. Strings are sanitized by executing the
following code: var clean = DOMPurify.sanitize(dirty);.

DOMPurify is a DOM-only XSS sanitizer for HTML and SVG. In addition,
DOMPurify only makes use of properties and methods available in the XHTML
namespace, hence it can also be deployed in scenarios where MIME types such
as text/html or application/xml are being used.

It’s written in JavaScript and works in all modern browsers (Safari, Opera
(15+), Edge, Internet Explorer (10+, toStaticHTML() fallback for older IE),
Firefox and Chrome - as well as almost anything else using Blink or WebKit).
DOMPurify doesn’t break on IE6 or other legacy browsers but rather does noth-
ing there. DOMPurify sanitizes HTML and prevents XSS attacks.

One can feed DOMPurify a string full of dirty HTML and receive a string
with clean HTML in return. DOMPurify will remove everything that contains

DOMPurify: Client-Side Protection Against XSS and Markup Injection 119

dangerous HTML and thereby prevent XSS attacks and alike. We primarily use
the technologies the browser provides and turn them into an XSS filter. The
faster a browser DOM engine, the faster DOMPurify.

Advantages of DOM-Based XSS Filters Compared to Existing Solu-
tions. DOM-based XSS filters offer plenty of advantages, especially when com-
pared to their classic pendants on the server-side.

Immunity Against Obfuscation. One major advantage of placing the XSS fil-
ter in the DOM is the absence of code obfuscation. Importantly, such obfuscation
has already been removed by the browser when loading the markup dirty.html.
The problem of, for example, Charset XSS does not exist for a DOM-based filter
because the browser is already operating in the correct charset setting2.

Knowledge Advantage. A client-side, DOM-based XSS filter knows exactly
the DOM of the browser it runs in. In essence, there is no knowledge gap between
a constructed DOM on the server-side (as used by HTMLPurifier or AntiSamy)
and the real DOM of the browser. This eliminates situations where a server
assumes an element to be harmless but the browser uses it to execute (unwanted)
JavaScript – this is for instance possible with mXSS or expression injections.
Browser peculiarities that a server-side filter may not be aware of exist in a very
limited and marginal capacity.

Performance. A Denial-of-Service attack can be conducted against server-side
XSS filters with a use of very longs strings, deeply nested DOM nodes, XML
attacks and other similar attack vectors. Once executed, such attacks can affect
many users at the same time. If XSS filtering is however performed in the client,
the effect of a DoS attack doesn’t really extend to the server at all, but exclusively
impacts the browsers of the targeted users.

Contributions. This paper presents original work. One of the authors pub-
lished the first description of DOM Clobbering as a blog post, and is the core
maintainer of the software described here. This paper makes the following con-
tributions:

– We propose a framework for the novel problem of markup sanitation within
the DOM, which will gain importance with the increasing usage of end-to-end
encryption libraries like OpenPGP.js.

– As a proof-of-concept, we developed DOMPurify DOM Clobbering Detection,
the first constructive solution to this issue which takes into account all of
the research challenges. DOMPurify uses novel techniques to detect DOM
Clobbering attacks: E.g. it verifies the integrity of a given function during
runtime.

2 http://zaynar.co.uk/docs/charset-encoding-xss.html.

http://zaynar.co.uk/docs/charset-encoding-xss.html

120 M. Heiderich et al.

– We propose a client-side XSS filter that is as tolerant as possible and doesn’t
remove benign user-input like forms, ID attributes, SVG and many other
elements that are removed by other sanitizers for often no reason.

– We performed an extensive security evaluation of DOMPurify, by using auto-
mated tests and challenges to the research community. We also evaluated the
performance and usability.

2 Example: An OpenPGP.js Worm

To exemplify the necessity of XSS mitigation within the DOM, let’s consider the
following case of an encrypted XSS worm as depicted in Fig. 1.

End-to-End Email Encryption. End-to-end encryption (E2E) has always
been a desirable goal for IT security, even though we only became aware of
its full practical importance in the post-Snowden era. Email is still one of the
most important messaging services on the Internet, and the standards (PGP,
S/MIME) and implementations (Thunderbird, Enigmail, Outlook, iOS Mail,
K9-Mail, etc.) of email encryption are freely available. Nevertheless, the pro-
portion of encrypted email communication is still negligibly low. One of the
reasons behind this situation is that the large community of webmail users sim-
ply lacked the ability to decrypt or sign mails: browsers supported neither PGP
nor S/MIME, and webmail users were thus forced to receive unencrypted mails.
Since the publication of the JavaScript library OpenPGP.js, the landscape has
changed rapidly: more and more projects are using this library to implement mail
encryption for webmail applications. Additionally, Google have started their own
end-to-end experiments, introducing yet another open-source E2E library to the
market3.

Possibility of an OpenPGP.js Worm. However, webmail security cannot be
reduced to encryption. Since a computer worm can simply copy itself into emails
sent to all recipients in the victim’s address book, email remains an ideal basis
for Internet worm propagation, together with social networking tools. The Samy
worm (also known as “JS.Spacehero”) is certainly the most famous XSS worm
to date. Just eight months later the Yamanner worm used Yahoo! Webmail to
spread itself by sending copies of its XSS code to all recipients in the address
books of subsequent victims. Webmail XSS worms have already been described
back in 20024 and a proof-of-concept implementation of a webmail worm which
runs in different webmailers has been published in 20075. XSS worms are still a
problem6, but large webmailers today mostly know how to sanitize unencrypted

3 https://github.com/google/end-to-end.
4 http://seclists.org/bugtraq/2002/Oct/119.
5 http://www.xssed.com/article/9/Paper A PoC of a cross webmail worm XWW

called Nduja connection/.
6 http://blog.gdssecurity.com/labs/2013/5/8/writing-an-xss-worm.html.

https://github.com/google/end-to-end
http://seclists.org/bugtraq/2002/Oct/119
http://www.xssed.com/article/9/Paper_A_PoC_of_a_cross_webmail_worm_XWW_called_Nduja_connection/
http://www.xssed.com/article/9/Paper_A_PoC_of_a_cross_webmail_worm_XWW_called_Nduja_connection/
http://blog.gdssecurity.com/labs/2013/5/8/writing-an-xss-worm.html

DOMPurify: Client-Side Protection Against XSS and Markup Injection 121

email traffic (on the server-side) to prevent XSS attacks. However, without utiliz-
ing a novel sanitation approach, we may soon face the threat of an “OpenPGP.js
Worm” (cf. Fig. 1). This worm would simply contain a script that executes as
soon as the decrypted mail is rendered, read all entries in the address book con-
taining a PGP public key, copy its XSS payload to an email, and encrypt its
content to avoid sanitation. Precursors of this likely occurrences can already be
noted in attacks against ProtonMail and Tutanota, in which un-obfuscated XSS
attacks were smuggled into the browser to abuse the mail encryption7.

Reliability of Browser-Side XSS Filters. Existing browser-side XSS detec-
tors and filters like MSIE’s XSS filter, WebKits’s XSS Auditor or even NoScript
cannot mitigate this problem. Given their position in the markup processing
chain, they only see the encrypted content. Content sanitation can solely be done
after decryption of the message by OpenPGP.js is completed, i.e. only within
the DOM of the browser. Please note that the inability of current browser-side
XSS filters to mitigate this novel scenario is solely based on the fact that they
cannot be called from the DOM: If the DOM API would be extended by a func-
tion e.g. called sanitize(), which would accept HTML Markup and returned
a sanitized version of this markup, then this function could be used as an XSS
filter for end-to-end encrypted content, too. So in principle we can adapt any
known filtering solution (e.g. all solutions from Sect. 5) to the novel scenario,
provided we make them accessible from the DOM by a DOM API call.

Insecurity of Straightforward Solutions. Regrettably, without additional
protection mechanisms, this solution may be easily switched off by an attacker:
it is here where techniques like DOM Clobbering come into play! If a client-
side XSS filter can be called via a JavaScript function, it must either rely on
standard interfaces offered by the DOM, e.g. functions to select certain elements
for inspection and traversal, or it must be offered as an extension to the DOM
API (e.g. as a function called sanitize()). If an attacker manages to deactivate
one of these basic functions (or the new function sanitize()), and does so by
using an attack technique that doesn’t count as an XSS attack, then the filtering
logic will let it pass. DOM Clobbering is such an attack. The attack works as
follows: (1) An attacker sends an initial email which contains no XSS attack
vector, but only a DOM Clobbering attack that deactivates a basic DOM API
function. If this email is decrypted and rendered, it will simply switch the XSS
sanitizer off. (2) Now a full XSS attack vector can be sent with a second mail,
which will not be sanitized at all.

DOM Clobbering. These two-stage attacks may seem strange at first,
but are actually quite easy to perform: if the first mail contains an ele-
ment , the rendering of this mail
will overwrite one of the most important selector methods available to a
7 http://www.theregister.co.uk/2014/07/11/tutanota/.

http://www.theregister.co.uk/2014/07/11/tutanota/

122 M. Heiderich et al.

JavaScript function, the method document.getElementsByTagName(). When this
function/method is called afterwards, an exception will be raised stating that
document.getElementsByTagName() is not a function. This would break most
JavaScript based XSS filters, so we have to protect against such attacks. This
“overwriting” of important DOM methods is called DOM Clobbering, and is an
attack techniques that uses global variables created by the legacy DOM Version
0 still present in all browsers.

How DOMPurify Mitigates the OpenPGP.js Worm. In an end-to-end
encrypted webmail application, DOMPurify will be applied directly to the result
of the OpenPGP.js decryption (cf. Listing 1.1).

sanitized_message =

DOMPurify.sanitize(openpgp.decryptMessage(mykey.key ,

openpgp_encrypted_message));

Listing 1.1. Filtering of decrypted webmails

DOMPurify has already been implemented in the Mailvelope software that
is currently being used to deliver end-to-end encryption features to several large
mail providers including government-backed programmes such as de-mail. DOM-
Purify is in addition being used as the client-side security filter for FastMail and
other web-mail providers.

3 DOMPurify

This section is dedicated to a presentation of deployment and basic functionality
of our DOM-based XSS filter DOMPurify. This should aid an understanding of
the novel security challenges. These newly outlined and challenging issues apply
to all DOM-based sanitizers. The ways we chose for tackling and ultimately
solving these challenges are discussed in the next section.

3.1 Novel Mitigation Paradigms

The following section lists and discusses the abstract mitigation concepts and
derives general rules applicable to other client-side validation tools running in
similar contexts.

Reviewed List of Element-Attribute Combinations. For an XSS filter
and HTML sanitizer a capacity to tell apart “the good” and “the bad” is of
paramount importance. This is usually done in two ways. The first option is
that a filter employs a black-list of known-bad elements and attributes as well
as attribute values. The alternative depends on the creation and subsequent use
of a list of benign items that is maintained and enforced as a classic white-list.
While this second option may appear tempting, our studies strongly suggest that
the majority of XSS filters actually behave in a too strict manner and remove too

DOMPurify: Client-Side Protection Against XSS and Markup Injection 123

many benign elements. Therefore, they tend to cripple a user-submitted HTML
unnecessarily and negatively impact on the usage experience. Further, only few
of the inspected tools allow using SVG and provide a subset of considerably safe
HTML and SVG elements and attributes. DOMPurify aims to be as tolerant as
possible, which is highlighted in the fact that it supports HTML5+, SVG 1.2
Full and MathML 3.

We thoroughly studied the behavior of different HTML, SVG and MathML
elements in all supported browsers. We concluded that the list of permitted
elements can be larger than usually perceived and normally implemented by
other tools. DOMPurify currently considers 206 different elements safe and per-
mits them for user-submitted HTML, SVG and MathML. We similarly studied
the behavior of element-attribute combinations and arrived at the result that
deemed allowing 295 different attributes possible, seeing as they were considered
safe for usage and incapable of leading to a JavaScript execution. Furthermore,
we examined what was necessary for a client-side filter to successfully sanitize
Shadow DOM elements. As a result, we implemented code to permit DOMPurify
to perform that operation as well. To illustrate this in Sect. 4 we demonstrate
that the concept of maximum tolerance is useful for sanitizing the entirety of
SVG images used by Wikipedia without overwhelming amounts of false positives.

Exploring the other side of the continuum as well, we managed to iden-
tify attributes that are potentially harmful but considered safe by WHATWG
and therefore make AngularJS’s sanitizer8 prone to XSS attacks (an attack we
reported is currently being fixed):

The WHATWG organization maintains their own list of considerably safe
elements and attributes9. This list is being used by the sanitizer functionality
offered by the AngularJS library. We identified a problem with this list as the
WHATWG did not fully test all element-attribute combinations. Thus, once
implemented, the presented collection, despite being formerly assumed benign,
in fact allows for dangerous XSS attacks. The problematic attributes reside in
the SVG namespace and the sample attack vector below shows a full bypass
which leads to XSS whenever WHATWG’s unadapted list is unreflexively used.
A change request was filed to update the WHATWG’s list to a safer level. The
page is now displaying a deprecation warning.

<svg ><a xmlns:xlink ="http :// www.w3.org /1999/ xlink" xlink:href

="?">< circle r="4000" > </ circle ><animate attributeName ="

xlink:href" begin ="0" from=" javascript:alert(document.

domain)" to="& amp;"></animate ></svg >

Listing 1.2. Using xlink:href-animation to cause XSS via SVG

Internal DOM Clobbering Protection. As a library that runs entirely in
a browser’s DOM, DOMPurify is of course prone to DOM Clobbering attacks.
In brief, an attacker could try to craft a HTML string that is to be sanitized by
8 https://docs.angularjs.org/api/ngSanitize/service/%24sanitize.
9 Sanitization rules, https://wiki.whatwg.org/wiki/Sanitization rules.

https://docs.angularjs.org/api/ngSanitize/service/%24sanitize
https://wiki.whatwg.org/wiki/Sanitization_rules

124 M. Heiderich et al.

DOMPurify. Upon parsing, the HTML encapsulated by the string could attempt
to clobber the DOM and overwrite important functionality needed by DOMPu-
rify to sanitize successfully.

To mitigate DOM Clobbering attacks against DOMPurify and its core func-
tionality, we use the boot-strapping phase between mapping the markup for
sanitization into a document implementation, and the initialization of the node
iteration. This means a walk over all generated HTML elements after checking
if all methods utilized by DOMPurify are really the methods we believe them to
be. The same applies to certain DOM properties used by our library - here we
use constructor checks as well as instances of operators to verify their identity.
In case it turns out that a method is not what we expect it to be, the library
simply returns an empty string and no potentially dangerous markup can enter
the DOM of the protected website.

External DOM Clobbering Protection. DOMPurify also assures that the
markup resulting from a sanitation process cannot clobber the already existing
data on the website that the HTML is being used on. Overall, this relies on a
generous allowing of ID and NAME attributes, as well as upfront checks against
the hosting DOM (to verify if it already uses references of the same name). It
is important to note that for those checks an “in” operator is used. We can-
not make use of “typeof” since most modern browsers return “undefined” for
typeof document.all, for instance. Further note that the clobbering protection
checks both “window” and “document” in case “ID” attributes are found and
only verifies the document if “name” attributes are discovered. This is because
Gecko-based browsers (Firefox, etc.) create two rather than just one reference
for HTML elements applied with ID attributes – one in the global object and
one in “document”.

Specifics in DOM Parsing and Traversal. To avoid being vulnerable to
certain re-indexing - and mXSS attacks, DOMPurify makes sure that attributes
and elements are exclusively parsed and processed in reverse order of appearance
in the parent element or container. Note that this feature was also tested exten-
sively in MSIE where the DOM-engine doesn’t maintain the original attribute
order but also orders attributes of elements in an alphabetic order after applying
them to the DOM. This behavior can lead to a race-condition-based bypass of
client-side XSS filters and was mitigated in DOMPurify.

3.2 Description

DOMPurify uses a combination of both element and attributes white-lists, which
are paired with a very scarce reliance on regular expressions for detecting poten-
tially dangerous values. It comprises two main components: the DOM Clobbering
Detection (DCD) mainly consists of the function isClobbered, which checks
if references to the actual element being (XSS-)sanitized have been overwritten.
Additionally, for each id or name attribute it is checked if its value could be

DOMPurify: Client-Side Protection Against XSS and Markup Injection 125

used to overwrite functions that are essential to DOMPurify. This DCD can be
adapted to protect any XSS mitigation solution proposed in the literature (Fig. 2).

Fig. 2. Block diagram DOMPurify.

The HTML Sanitizer is a novel design
to implement XSS mitigation in the DOM.
Since no obfuscation may be present
within the DOM, it uses a combination of
whitelists (ALLOWED TAGS, ALLOWED ATTR)
to skip secure tags/attributes, and carefully
crafted regular expressions to delete danger-
ous attributes.

The function sanitizeElements() uses
the white-list ALLOWED TAGS to skip secure
tags, and the function isClobbered to
check if the markup contains a DOM Clob-

bering vector. It iterates over all elements in dirty.html. The function
sanitizeAttributes() uses the white-list ALLOWED ATTR to skip secure
attributes and employs some specially crafted regular expressions to ensure the
detection of dangerous attributes. Before describing the novel mitigation par-
adigms - the key foundations of DOMPurify – we have to explain the novel
security challenges that a DOM-based XSS sanitizer faces. More importantly,
we outline how we coped with these challenges.

One of the additional core features of DOMPurify is the detection and miti-
gation of DOM Clobbering attacks – both against the library itself and against
the surrounding website. This is achieved through the use of strict type checking
of all DOM features that the library uses. If one DOM feature appears to have
been tampered with, DOMPurify will abort immediately and return an empty
string instead of the potentially unsanitized content. Further, DOMPurify allows
sanitizing inactive elements inside a Shadow DOM. This works even for recur-
sive Shadow DOM implementations where one Shadow DOM hosts several other,
nested Shadow DOM instances.

The clobbering detection happens in two different locations of the library and
covers both element clobbering and clobbering of global properties inside window
or document. The clobbering tests are being performed for each HTML element
or node that is being iterated over. When DOMPurify sanitizes an HTML string
containing form nodes, it checks if the DOM it is working in could be clobbered
by those form elements. The same takes place for any element applied with an
ID or NAME attribute, aiming at avoiding global and document clobbering. If
an element in the untrusted HTML string may have clobbering effects on the
surrounding document, then it will be removed. In any other case it will be left
intact. DOMPurify is therefore the only HTML filter that safely allows the use of
ID and NAME attributes in untrusted HTML. This enables DOMPurify to also
sanitize full forms and preserves ID attributes that are often important for site
navigation via location.hash/anchors. To our knowledge, no other analyzed
HTML and XSS filter allows that to occur in a safe manner.

To summarize the description of how DOMPurify works internally to main-
tain a high level of compatibility to benign markup and at the same time make

126 M. Heiderich et al.

sure that no form of malicious markup is allowed to pass the filtering mecha-
nisms, a list of interla processing steps has been created:

(1) DOMPurify, upon being started, first verifies that all necessary parame-
ters are set and valid and then checks if the browser is compatible with all
required features. If DOMPurify is not fully supported, it will attempt to call
a fall-back method such as toStaticHTML or simply return the same string
it was receiving for sanitation. This will make sure that DOMPurify exposes
maximal compatibility paired with good protection on older browsers such
as MSIE8, and have no noticeable impact on browsers incompatible with
DOMPurify such as MSIE6 (it will simply do nothing here).

(2) DOMPurify will then perform a check against the DOM to verify that all
needed features are indeed trustable and free from tampering (i.e. is the
removeChild method really what it claims to be?). DOMPurify will cre-
ate and store safe references for all verified safe functions and methods to
make sure, that an attacker cannot interfere with the library at runtime and
exchange important objects and methods in mid flight.

(3) DOMPurify will then determine, how to best create a safe, reliable and iso-
lated document object given the browser it is running on (inert DOM).
DOMPurify will preferably chose the DOMParser API and fall back to
document.implementation where necessary. The created document object is
then being populated with the string or node to be sanitized. Note that
depending on not only the browser but also the browser version, different
methods need to be chosen to produce a safe document. This is especially for
Chrome browsers in versions 12 to 16 and Firefox browsers starting around
version 34, as they implement slightly different behaviors, leading to insecure
isolated documents if used improperly.

(4) Once the inert DOM has been created and populated, DOMPurify will start
iterating over each of the elements in that DOM by using the safely stored
and reliable NodeIterator API. Before the first element is being inspected,
DOMPurify will call an optionally present hook function. By adding hooks,
developers can customize the behavior and extend the feature list. The
library offers hooks at all relevant joint-points between unsanitized markup
and the sanitization process itself. Any hook method is given the current
execution context as parameter to avoid the risk of developers accidentally
getting access to a malicious context.

(5) DOMPurify will then inspect the first element, match it to the existing white-
list and either remove it or keep it in the DOM. Two additional hooks can
be called during this process for extended customization. If the inspected
element is a standard DOM element (such as a DIV or an anchor), DOM-
Purify will next iterate over all attributes of that element. If the element
is however a template element, DOMPurify will invoke a different internal
function that allows to recursively sanitize a Shadow DOM before continuing
with the next elements. DOMPurify will, if enabled via configuration, in this
step also check the element’s text nodes for strings that indicate presence
of a templating expression and, if instructed to do so, remove it. This was

DOMPurify: Client-Side Protection Against XSS and Markup Injection 127

implemented to protect against XSS via template expressions, popular in
AngularJS applications.

(6) Once finished with the basic sanitization of an element itself, DOMPurify
will as mentioned iterate over and initially remove all existing attributes
in reverse order to respect the internal indexing browsers perform. The
attribute name and value will both be matched against the mentioned white-
lists, and the library will, if instructed so, also inspect the attribute value
for template expressions. In case the attribute is classified to be used in
combination with URLs (such as href or action), DOMPurify will also
sanitize this value to prevent XSS and mXSS via URL, especially respecting
the risks on XSS via Unicode whitespace and HTML5 character references
in Chrome, Opera and Safari. During the process of attribute sanitization,
DOMPurify will check for three additional hooks to be present to enable cus-
tomized behavior. DOMPurify will further check, if the element is applied
with attributes that cause DOM Clobbering and check the existing DOM
for collisions.

(7) Once DOMPurify checked all attributes, it re-adds the safe ones and returns
the sanitized element so it can be added to the safe document and proceeds
to the next element selected by the NodeIterator. If no additional element is
present, DOMPurify will take the existing DOM tree, serialize it into a string
and return it, or, if instructed via configuration, return a DOM fragment or
a DOM node. If more elements are present instead, DOMPurify will continue
sanitizing the document until the final element has been reached. Note that
the attacker cannot inject new elements into the document to sanitize during
the process of sanitization, mitigating denial of service risks.

DOMPurify does not store any internal states after a sanitization process,
so an attacker cannot bypass the library using multiple sanitization runs in
a sequence. This was possible in very early versions of the library thanks to
an attack using “Double-Clobbering”, namely first changing the library core
and then bending the sanitization functionality to produce harmful HTML in
a second sanitization run. In the currently deployed version of the library, no
bypasses are known.

4 Evaluation

This section discusses the evaluation of DOMPurify’s security, performance and
false positives.

4.1 Security Evaluation

Methodology. The security of DOMPurify was evaluated in two parts. The
first part was a strict empirical analysis where we used automated tests to check
the security of DOMPurify against all known attack vectors. In the second part
we went one step beyond this evaluation, by challenging the security community
to test DOMPurify in a white-box test against yet unknown attack vectors.

128 M. Heiderich et al.

For the first part we used automated testing using a unit test suite, with
existing state-of-the-art collections of XSS vectors to automatically check each
new version. This is the standard evaluation procedure for any XSS filter, and
the collections are constantly being updated to cover each new attack class (e.g.
Scriptless Attacks, mXSS, expression injection). We used the following collec-
tions: (1) The HTML5 Security Cheatsheet10, which contains 149 XSS vectors;
(2) the OWASP XSS Cheat Sheet, containing 108 XSS vectors.

Second, we received a large number of novel attack vectors by the secu-
rity community. These consisted of bypasses of early versions of DOMPurify,
including numerous DOM Clobbering attack vectors. Altogether we collected
400+ attack vectors. Any bypasses discovered in manual testing were dynami-
cally added to this collection of attacks and will therefore be tracked from this
point forward. The vast array of attack vectors used here is publicly available
on Github11.

A public browser-based smoke-test is made available, allowing anyone to test
the software quickly and without a need to set up anything. In addition, the
security of DOMPurify was tested and further enhanced through a third-party
audit in February 201512.

Results. We designed DOMPurify to mitigate all known attack vectors from
the collections mentioned above. Furthermore we adapted DOMPurify to also
mitigate the novel attack vectors. In summary, in the current version of DOM-
Purify there are neither undetected XSS vectors nor bypasses to DOMPurify.

4.2 Performance and False Positive Evaluation

Methodology. For the evaluation of DOMPurify’s performance and false pos-
itive rate we subscribed to more than 50 public email marketing lists13,14 of a
range of different topics (politics, sports, psychology, photography, daily digest).
We decided to use this data set for several reasons. First, marketing newslet-
ters contain a rich and diverse set of markup in order to attract the customer.
Secondly, a wide field of topics and the way its content is presented is more
representative for users of different ages, countries, sexes and interests - rep-
resenting a variety of styles for composing emails. We provide a downloadable
copy of the dataset for interested readers [5]. Over two months we accumulated
a total of 1421 emails (136 MB of data). All emails were received using a google
email account on a locally running Roundcube15 instance on a Virtual Machine
with Ubuntu. Roundcube is a popular web based email client, which we use to
take care of the management of emails (load/save).

10 https://html5sec.org/.
11 https://github.com/cure53/DOMPurify/blob/master/test/expect.json.
12 https://cure53.de/pentest-report dompurify.pdf.
13 https://www.getvero.com/resources/50-email-newsletters/.
14 https://blog.bufferapp.com/best-newsletters.
15 https://roundcube.net/.

https://html5sec.org/
https://github.com/cure53/DOMPurify/blob/master/test/expect.json
https://cure53.de/pentest-report_dompurify.pdf
https://www.getvero.com/resources/50-email-newsletters/
https://blog.bufferapp.com/best-newsletters
https://roundcube.net/

DOMPurify: Client-Side Protection Against XSS and Markup Injection 129

For the evaluation we proceeded as follows: we created a screenshot of the
rendered DOM of both the clean and dirty email with html2canvas16. Then we
computed the percentual difference between the two versions of the email using
resembleJS17 (e.g. 10%). The performance data constitutes the time taken (ms)
by DOMPurify to process a given input file and output the result.

Of the 1421 emails we had to exclude 8 emails from the test set because they
were not processed by html2canvas. This left us with a total of 1413 emails as
the basis for our evaluation. All tests were executed on a Mac Book Pro Retina18

on Firefox 52.0.2.

Results - Performance Evaluation. The results of our evaluation are
depicted in Fig. 3a. DOMPurify’s average processing time of the 1413 emails
is 54.7 ms. Our evaluation shows that 62% of input data is processed below the
average processing time. 80% of the emails are processed in ≤89 ms (Pareto prin-
ciple). During our evaluation we observed that factors such as the loading and
rendering of images and resources from remote hosts took several seconds up to
minutes (for less responsive remote hosts). Summarizing our results, we observed
no negative impact on user experience when using DOMPurify as a Sanitizer.

(a) Performance Evaluation: share of
emails processed by DOMPurify within
a given time frame

(b) False Positive Evaluation: share of
emails with a reported difference ac-
cording to resembleJS

Fig. 3. Performance and false positive evaluation results

Results - False Positives Evaluation. As shown in Fig. 3b, more than 80% of
the testset show no visual difference (0.0%) between the original and processed
email. For the remaining 20% we investigated the reported impact. We conclude
that all reported differences can be attributed to the shifting of text.

To verify these findings we observed the visual display of the emails with the
highest reported differences in the browser. For example, consider the rendering
of the email with the highest reported difference of 40% in Fig. 4a and b. The
astute reader will notice that when manually inspecting these two emails in the
16 https://html2canvas.hertzen.com/.
17 https://huddle.github.io/Resemble.js/.
18 OSX 10.12.3 with a 3.1 GHz Intel Core i7 and 16 GB of 1867 MHz DDR RAM.

https://html2canvas.hertzen.com/
https://huddle.github.io/Resemble.js/

130 M. Heiderich et al.

(a) The display of the unmodified
email. Screenshot taken manually

(b) The display of the cleaned email.
Screenshot taken manually

Fig. 4. Example of a false positive evaluation

browser there is no visual difference between the original and the processed email
- except for a shift of a few pixels. However, this shows that DOMPurify has
little impact on the processed emails.

We provide a downloadable copy of the highest reported differences including
an email with no reported differences for comparison [6].

5 Related Work

XSS Mitigation. Server-side mitigation techniques range from a simple char-
acter encoding or replacement, to a full rewrite of the HTML code. The advent
of DOM XSS was one of the main reasons behind the introduction of XSS filters
embedded into the browser. The IE8 XSS Filter was the first fully integrated
solution [7], timely followed by the Webkit XSS Auditor in 2009 [8]. For Firefox,
browser-embedded XSS filtering is implemented through the NoScript exten-
sion. XSS attacks’ mitigation strategies have been covered in numerous pub-
lications [1,9–13]. Noncespaces [14] use randomized XML namespace prefixes
as an XSS mitigation technique, which would make detection of the injected
content reliable. DSI [15] tries to achieve the same goal based on a process of
classifying HTML content into trusted and untrusted variety on the server side,
subsequently changing browser parsing behavior so that the specified distinction
is taken into account. Blueprint [16] generates a model of the user input on the
server-side and transfers it, together with the user-contributed content, to the
browser, making its behavior modified by an injection of a JavaScript library
for processing the model along with the input. Content Security Policy (CSP)
comes with a novel feature to block XSS attacks: source whitelisting. Thus even
if an attacker may be able to execute a malicious script, he is not able to exfil-
trate any security critical information, since he cannot establish a connection
to his server. Unfortunately, this feature does not apply to mailto: URLs, so
this would not block webmail XSS worms. CSP 2.0 and newer (http://www.w3.
org/TR/CSP2/) provide a mechanism to distinguish trusted inline script from
untrusted script: the nonce-source and hash-source directives. In both cases,

http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/CSP2/

DOMPurify: Client-Side Protection Against XSS and Markup Injection 131

inline scripts are only executed if the value of their nonce-attribute matches the
value given in the directive, or if the hash value of the script matches a given
value. Note that Weichselbaum et al. discuss the practical value of CSP in great
detail, shedding light on shortcomings and implementational problems [17].

Sandboxed iFrames. A straighforward solution to block webmail XSS worms
seems to display HTML mails in sandboxed iFrames, a novel HTML5 feature.
This works for simply reading emails, but as soon as any action is triggered (e.g.
FORWARD or REPLY), the sandboxed iFrame must be opened, and the XSS
vectors contained in the mail body will be executed. This is a problem with all
of today’s webmailers.

Mutation-Based (mXSS) and Scriptless Attacks. Weinberger et al. [18]
give an example of the innerHTML being used to execute a DOM-based XSS.
Comparable XSS attacks based on changes in the HTML markup have been
initially described for client-side XSS filters. Nava and Lindsay [19] and Bates
et al. [8] show that the IE8 XSS Filter could have once been used to “weaponize”
harmless strings and turn them into valid XSS attack vectors. This relied on
applying a mutation through the regular expressions used by the XSS Fil-
ter. Zalewski covers concatenation problems based on NUL strings in inner-
HTML assignments in the Browser Security Handbook [20]. Additionally, he
later dedicates a section to backtick mutation in his volume “The Tangled
Web” [21]. Other mutation-based attacks have been reported by Barth et al. [22].
Hooimeijer et al. describe the dangers associated with the sanitization of con-
tent [23] and claim that they were able to produce a string that would result in a
valid XSS vector after sanitization for every single one of a large number of XSS
vectors. The vulnerabilities described by Kolbitsch et al. may form the basis for
an extremely targeted attack by web malware [24]. Those authors state that the
attack vectors may be prepared for taking into account the mutation behavior
of different browser engines. HTML5 introduces a script-like functionality in its
different tags, making the so called “Scriptless Attacks” (a term coined in [25])
a real threat. For example, SVG images and their active elements can be used
to steal passwords even if JavaScript is deactivated [26].

6 Conclusion and Outlook

Given the current trends in web application and app design, a client-side, DOM-
based XSS filtering solution is urgently needed. This concept faces different
threats when one compares it with server-side XSS filters. Those are unique
to the browser’s DOM and need to be discussed in depth. We present DOMPu-
rify, an open-source library designed to reliably filter HTML strings and docu-
ment objects from XSS attacks. It seeks to allow developers to safely use user-
controlled and untrusted HTML in web applications, mobile apps and any other
deployment that requires employing a browser(-like) DOM. Its filtering tech-
niques to mitigate DOM Clobbering attacks can form the basis for a framework

132 M. Heiderich et al.

to include any XSS mitigation technique into the DOM. DOMPurify accompa-
nies and complements CSP 3.0, and closes the gaps that are not covered by the
browser itself. Our DOMPurify library implements the current state of the art
knowledge in the field of XSS defense. It draws on novel concepts which work
surprisingly well in practice. However, as new threats are constantly emerging,
the extendibility and configurability of DOMPurify is crucially important. It
goes without saying that we encourage future research in this direction. Addi-
tional use cases for a security library that resides in the DOM may arise and
can now be faced head on in their core rather than in an unrelated and distant
layer on the web-server.

Acknowledgements. The research was supported by the German Ministry of
research and Education (BMBF) as part of the OpenC3S research project.

A Deployment

Other Deployment Scenarios

JavaScript MVC (model-view-controller) frameworks are written to move appli-
cation logic like view-generation, templating and site-interactivity from the
server to the client. Example frameworks include AngularJS, EmberJS, Knock-
outJS, React and others. They are often maintained by large corporations such
as Google, Facebook or Yahoo. Using the frameworks properly requires a change
in application design philosophy from the developers’ side. While the server gen-
erated and delivered the HTML for classic applications, here only a minimal
scaffold of HTML is server-generated and delivered. The majority of content is
being created in the client and is based on raw JSON from the server containing
the data, using static template files, as well as a complex event and widget logic
residing almost entirely in the browsers, fuelled by the JavaScript MVC frame-
work. That of course obsoletes server-side HTML and XSS filters as the server
doesn’t deliver any user-controlled HTML anymore. Now the JavaScript MVC
framework must take care of that issue, and this is the point where DOMPurify
can be applied as an additional level of mitigation. Note though that DOMPurify
is also capable to run on nodejs in combination with jsdom – therefore it can
also protect server-side web-frameworks and template-engines from XSS attacks.
The automated tests running for every commit cover this deployment scenario
in full.

Actual Deployment

The DOMPurify library is currently downloaded about 52000 times per month
on the “npm” JavaScript package manager platform. It is being used by major
web mail providers and several commonly known tools used in the context of
web-mail end-to-end encryption. DOMPurify is further being utilized by browser
extensions who need to sanitize user controlled HTML, giving developers a more
fine grained control over what kind of rich text is supposed to be rendered and
displayed – beyond what CSP is offering.

DOMPurify: Client-Side Protection Against XSS and Markup Injection 133

References

1. Johns, M.: Code injection vulnerabilities in web applications - exemplified at cross-
site scripting. Ph.D. dissertation, University of Passau, Passau, July 2009

2. Heiderich, M., Frosch, T., Jensen, M., Holz, T.: Crouching tiger - hidden pay-
load: security risks of scalable vector graphics. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security, pp. 239–250. ACM (2011)

3. Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., Yang, E.Z.: mXSS attacks:
attacking well-secured web-applications by using innerHTML mutations. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security, pp. 777–788. ACM (2013)

4. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: 23rd IEEE Computer Security Foundations Symposium
(CSF) 2010, pp. 290–304. IEEE (2010)

5. Heiderich, M., Späth, C., Schwenk, J.: DOMPurify testset (2017). https://goo.gl/
2g2BMz

6. Heiderich, M., Späth, C., Schwenk, J.: Output of ResembleJS (2017). https://goo.
gl/9bdmZv

7. Ross, D.: IE8 security part IV: the XSS filter - IEBlog - site home - MSDN blogs
(2008). http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-
the-xss-filter.aspx

8. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-
side XSS filters. In: Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, pp. 91–100. ACM, New York (2010). http://doi.acm.
org/10.1145/1772690.1772701

9. Zuchlinski, G.: The anatomy of cross site scripting. In: Hitchhiker’s World, vol. 8,
November 2003

10. Bisht, P., Venkatakrishnan, V.N.: XSS-GUARD: precise dynamic prevention of
cross-site scripting attacks. In: Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (2008)

11. Gebre, M., Lhee, K., Hong, M.: A robust defense against content-sniffing XSS
attacks. In: 2010 6th International Conference on Digital Content, Multimedia
Technology and its Applications (IDC), pp. 315–320. IEEE (2010)

12. Saxena, P., Molnar, D., Livshits, B.: SCRIPTGARD: automatic context-sensitive
sanitization for large-scale legacy web applications. In: Proceedings of the 18th
ACM Conference on Computer and Communications Security, pp. 601–614. ACM
(2011)

13. Gourdin, B., Soman, C., Bojinov, H., Bursztein, E.: Toward secure embedded web
interfaces. In: Proceedings of the USENIX Security Symposium (2011)

14. Gundy, M.V., Chen, H.: Noncespaces: using randomization to defeat cross-site
scripting attacks. Comput. Secur. 31(4), 612–628 (2012)

15. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: a robust basis for
cross-site scripting defense. In: NDSS. The Internet Society (2009)

16. Louw, M.T., Venkatakrishnan, V.N.: Blueprint: robust prevention of cross-site
scripting attacks for existing browsers. In: Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, SP 2009, Washington, DC, USA, pp. 331–
346. IEEE Computer Society (2009). http://dx.doi.org/10.1109/SP.2009.33

17. Weichselbaum, L., Spagnuolo, M., Lekies, S., Janc, A.: CSP is dead, long live
CSP! On the insecurity of whitelists and the future of content security policy.
In: Proceedings of the 23rd ACM Conference on Computer and Communications
Security, Vienna, Austria (2016)

https://goo.gl/2g2BMz
https://goo.gl/2g2BMz
https://goo.gl/9bdmZv
https://goo.gl/9bdmZv
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://doi.acm.org/10.1145/1772690.1772701
http://doi.acm.org/10.1145/1772690.1772701
http://dx.doi.org/10.1109/SP.2009.33

134 M. Heiderich et al.

18. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: A sys-
tematic analysis of XSS sanitization in web application frameworks. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 150–171. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23822-2 9

19. Nava, E.V., Lindsay, D.: Abusing Internet Explorer 8’s XSS Filters. http://p42.
us/ie8xss/Abusing IE8s XSS Filters.pdf

20. Zalewski, M.: Browser Security Handbook, July 2010. http://code.google.com/p/
browsersec/wiki/Main

21. Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications.
No Starch Press (2011)

22. Bug 29278: XSSAuditor bypasses from sla.ckers.org. https://bugs.webkit.org/
show bug.cgi?id=29278

23. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with BEK. In: Proceedings of the 20th USENIX Conference on
Security, SEC 2011, Berkeley, CA, USA, p. 1. USENIX Association (2011). http://
dl.acm.org/citation.cfm?id=2028067.2028068

24. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: de-cloaking internet mal-
ware. In: Proceedings of IEEE Symposium on Security and Privacy (2012)

25. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., Schwenk, J.: Scriptless attacks:
stealing the pie without touching the sill. In: Proceedings of the 19th ACM Con-
ference on Computer and Communications Security, pp. 760–771 (2012)

26. Stone, P.: Pixel perfect timing attacks with HTML5. http://contextis.co.uk/files/
Browser Timing Attacks.pdf

http://dx.doi.org/10.1007/978-3-642-23822-2_9
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
http://code.google.com/p/browsersec/wiki/Main
http://code.google.com/p/browsersec/wiki/Main
https://bugs.webkit.org/show_bug.cgi?id=29278
https://bugs.webkit.org/show_bug.cgi?id=29278
http://dl.acm.org/citation.cfm?id=2028067.2028068
http://dl.acm.org/citation.cfm?id=2028067.2028068
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
http://contextis.co.uk/files/Browser_Timing_Attacks.pdf

	DOMPurify: Client-Side Protection Against XSS and Markup Injection
	1 Introduction
	2 Example: An OpenPGP.js Worm
	3 DOMPurify
	3.1 Novel Mitigation Paradigms
	3.2 Description

	4 Evaluation
	4.1 Security Evaluation
	4.2 Performance and False Positive Evaluation

	5 Related Work
	6 Conclusion and Outlook
	A Deployment
	References

