
Boot Attestation: Secure Remote Reporting
with Off-The-Shelf IoT Sensors

Steffen Schulz1(B), André Schaller2, Florian Kohnhäuser2,
and Stefan Katzenbeisser2

1 Intel Labs, 64293 Darmstadt, Germany
steffen.schulz@intel.com

2 Security Engineering Group, TU Darmstadt, CYSEC,
Mornewegstrasse 32, 64293 Darmstadt, Germany

{schaller,kohnhaeuser,katzenbeisser}@seceng.informatik.tu-darmstadt.de

Abstract. A major challenge in computer security is about establish-
ing the trustworthiness of remote platforms. Remote attestation is the
most common approach to this challenge. It allows a remote platform
to measure and report its system state in a secure way to a third party.
Unfortunately, existing attestation solutions either provide low security,
as they rely on unrealistic assumptions, or are not applicable to com-
modity low-cost and resource-constrained devices, as they require cus-
tom secure hardware extensions that are difficult to adopt across IoT
vendors. In this work, we propose a novel remote attestation scheme,
named Boot Attestation, that is particularly optimized for low-cost and
resource-constrained embedded devices. In Boot Attestation, software
integrity measurements are immediately committed to during boot, thus
relaxing the traditional requirement for secure storage and reporting. Our
scheme is very light on cryptographic requirements and storage, allow-
ing efficient implementations, even on the most low-end IoT platforms
available today. We also describe extensions for more flexible manage-
ment of ownership and third party (public-key) attestation that may be
desired in fully Internet-enabled devices. Our scheme is supported by
many existing off-the-shelf devices. To this end, we review the hardware
protection capabilities for a number of popular device types and present
implementation results for two such commercially available platforms.

1 Introduction

In the Internet-of-Things (IoT) low-cost and resource-constrained devices are
becoming the fundamental building blocks for many facets of life. Innovation in
this space is not only fueled by making devices ever more powerful, but also by a
steady stream of even smaller, cheaper, and less energy-consuming “things’ that
enable new features and greater automation in home automation, transportation,
smart factories and cities.

Unfortunately, the novelty of this space combined with dominating market
forces to minimize cost and time-to-market also has a devastating impact on
security. While it may be tolerable that deployed firmware is not free of bugs [12]
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part II, LNCS 10493, pp. 437–455, 2017.
DOI: 10.1007/978-3-319-66399-9 24



438 S. Schulz et al.

and vendors have varying opinions about privacy and access control in this new
space [21,35], an arguably critical requirement for survivable IoT infrastructures
is the capability to apply security patches and recover from compromises [15,37].

The ability to recognize and establish trust in low-cost devices is becoming
relevant even in scenarios where devices are not connected to the Internet or
not intended to receive firmware updates at all. For instance, SD-cards and
USB sticks that are exchanged with third parties can be infected or replaced by
malicious hardware in order to attack the host [29]. Bluetooth devices may offer
an even larger attack surface, since typically employed security mechanisms were
shown to be insufficient [34,42]. Remote attestation is a key security capability
in this context, as it allows a third party to identify a remote device and verify
its software integrity.

Existing attestation schemes can be classified as timing-based or hardware-
based. Timing-based schemes require no secure hardware and thus are applica-
ble to a broad range of devices [20,23,41]. However, they rely on assumptions
like exact time measurements, time-optimal checksum functions, and a passive
adversary, which have been proven to be hard to achieve in practice [4,10,22].
In contrast, hardware-based attestation schemes provide much stronger security
guarantees by relying on secure hardware components. Recent works specifically
target the needs of embedded devices to perform remote attestation with a min-
imum set of secure hardware requirements [13,14,17,30]. Unfortunately, these
hardware security features are currently not available in commodity embedded
devices. Another direction of research specifically focuses on a major use case
of attestation, the verification of firmware integrity after updates. These works
often target device classes that cannot be secured using hardware-based attes-
tation approaches, such as legacy and low-end devices [16,18,32,39]. Yet they
only address a subset of attestation usages, suffer from the similar limitations as
software-based attestation approaches, or employ costly algorithms that involve
a high memory and computational overhead.

Contributions. We present a novel approach to remote attestation which is
based on load-time authentication. Our scheme is very efficient and well-suited
for resource- constrained, embedded devices (cf. Sect. 2). In more detail:

Boot Attestation Concept: Instead of recording measurements in a secure envi-
ronment, as in traditional TPM-like attestation, our integrity measurements are
immediately authenticated as the platform boots. We will argue in Sect. 3, that
for the very simple hardware and firmware configurations found in low-end IoT
devices, this construction can meet the key goals of remote attestation which
many prior works tried to tackle.

Provisioning and 3rd Party Verification: In Sect. 4 we describe two extensions
that further increase the practicality and completeness of Boot Attestation.
First, a key provisioning extension to take ownership of potentially untrustwor-
thy devices. Second, an extension to enable attestation towards untrustworthy
third-party verifiers. The latter is a capability that is missing in prior work, but
essential when applying a symmetric attestation scheme in the IoT use case.



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 439

Minimal HW/SW Requirements: Our proposed attestation scheme offers a new
middle-ground between previously proposed timing-based and hardware-based
attestation approaches. Boot Attestation does not depend on timing or other
execution-side effects which turned out to be difficult to achieve in practice. As
we will discuss in Sect. 5, Boot Attestation side-steps hardware requirements
that were deemed essential for remote attestation until now [13]. In contrast to
prior work, our approach merely requires memory access control enforcement,
secure on-DIE SRAM and debug protection.

Analysis and Implementation: In Sect. 6, we examine hardware protection capa-
bilities for a range of existing Commercial Off-the-Shelf Microcontroller Units
(COTS MCUs) and describe how they can be programmed to support Boot
Attestation today. We then describe two concrete implementations, highlighting
the practicality and efficiency of our design.

2 System Model and Goals

In this section, we specify our system model, discuss the adversaries’ capabilities
and describe the general procedure of remote attestation.

2.1 System Model

We consider a setting with two parties, a verifier V and a prover P. V is interested
in validating whether P is in a known-good software state, and for this purpose
engages in a remote attestation protocol with P.

P is modeled as a commodity, low-cost IoT device as it may be found in
personal gadgets, or smart home and smart factory appliances. In order to mini-
mize manufacturing cost and power consumption, such devices tend to be single-
purpose MCUs with often just the minimum memory and compute capabilities
required to meet their intended application. Modern MCUs combine CPU, mem-
ory, basic peripherals, and selected communication interfaces on a single System
on Chip (SoC), as illustrated in Fig. 1. Common on-DIE memory comprises
SRAM, flash memory, and EEPROM. Additional peripheral devices and bulk
memory are often connected externally.

On the software side, MCUs are often programmed bare-metal, with the SDK
building necessary drivers and libraries into a single application binary (firmware
image). Some platforms also implement additional stages, e.g. a smart watch
loading “companion apps” at runtime. The firmware image is typically initialized
by an immutable component, such as a boot ROM or bootloader, which reduces
the risk of permanently disabling a device (“bricking”). When programmed via
low-level interfaces such as JTAG, many devices also allow to customize this early
stage(s) of boot. We will revisit this property when implementing our Root of
Trust (RoT) in Sect. 6.

Note that in the IoT context, the attestation verifier V is typically the owner
of P (e.g., fitness trackers or USB thumb drives) or an operator who is responsible
for managing P on behalf of the owner (e.g., smart factory or smart city).



440 S. Schulz et al.

Fig. 1. Typical hardware configuration of a IoT MCU. We consider on-chip components
as secure against “simple” hardware attacks (SoC Security Boundary).

2.2 Adversary Model

The adversary A controls the communication between V and P and can com-
promise the firmware of P at will. In more detail, A is granted full control over
the communication channel (Dolev-Yao model) and thus can eavesdrop, inject,
modify, or delete any messages between V and P. A can also compromise the
higher-level firmware on P, i.e., the MCU application, whereupon A has full
control over the execution and can read from and write to any memory.

However, we assume that A is unable to bypass hardware protection mech-
anisms, such as reading data from memory regions that are explicitly protected
by hardware. We also exclude a comprehensive discussion of physical attacks
as these require an in-depth analysis of the particular hardware design and are
outside the scope of this work. Instead, we consider only a simple hardware
adversary who may attempt to access documented interfaces such as JTAG, and
replace or manipulate external SoC components like external memory or radios
(cf. Fig. 1). We also assume that the verifier does not collaborate with A, in par-
ticular, V will not disclose the attestation key to A. However, this assumption
is reduced when introducing third party verifiers in Sect. 4.

2.3 Remote Attestation Game

Remote Attestation is a security scheme where a verifier V wants to gain assur-
ance that the firmware state of the prover P has not been subject to com-
promise by A. Following the common load-time attestation model [31], we
define the firmware state of P as an ordered set of k binary measurements
M = (m1,m2, . . . ,mk) that are taken as P loads its firmware for execution. Since
the chain of measurements is started by the platform’s Root of Trust (RoT), it
is assumed that any modification to the firmware state is reliably reflected in at
least one measurement mx.

To gain assurance on the actual state M ′ of P, V and P engage in a challenge-
response protocol. This culminates in the construction of an attestation report



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 441

r ← attestAK(c,M ′) at P, where c is a random challenge and AK is an attestation
key agreed between P and V. V accepts P as trustworthy, i.e., not compromised,
if the response r is valid under chosen values (c,AK) and an expected known-
good state M (i.e., M ′ = M).

3 Boot Attestation

In this section, we introduce our Boot Attestation concept and protocol, extract
hardware requirements and analyze its security with regard to Sect. 2.3.

3.1 Implicit Chain of Trust

Traditional attestation schemes collect measurements in a secure environment,
such as a TPM or TEE, which can be queried at a later time to produce an
attestation report. They support complex software stacks comprising a large set
of measurements and allow a multitude of verifiers to request subsets of these
measurements, depending on privacy and validation requirements.

In contrast, our approach is to authenticate measurements mx of the next
firmware stage x immediately into an authenticated state Mx, before handing
control to the next firmware stage. This way, mx is protected from manipulations
by any subsequently loaded application firmware. The new state Mx is generated
pseudo-randomly and the previous state Mx−1 is discarded. This prevents an
adversary from reconstructing prior or alternative measurement states. The final
state Mk, seen by the application, comprises an authenticated representation of
the complete measurement chain for reporting to V:

Mx ← PRFAK(Mx−1,mx)

As typically no secure hardware is available to protect AK in this usage,
we generate pseudo-random sub-keys AKx and again discard prior keys AKx−1

before initiating stage x:

AKx ← KDFAKx−1(mx), with AK0 ← AK

Note that we can instantiate PRF and KDF using a single HMAC. The
measurement state Mx has become implicit in AKx and does not have to be
recorded separately.

The approach is limited in the sense that the boot flow at P dictates the
accumulation of measurements in one or more implicit trust chains M . However,
for the small, single-purpose IoT platforms we target here, there is typically no
need to attest subsets of the firmware state as it is possible with TPM PCRs.
The next section expands this idea into a full remote attestation protocol.



442 S. Schulz et al.

3.2 Remote Attestation Protocol

Figure 2 provides an overview of a possible remote attestation protocol utilizing
the implicit chain of trust and a symmetric shared attestation key AK. On the
right-hand side, the prover P builds its chain of trust from the Root of Trust
to a possible stage 1 (bootloader) and stage 2 (application). Once booted, the
prover may be challenged by V to report its firmware state by demonstrating
possession of the implicitly authenticated measurement state AK2.

Fig. 2. Schematic overview of one possible instantiation of our Boot Attestation scheme
as part of a remote attestation protocol.

The detailed protocol works as follows. The prover hardware starts execution
at the platform Root of Trust (RoT). This “stage 0” has exclusive access to the
root attestation key AK0 ← AK and an optional boot nonce NB . It derives AK1

as HMACAK0(NB ,m1), with m1 := (start1, size1,H1) defined as the binary
measurement of the firmware stage 1. Before launching stage 1, the RoT must
purge intermediate secrets from memory and lock AK against further access by
application firmware. Execution then continues at stage 1 using the intermediate
attestation key AK1 and measurement log (H1, NB)1.

The scheme continues through other boot stages x ∈ {1, . . . , k} until the main
application/runtime has launched in stage k. In each stage, a measurement mx+1

of the next firmware stage is taken and extended into the measurement state as
AKx+1 ← HMACAKx(mx+1). The prior attestation key AKx and intermediate
values of the HMAC() operation are purged from memory so that they cannot
be accessed by stage x + 1. Finally, the measurement log is extended to aid the
later reconstruction and verification of the firmware state at V.

Once P has launched the final stage k, it may accept challenges c ← NA by a
remote verifier to attest its firmware state. For P, this simply involves computing
a proof of knowledge r ← HMACAKk

(NA) and sending it to V together with the
measurement log. Using this response, the verifier V can reconstruct the state
M ′ = (m′

1, . . . ,m
′
k) claimed by P and the associated AKk. V can then validate

and accept P if M ′ = M and r = HMACAKk
(NA).

1 We consider (startx, sizex) as well-known parameters here, since the individual mx

would typically encompass the complete firmware image at a particular stage.



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 443

Note that for the devices we target, k tends to be very low. Typical MCUs
load only one or two stages of firmware, which helps keeping the validation effort
at V manageable even for large amounts of valid platforms (AK,M).

We emphasize that the protocol described here only considers the core attes-
tation scheme. A complete solution should also consider authorizing V towards
P, protecting the confidentiality of the attestation report and linking the attes-
tation to a session or otherwise exchanged data. As part of an authorized attes-
tation challenge c′, V may also include a command to update NB and reboot
P to refresh all AKx. However, while the implications of managing NB are dis-
cussed in Sect. 3.3, the detailed choices and goals are application-dependent and
outside the scope of this work.

3.3 Security Analysis

In the following, we analyze the security of Boot Attestation based on the adver-
sary model and attestation game defined in Sects. 2.2 and 2.3. We will show that
Boot Attestation is able to provide the same security as all load-time attestation
approaches, such as TPM-based attestation schemes [28]. For this purpose, we
consider the relevant attack surface in terms of network, physical/side-channel
as well as load-time and runtime compromise attacks.

Network Attacks. The adversary A can eavesdrop, synthesize, manipulate,
and drop any network data. However, the employed challenge-response protocol
using the shared secret AK trivially mitigates these attacks. More specifically,
any manipulation of assets exposed on the network, including H1,H2, NA or the
attestation response r, is detected by V when reconstructing AKk and validat-
ing r = HMACAKk

(NA). The attestation nonce NA mitigates network replay
attacks. A can cause a DoS by dropping messages, but V will still not accept P.

Since AK is a device-specific secret, the intermediate keys AKx and final
response r are uniquely bound to each individual device. This allows Boot Attes-
tation to function seamlessly with emerging swarm- attestation schemes, where
the same nonce NA is used to attest many devices at once [1,6,9].

Physical and Side-Channel Attacks. A may attempt simple hardware
attacks, using SoC-external interfaces to gather information on intermediate
attestation keys AKx or manipulate SoC- external memory and I/O. Boot Attes-
tation assumes basic hardware mechanisms to protect debug ports and protect
intermediate values in memory (cf. Sect. 5). Otherwise, the resilience against
hardware attacks heavily depends on the SoC implementation and is outside our
scope.

A could also attempt software side-channel attacks, such as cache, data
remanence, or timing attacks. However, as each stage i clears any data besides
N,Hi+1,AKi+1, there is no confidential data that a malware could extract from
cache, RAM, or flash. Furthermore, the risk of timing side-channels is drasti-
cally reduced as root keys are only used initially by the RoT. Implementing a
constant-time HMAC operation in the typically used non- paged, tightly coupled
SRAM is straightforward.



444 S. Schulz et al.

Load-Time Compromise. A may compromise the firmware stage a of P before
it is loaded and hence, measured. In this case, A can access all intermediate mea-
surements (m1, . . . ,mk), the nonces (NB , NA), and any subsequent attestation
keys (AKa, . . . ,AKk). Note that compromising the RoT (i.e., the initial stage)
is outside the capabilities of A. This is a reasonable assumption due to RoT’s
hardware protection (cf. Sect. 5) and miniscule code complexity (cf. Table 2).

Compromising the intermediate measurement state and keys allows A build-
ing alternative measurement states M ′

a+n and associated attestation keys AK′
a+n

for positive integers n. However, A cannot recover the attestation keys of prior
stages a − n, as they have been wiped from memory prior to invoking stage a.
In particular, A cannot access the root attestation key AK, which can only be
accessed by the RoT. As a result, A can only construct attestation responses
that extend on the measurement state M ′

a and the associated attestation key
AKa. Moreover, load-time attestation assumes that the measurement chain is
appropriately setup to record the compromise, so that (M ′

a,AK
′
a) already reflect

the compromise and cannot be expanded to spoof a valid firmware state Mk.
In practice, successfully recording M ′

a will typically require a persistent
manipulation or explicit code loading action by the adversary. However, this
is a well-known limitation of load-time attestation and also affects the TPM and
other load-time attestation schemes.

Following a firmware patch to return stage a into a well-known, trustworthy
component, a new measurement and associated key chain is produced starting
at stage a. A is unable to forsee this renewed key chain, as this would require
access to at least AKa−1.

Runtime Compromise. A may also compromise the firmware stage a at run-
time, after is measured, e.g., by exploiting a vulnerability that leads to arbitrary
code execution. In this case, A would have access to the correct (unmodified)
attestation key AKa, could bypass the chain of trust, and thus win the attesta-
tion game. Note that this is a generic attack affecting all load-time attestation
schemes, including the TPM [28]. Even platforms supporting a Dynamic Root of
Trust for Measurement (DRTM) cannot detect runtime attacks after the mea-
surement was performed. However, Boot Attestation performs slightly worse in
this case since A may additionally record AKa and replay it later on to simulate
alternative measurement states and win the attestation game, even after reboot.
Nevertheless, Boot Attestation allows recovering the platform and returning into
a trustworthy state, in the same way as with other load-time attestation schemes,
by patching the vulnerable firmware stage a and performing a reboot. This leads
to a refresh of attestation keys AKa, . . . ,AKk in a way that is unpredictable to
A, thus enabling V to attest the proper recovery of P and possibly reprovision
application secrets.

To further mitigate the risk of a compromised AKa, V may also manage an
additional boot nonce NB as introduced in Sect. 3.2. Depending on the particular
usage and implementation of P, NB could be incremented to cause a refresh of
the measurement chain without provisioning new firmware. For instance, MCUs



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 445

in an automotive on-board network may regularly receive new boot nonces for
use on next boot/validation cycle.

4 Extensions for Real-World Use

In the following, we discuss extensions to our attestation scheme that are com-
monly not considered in prior work, but which are fundamental for real-world
application in IoT. The first extension provides support for provisioning an attes-
tation key and requires a slight extension of our HW requirements. The second
extension is a software-only solution to support verification of attestation reports
by untrusted third parties.

4.1 Attestation Key Provisioning

In many cases, it is desirable to provision a new root attestation key AK to a
possibly compromised platform. Examples include a user taking ownership of
a new or second-hand device, or issuing a fresh AK after compromise of the
verifier. To realize this, we follow the TCG concept of provisioning a device-
unique endorsement key EK as part of manufacturing of P. EK is a symmetric
key shared between P and the manufacturer M. This allows M to authorize
AK key provisioning requests from V to P, while at the same time ensuring the
authenticity of the provisioning target P to V.

Provisioning AK based on EK can be realized with a number of key exchange
or key transport protocols implemented in RoT. We omit a detailed instantiation
here due to the lack of space. However, we like to call out the slightly extended
key protection requirement for supporting such a scheme. In particular, AK pro-
visioning requires the AK storage to be writable by RoT but read/write-locked
for subsequent FW stages (cf. Sect. 5).

4.2 Third-Party Verification

In many IoT usages, MCUs operate not just with a single trusted device owner
or manager, but can establish a variety of interactions with user platforms,
infrastructure components and cloud backends.

However, as the final attestation key AKk is a critical asset during attestation,
sharing it with all possible verifiers would significantly reduce the confidence
into the scheme. To tackle this issue, which is shared by all existing symmetric
attestation schemes [13,30], we extend Boot Attestation to allow for potentially
untrusted third-party verifiers.

For this purpose, we turn the original verifier V into a Certification Authority
(CA). CA and P do not use AKk directly, but instead generate a key pair based
on the pseudo-random input AKk. In order to attest P by third-party verifies
V ′, only the public key computed from AKk must be distributed.

In practice, one would store AK in a secure environment at the owner or
manufactuer and only distribute and use valid public keys based on expected
firmware measurements. The detailed protocol works as follows:



446 S. Schulz et al.

Fig. 3. Third-party verification using a trusted CA. The optional boot attestation
phase is depicted with dashed arrows.

Initially, P and CA share a common secret AK and that P was initialized
according to Sect. 3.1, i.e. has derived the correct key AKk.

This time, P uses AKk as pseudo-random input to generate a key pair
(AKprv,AKpub) ← KeyGen(AKk). This can be done deterministically for exam-
ple using ECC key generation. Subsequently, CA receives (H1, . . . , Hk,N, r =
HMACAKk

(c)) from P. Using the intermediate hashes (H1, . . . ,Hk) and AK,
CA can reproduce AKk and P’s public key AKpub and publish a certificate
certCA→P ← SignCAprv

(AKpub).
The third party V ′ initiates attestation by querying CA for P’s signed public

key certCA→P . Subsequently V ′ challenges the (valid) prover P for a fresh signa-
ture, using a nonce NA. In turn, P creates a signature s of NA s ← SignAKprv

(NA)
and sends s to V ′. The third party is now able to infer statements about P’s
identity and firmware state. At the same time AKk is kept secret from V ′. An
overview of the scheme is shown in Fig. 3.

5 Hardware Requirements

In this section, we describe the hardware requirements of our Boot Attestation
scheme in detail. We formulate these as results here and not as system assump-
tions in Sect. 2.1, since the exploration of alternative remote attestation schemes
with minimal hardware requirements has been a major research challenge in
recent years [13,14,17,30]. In particular, remote attestation schemes proposed
so far still require a secure co-processor or custom hardware security extensions in
order to support the secure recording and signing of measurements. Alternative
approaches using a software-only root of trust still require strong assumptions on
the operating environment and implementation correctness, which has precluded
them as a generic attestation solution for IoT [10,22].

Leveraging the implicit chain of trust, our Boot Attestation scheme avoids
the requirement for a hardware-isolated attestation runtime. Specifically, we only
require the following hardware security features:



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 447

[I] RoT Integrity: The RoT is critical to initializing the chain of trust and
protecting fundamental platform assets such as AK. Our scheme requires RoT
integrity in the sense that it must be impossible for the adversary A to manip-
ulate the RoT firmware, and that the RoT must be reliably and consistently
executed at platform reset. In practice, this requires hardware access control
on the RoT code and data region, but also hardware logic to consistently reset
the SoC’s caches, DMA engines and other interrupt-capable devices in order to
reliably execute RoT on power-cycle, soft-reset, deep sleep, and similar events.
While RoT integrity is well-understood in terms of supporting secure boot or
firmware management, we know of no COTS MCU which natively supports a
RoT for attestation. To realize Boot Attestation on COTS MCUs we therefore
require an extension of the RoT integrity requirement: The device owner must
be able to customize or extend the initial boot phase to implement an attestation
RoT, and then lock or otherwise protect it from any further manipulation. As
we will show, many COTS MCUs actually offer this level of customization prior
to enabling production use.

[II] AK Protection: Boot attestation requires that the root attestation key
AK is read-/write-locked ahead of execution of the firmware application. This
typically requires the RoT to initialize some form of memory access control and
then lock it down, such that it cannot be disabled by subsequent firmware stages.
While such lock-able key storage is not a standard feature, we found that most
COTS MCUs offer some kind of memory locking or hiding that can be used to
meet this requirement (cf. Sect. 3.3).

[II∗] AK Provisioning: Provisioning of a new attestation key AKnew involves
replacement of its previous instance, conducted by the RoT (cf. Sect. 4.1). Hence,
in order to support provisioning, AK must further be writable by the RoT exclu-
sively. However, this procedure is preceded by the secure negotiation of AKnew.
During this process the endorsement key EK is used to provide authorization and
confidentiality of the new attestation key AKnew. Thus, during key provisioning
the RoT must read EK and then lock it against read attempts by latter firmware
stages, basically resembling requirement [II].

[III] State Protection: When calculating measurements mx and attestation
keys AKx, the respective firmware stage must be able to operate in a secure
memory that cannot be accessed by later firmware stages or other unautho-
rized platform components. This includes protecting intermediate values of the
HMAC calculation as well as the stack. In practice, this requirement breaks
down to operating in memory that is shielded against simple hardware attacks
(cf. Sect. 2.2), such as the SoC on-DIE SRAM, and clearing sensitive intermedi-
ate values from memory before handing control to the respective next stage.

[IV] Debug Protection: Once programmed and provisioned, the device should
reject unauthorized access via external interfaces such as UART consoles, JTAG
or SWD debug interfaces [11]. Strictly speaking this requirement is sufficiently
addressed if the above integrity and confidentiality requirements are met. How-
ever, we list it here as separate requirement since debug access and re-program-



448 S. Schulz et al.

ming protections are typically implemented and enabled separately from the
above general implementation requirements.

Overall, we can see that Boot Attestation side-steps requirements for pro-
tecting the initial call into the secure environment and inhibiting interrupts
during execution - including resets - which are not achievable with established
hardware protection mechanisms and therefore also not feasible on commodity
COTS MCUs [13,14].

6 Proof of Concept Implementation

We reviewed specifications for a range of popular COTS MCUs with regard to
meeting the hardware requirements of Boot Attestation (cf. Sect. 5), including
support for AK Provisioning (req. [II] ∗).

All of the platforms we investigated support executing firmware completely
within the confines of the SoC, ensuring confidentiality and integrity against
external HW manipulation (req. [III]). Most of the chips also offer one or more
lock bits to disable debug access for production use ([IV]). Differences could be
observed mainly in the memory access control facilities, with a large variety in
the number, granularity and permissions available per physical memory block.
In contrast, all of the investigated devices support customization and subsequent
locking of the boot “ROM”, allowing developers to customize and then integrity-
protect the platform Root of Trust in one way or another (req. [I]).

An overview of the results is provided in Table 1. Apart from [I] RoT Integrity
and [IV] Debug Protection, we also list the respective options for protecting AK
and EK in the AK Provisioning scenario (req. [II] ∗)2. As can be seen, Boot
Attestation is potentially supported by a wide range of devices. Naturally, a
full implementation and validation is required to ensure the respective platform
controls are accurately documented and sufficient in practice.

We selected two rather different device types, the Stellaris LM4F120 and
the Quark D2000, to evaluate different implementation options and provide an
overview of the associated costs. In both cases, the implementation of our scheme
comprised extending the RoT for measuring the FW application image and
deriving an attestation key, as well as initializing the hardware key protection
for AK and EK. Note also that there is no intermediate bootloader stage on
these devices as the application image is directly executed by RoT. An overview
of the implementation footprint is provided in Table 2.

6.1 Prototype I: TI Stellaris LaunchPad

The TI Stellaris Launchpad [44] implements an ARM Cortex-M4F operating at
80 MHz3, 32 kB SRAM, 32 kB flash memory and 2 kB EEPROM. The platform
is typically used in industrial automation, point of sale terminals and network
2 If no AK provisioning is desired, EK protection is sufficient to store AK0 (req. [II]).
3 In our experiments we set the operating frequency to 50 MHz to allow for better

comparison with the Intel MCU.



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 449

Table 1. List of COTS MCUs and how they meet our hardware requirements.

Device type CPU SRAM(kB)/

Flash (kB)/

EEPROM(kB)

RoT

Integrity

AK

protection

EK

protection

Debug

protection

ATmega328P AVR 2/32/1024 Flash Flash Flash/PUF ✓

PIC16F1825 PIC16 1/8/256 Flash Flash/

EEPROM

Flash/

EEPROM

✓

LPC1200 Cortex-M0 4–8/32–128/– Flash ✗ ✗ ✓

STM32F100Rx Cortex-M3 8/64–128/– Flash ✗ PUF ✗

Stellaris

LM4F120

Cortex-M4F 32/256/2048 Flash Flash Flash/

EEPROM

✓

Quark MCU

D2000

Quark D2000 8/44/– Flash Flash

(main)

Flash

(OTP)

✓

Arduino/

Genuino101

Quark SE C1000 80/392/– Flash Flash Flash ✓

appliances. We use FreeRTOS [33] as a firmware stack, as it is freely available,
pre-configured for the Stellaris and as it exhibits a small memory footprint.

Integrity Protected RoT. The Stellaris supports RoT code integrity by
enabling execute-only protection to those flash blocks that store the boot loader.
In particular, by setting register values of FMPPEn and FMPREn to ‘0’, read and
write access to the bootloader section is disabled while keeping it executable.

Protection of AK and EK. Although the Stellaris provides memory protection
for flash [5], we decide not to use it for secure key storage. Despite the fact that
individual blocks of flash memory can be read-protected, it is yet possible to
execute said blocks. This could allow an attacker A to extract bits of AK or
EK. A can try to execute respective memory regions and infer information by
interpreting resulting execution errors. Instead, we securely store AK and EK on
the internal EEPROM module. The Stellaris platform provides register EEHIDE
that allows for hiding individual 32 B EEPROM blocks until subsequent reset.

PUF-Based Storage of EK. It is also possible to securely store EK using a
fraction of the on-chip SRAM as a PUF. Previous work supports the use of
SRAM as PUFs for key storage [27,38]. Indeed, the SRAM-based PUF instance
of the Stellaris has already been characterized in [19]. Using PUFs as a key
storage significantly increases the level of protection, as PUF-based keys are
existent only for a limited period [3]. Especially for long-term keys, such as
EK, this is a desirable property, which is otherwise hard to achieve on low-cost
devices. To evaluate this option, we implemented a Fuzzy Extractor construction
based on [7]. On start-up of the device, a fraction of the SRAM start-up values are
used as a (noisy) PUF measurement X. Using X and public Helper Data W that
was created during a prior enrollment phase, the Fuzzy Extractor can reconstruct
EK. For details on the the interaction with SRAM-based PUFs, we refer to [36].
Assuming a conservative noise level of 15 % in the PUF measurements X, which
is a common value used in literature [7], and applying a (15, 1, 15) repetition
code as part of the Fuzzy Extractor, we achieve an error probability of 10−9.



450 S. Schulz et al.

Debug Protection. The bootloader is further protected from attempts to
replace it by malicious code by disabling access to JTAG pins. For this purpose
bits DBG0, DBG1 and NW, part of register BOOTCFG are set to ‘0’. This leaves a
subset of standard IEEE instructions intact (such as boundary scan operations),
but blocks any access to the processor and peripherals.

6.2 Prototype II: Intel Quark D2000

The Intel Quark Microcontroller D2000 employs an x86 Quark CPU operating
at 32 MHz, 8 kB SRAM, 32 kB main flash memory, as well as two regions (4 kB
and 4 kB) of One-Time-Programmable (OTP) flash memory. The Intel D2000 is
tailored towards IoT scenarios, where low energy consumption is required. We
use the Intel Quark Microcontroller Software Interface (QMSI) [25] and Zephyr
RTOS [26] as the standard firmware stack.

Integrity Protected RoT and Debug Protection. The D2000 boots directly
from an 8 kB OTP flash partition. A hardware-enforced OTP lock permanently
disables write accesses to the OTP partition of the flash memory. It further
deactivates mass erase capability of the OPT partition and at the same time
disables JTAG debug access. Locking the OTP partition is done by setting bit
‘0’ at offset 0 x 0 of the flash memory region to ‘0’.

Protection of AK and EK. We store AK in main flash to support updates via
key provisioning. One of the D2000 flash protection regions (FPR) is setup and
locked by the RoT to prevent read access by later firmware stages. In order to
store the long-term key EK, we use the OTP flash region of the D2000. The 8 kB
OTP supports read-locking of the upper and lower 4 kB regions of OTP flash.
As this read protection also inhibits execute access, we store EK at the upper
end of OTP memory and set the read-lock just at the very end of RoT execution.
The read-lock for the lower and upper OTP region is activated by programming
bits ROM RD DIS L and ROM RD DIS U of the CTRL register.

6.3 Performance Evaluation

In the following, we present evaluation results for both device types, with focus
on memory footprint and runtime. Numbers are given for the RoT and key pro-
tection logic. Values for the RoT are further separated with respect to RoT base
logic (memory management, setup of data structures) and the HMAC imple-
mentation. Runtime results of the HMAC functionality are given for a memory
range of 256 bit, i.e., a single HMAC data block, and a 32 kB region that reflects
larger firmware measurements. For both, memory footprint and runtime, we fur-
ther provide numbers with respect to two different compile time optimizations.
The detailed results are given in Table 2.

Memory. For memory consumption we consider static code segments (.text)
and read-only data (.rodata) segments of the firmware image. Table 2 lists
results for compile optimizations towards size (-Os) and runtime (-O1). Using



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 451

Table 2. Implementation overhead with respect to runtime in milliseconds (left) and
memory overhead in Bytes (right) for the TI Stellaris (ARM) and the Intel D2000
(x86), with optimizations for size (-Os) and runtime (-O1).

Size (Bytes) Runtime (ms)

ARM x86 ARM x86

Component -Os -O1 -Os -O1 -Os -O1 -Os -O1

Base ROM 702 712 1955 2115 0.79 0.63 6.11 5.93

Root of Trust (RoT)

Base Logic 336 340 168 193 <0.01 <0.01 <0.01 <0.01

HMAC-SHA2 (256 bit) 1828 1836 1819 2061 3.04 3.04 1.54 1.44

HMAC-SHA2 (32 kB) 1828 1836 1819 2061 312.26 312.26 148.23 145.37

AK Protection

Flash — — 295 337 — — 0.02 0.02

EEPROM 516 580 — — 0.01 <0.01 — —

EK Protection

Flash — — 378 448 — — <0.01 0.002

EEPROM 516 580 — — 0.01 <0.01 — —

SRAM PUF 1662 1980 — — 46.44 46.42 — —

the most memory-efficient setting, the scheme requires a total of ≈3.1 kB on the
Stellaris. This may seem large compared to the 700 B footprint of the base ROM
image (i.e., excluding the application), but is only 1.22 % of the total available
flash. On Intel D2000, our RoT extension consumes 2.6 kB on top of the QMSI
stock ROM of 2 kB. This fits well within the total 8 KB available for boot loader
code. The application flash is left for use by applications, except for the small
part reserved for AK storage.

Runtime. Additional runtime introduced by our scheme mainly results from
HMAC operations in order to compute attestation measurements, with the key
protection logic introducing only little overhead. The right hand side of Table 2
lists runtime overhead of our implementation. As to be expected, the main over-
head is caused by the HMAC function which depends on the concrete size of the
next stage to be measured. We give 256 B and 32 kB as reference points to esti-
mate the cost hashing the KDF output and a larger firmware, respectively. The
D2000 is more than two times faster in computing authenticated measurements
over various memory regions, which is much likely due to faster flash access. In
particular, the D2000 requires only 145 ms for hashing 32 kB, whereas the Stel-
laris takes 312 ms. In contrast, the key protection logic adds negligible runtime
for both device types. It takes less than 0.02 ms on the Stellaris and 0.04 ms on
the Intel D2000, in the worst-case. Lastly, the SRAM PUF is by far the slowest
key storage solution for EK on the Stellaris, taking almost half a second. This
is due to costly error correction of the PUF measurements. As a reference, the



452 S. Schulz et al.

unmodified base ROM, without our extension, takes on average 0.7 ms on the
Stellaris and 6 ms on the Intel D2000.

7 Related Work

Previous work on attestation addresses hardware-based or timing-based attesta-
tion, scalable attestation for groups of devices, and secure code updates. verifier,
to check the integrity of the software on a remote device, named prover. Prior
work is related to timing-based or hardware- based attestation, scalable attesta-
tion for groups of devices, or secure code updates.

Hardware-based attestation schemes rely on secure hardware, such as Intel
SGX or a Trusted Platform Module (TPM) [2,28], that is installed on the prover.
Since such secure hardware is typically too expensive and complex to be inte-
grated in low-cost embedded devices, recent works focused on the advancement
of new minimalist security architectures [13,14,17,30] which enable hardware-
based remote attestation capabilities for small embedded devices. However, these
lightweight architectures have not yet reached the market, and hence are not
available in commodity low-end embedded devices. Furthermore, even when they
are available, there is still the need to secure old systems.

By contrast, timing-based attestation schemes do not require secure hardware
and thus are applicable to legacy systems [20,24,40,41]. However, they rely on
assumptions that have proven to be hard to achieve in prac tice [4,10,22]. Such
assumptions include an optimal implementation and execution of the protocol,
exact time measurements, and an adversary who is passive during attestation.

Recent works address a scalable attestation of groups of devices (i.e., device
swarms) that are interconnected in large mesh networks [1,6,9]. The basic idea
is that neighboring devices mutually attest each other in order to distribute the
attestation burden across the entire network. Since these works rely on hardware-
based attestation schemes, such as [8,13,17], they could leverage our Boot Attes-
tation scheme to be applicable to a broader range of embedded devices.

The field of secure code updates specifically addresses the challenge of verify-
ing the integrity firmware after ist has been updated. Initial approaches employ
software-based attestation techniques [39], and hence inherit their characteris-
tics, mentioned above. Later on, the notion of Proofs of Secure Erasure (PoSE)
was introduced to secure code updates [16,32]. PoSE-based approaches build on
a challenge-response protocol that requires the prover to fill its entire memory
with data, in turn overwriting any malicious code. Although such solutions can
be applied to many devices, as they require a small amount of read-only memory,
they assume an network adversary to only communicate with the verifier but not
the prover device, which is a strong limitation. Recent work focuses on scalable
updates in large mesh networks [18]. In contrast to our work, it imposes the
use of asymmetric cryptography, involving heavy computational overhead and a
large memory footprint. There are also platform-specific security extensions such
as cryptoBSL [45] and STM32 PCROP [43]. While they are focused on secure
boot and IP protection, it would be interesting to evaluate their use in context
of remote attestation and recovery.



Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 453

8 Conclusions and Future Work

In this work, we explored a novel lightweight remote attestation scheme for low-
cost COTS MCUs. We showed that it is possible to narrow down hardware
requirements of the targeted MCUs and even to enable the extension of already
deployed devices. We demonstrated practicability and efficiency of implementing
our scheme on two representative MCUs and proposed extensions for usage in
real-world scenarios. For future work, we will investigate support of additional
device types, to widen to scope of applicability. A second effort will be taken to
refine existing and develop further protocol extensions, such as symmetric sealing
of assets (i.e., sensor values, etc.), establishment of trusted channels or means
to log provenance of such assets, especially if they are computed on flash-based
media that employ or scheme.

Acknowledgments. This work has been partly funded by the DFG as part of project
P3 within the CRC 1119 CROSSING and the LOEWE initiative (Hessen, Germany)
within the NICER project. The authors would also like to thank the anonymous review-
ers for their valuable comments.

References

1. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.-R., Schunter, M.:
SANA: secure and scalable aggregate network attestation. In: CCS. ACM (2016)

2. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: HASP (2013)

3. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Towards
Hardware-Intrinsic Security (2010)

4. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework
for the analysis and design of software attestation. In: CCS. ACM (2013)

5. Ahuja, A.: SPMA044A - Using Execute, Write, and Erase-Only Flash Protection
on Stellaris Microcontrollers Using Code Composer Studio

6. Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.-R., Schunter, M., Tsudik, G.,
Wachsmann, C.: SEDA: scalable embedded device attestation. In: CCS (2015)

7. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient
helper data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85053-3 12

8. Brasser, F., El Mahjoub, B., Sadeghi, A.-R., Wachsmann, C., Koeberl, P.: TyTAN:
tiny trust anchor for tiny devices. In: DAC (2015)

9. Carpent, X., ElDefrawy, K., Rattanavipanon, N., Tsudik, G.: Lightweight swarm
attestation: a tale of two LISA-s. In: AsiaCCS. ACM (2017)

10. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: CCS. ACM (2009)

11. Chen, W., Bhadra, J., Wang, L.-C.: SoC security and debug. In: Bhunia, S., Ray,
S., Sur-Kolay, S. (eds.) Fundamentals of IP and SoC Security, pp. 29–48. Springer,
Cham (2017). doi:10.1007/978-3-319-50057-7 3

http://dx.doi.org/10.1007/978-3-540-85053-3_12
http://dx.doi.org/10.1007/978-3-540-85053-3_12
http://dx.doi.org/10.1007/978-3-319-50057-7_3


454 S. Schulz et al.

12. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: USENIX Security (2014)

13. Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: SMART: secure and minimal
architecture for (establishing dynamic) root of trust. In: NDSS (2012)

14. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: DATE (2014)

15. Hern, A.: Chinese webcam maker recalls devices after cyberattack link, October
2016. https://www.theguardian.com/technology/2016/oct/24/chinese-webcam-ma
ker-recalls-devices-cyberattack-ddos-internet-of-things-xiongmai. Accessed 19
Apr 2017

16. Karame, G.O., Li, W.: Secure erasure and code update in legacy sensors. In: Conti,
M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 283–299.
Springer, Cham (2015). doi:10.1007/978-3-319-22846-4 17

17. Koeberl, P., Schulz, S., Sadeghi, A.-R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: EuroSys (2014)

18. Kohnhäuser, F., Katzenbeisser, S.: Secure code updates for mesh networked com-
modity low-end embedded devices. In: Askoxylakis, I., Ioannidis, S., Katsikas, S.,
Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 320–338. Springer, Cham
(2016). doi:10.1007/978-3-319-45741-3 17

19. Kohnhäuser, F., Schaller, A., Katzenbeisser, S.: PUF-based software protection
for low-end embedded devices. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.)
Trust 2015. LNCS, vol. 9229, pp. 3–21. Springer, Cham (2015). doi:10.1007/
978-3-319-22846-4 1

20. Kovah, X., Kallenberg, C., Weathers, C., Herzog, A., Albin, M., Butterworth, J.:
New results for timing-based attestation. In: Security & Privacy (2012)

21. Krebs, B.: Who Makes the IoT Things Under Attack? October 2016. https://
krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/. Accessed
19 Apr 2017

22. Li, Y., Cheng, Y., Gligor, V., Perrig, A.: Establishing software-only root of trust
on embedded systems: facts and fiction. In: Christianson, B., Švenda, P., Matyáš,
V., Malcolm, J., Stajano, F., Anderson, J. (eds.) Security Protocols 2015. LNCS,
vol. 9379, pp. 50–68. Springer, Cham (2015). doi:10.1007/978-3-319-26096-9 7

23. Li, Y., McCune, J.M., Perrig, A.: SBAP: software-based attestation for peripherals.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101,
pp. 16–29. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13869-0 2

24. Li, Y., McCune, J.M., Perrig, A.: VIPER: verifying the integrity of PERipherals’
firmware. In: CCS. ACM (2011)

25. Linux Foundation: Intel Quark Microcontroller Software Interface. Accessed 19
Apr 2017

26. Linux Foundation: Zephyr Project. https://www.zephyrproject.org/. Accessed 19
Apr 2017

27. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04138-9 24

28. Trusted Computing Group: TPM Main Specification. http://www.trustedcompu
tinggroup.org/resources/tpm main specification. Accessed 19 Apr 2017

29. Nohl, K., Krißler, S., Lell, J.: BadUSB - On accessories that turn evil (2014).
https://opensource.srlabs.de/projects/badusb. Accessed 19 Apr 2017

https://www.theguardian.com/technology/2016/oct/24/chinese-webcam-maker-recalls-devices-cyberattack-ddos-internet-of-things-xiongmai
https://www.theguardian.com/technology/2016/oct/24/chinese-webcam-maker-recalls-devices-cyberattack-ddos-internet-of-things-xiongmai
http://dx.doi.org/10.1007/978-3-319-22846-4_17
http://dx.doi.org/10.1007/978-3-319-45741-3_17
http://dx.doi.org/10.1007/978-3-319-22846-4_1
http://dx.doi.org/10.1007/978-3-319-22846-4_1
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/
http://dx.doi.org/10.1007/978-3-319-26096-9_7
http://dx.doi.org/10.1007/978-3-642-13869-0_2
https://www.zephyrproject.org/
http://dx.doi.org/10.1007/978-3-642-04138-9_24
http://dx.doi.org/10.1007/978-3-642-04138-9_24
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://opensource.srlabs.de/projects/badusb


Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors 455

30. Noorman, J., Agten, P., Daniels, W., Strackx, R., Van Herrewege, A., Huygens,
C., Preneel, B., Verbauwhede, I., Piessens, F.: Sancus: low-cost trustworthy exten-
sible networked devices with a zero-software trusted computing base. In: USENIX
Security (2013)

31. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Modern Computers.
Springer, New York (2011)

32. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of
secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 39

33. Real Time Engineers Ltd.: FreeRTOS Website. Accessed 9 Dec 2015
34. Ryan, M.: Bluetooth: with low energy comes low security. In: WOOT (2013)
35. Saponas, T.S., Lester, J., Hartung, C., Agarwal, S., Kohno, T.: Devices that tell

on you: privacy trends in consumer ubiquitous computing. In: USENIX Security
(2007)

36. Schaller, A., Arul, T., van der Leest, V., Katzenbeisser, S.: Lightweight anti-
counterfeiting solution for low-end commodity hardware using inherent PUFs. In:
Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 83–100. Springer,
Cham (2014). doi:10.1007/978-3-319-08593-7 6

37. Schneier, B.: The internet of things is wildly insecure and often unpatchable. Wired,
January 2014

38. Schrijen, G.-J., van der Leest, V.: Comparative analysis of SRAM memories used
as PUF primitives. In: DATE (2012)

39. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: secure code
update by attestation in sensor networks. In: WiSe (2006)

40. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: ver-
ifying code integrity and enforcing untampered code execution on legacy systems.
In: SOSP (2005)

41. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: software-based attes-
tation for embedded devices. In: Security & Privacy. IEEE (2004)

42. Shaked, Y., Wool, A.: Cracking the Bluetooth PIN. In: MobiSys (2005)
43. STMicroelectronics: Proprietary code read-out protection on microcontrollers of

the STM32L4 series. Accessed 23 June 2017
44. Texas Instruments: Stellaris LM4F120 LaunchPad Evaluation Kit. http://www.ti.

com/tool/ek-lm4f120xl. Accessed 19 Apr 2017
45. Texas Instruments: Crypto-Bootloader (CryptoBSL) for MSP430FR59xx and

MSP430FR69xx MCUs. Accessed 23 June 2017

http://dx.doi.org/10.1007/978-3-642-15497-3_39
http://dx.doi.org/10.1007/978-3-642-15497-3_39
http://dx.doi.org/10.1007/978-3-319-08593-7_6
http://www.ti.com/tool/ek-lm4f120xl
http://www.ti.com/tool/ek-lm4f120xl

	Boot Attestation: Secure Remote Reporting with Off-The-Shelf IoT Sensors
	1 Introduction
	2 System Model and Goals
	2.1 System Model
	2.2 Adversary Model
	2.3 Remote Attestation Game

	3 Boot Attestation
	3.1 Implicit Chain of Trust
	3.2 Remote Attestation Protocol
	3.3 Security Analysis

	4 Extensions for Real-World Use
	4.1 Attestation Key Provisioning
	4.2 Third-Party Verification

	5 Hardware Requirements
	6 Proof of Concept Implementation
	6.1 Prototype I: TI Stellaris LaunchPad
	6.2 Prototype II: Intel Quark D2000
	6.3 Performance Evaluation

	7 Related Work
	8 Conclusions and Future Work
	References




