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Abstract. We present a method for computing the best provisioning of
security resources for Internet of Things (IoT) scenarios characterized
by a high degree of mobility. The security infrastructure is specified
by a security resource allocation plan computed as the solution of an
optimization problem that minimizes the risk of having IoT devices not
monitored by any resource. Due the mobile nature of IoT devices, a
probabilistic framework for modeling such scenarios is adopted. We adapt
the concept of shortfall from economics as a risk measure and show how
to compute and evaluate the quality of an allocation plan. The proposed
approach fits well with applications such as vehicular networks, mobile
ad-hoc networks, smart cities, or any IoT environment characterized by
mobile devices that needs a monitoring infrastructure.

Keywords: Network security · Internet of Things · Stochastic alloca-
tion

1 Introduction

The Internet of Things (IoT) will increase the ubiquity of the Internet by inte-
grating every object for interaction via embedded systems leading to a highly
distributed network of devices communicating with human beings as well as other
devices [37]. The International Telecommunication Union defines the Internet of
Things as “a global infrastructure for the Information Society, enabling advanced
services by interconnecting (physical and virtual) things based on, existing and
evolving, inter-operable information and communication technologies”. 1 These
definitions give us a hint to the role IoT will play in the everyday life, and

1 http://www.itu.int/en/ITU-T/Pages/default.aspx.
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the impact it will have in several areas: the inclusion of developing countries in
global trade, the use of search engines to the benefit of civil society, combating
product counterfeiting, tackling environmental concerns, improving health con-
ditions, securing food supply and monitoring compliance with labor standards
[36]. From these observations, it also follows that security will play a very impor-
tant role in IoT. A security infrastructure will be mandatory for ensuring the
integrity of data and reliability of network participants. However, the mobility
and heterogeneity of IoT devices make the process of security provisioning more
complicated than for traditional computer networks, where both the network
topology and the number of network devices are assumed to be static. IoT net-
works continuously change topology because of mobility and/or (dis)appearance
of devices.

In such IoT environments, the geographical distribution and the number of
connected devices are not stationary, and vary from spot to spot, according to the
different activities taking place in the different areas. A security infrastructure
must be able to address such a dynamic nature of IoT networks. To this end, a
security resource allocation plan must take into account the numerous shapes the
device mobility confers to the system of interest, and ensure a certain security
level in the majority of cases.

In this paper we present a method for computing the best allocation plan of
security resources for IoT scenarios characterized by a high degree of mobility. By
security resources we mean passive monitors of wireless traffic, and by plan, the
number and location of such resources. We formalize a model for such scenarios,
and provide a heuristic for computing allocation plans that minimize the risk of
having IoT devices not monitored by any resource. We employ the key-concept
of shortfall [3] as a risk measure. Shortfall is mostly used in economics to model
the risk associated with an investment by combining in a single (risk) value
the return of the investment in the worst scenarios together with the expected
return. In fact, an investment might provide a return much more scarce than the
expected one due to the significant changes that can affect the market. We adapt
the concept of shortfall to model the risk associated with a security solution for
which its effectiveness depends on how well the solution is able to address the
continuous topology changes that affect the system of interest.

Our contributions can be summarized as follows:

– the formalization of a model for describing a mobile IoT scenario;
– the formalization of the problem of finding an appropriate set of candidate

allocation plans of security resources for an IoT environment as an optimiza-
tion problem;

– the adaptation of the concept of shortfall to our security domain as a risk
measure of a security solution.

2 The Framework

The main characteristics of IoT environments are the heterogeneity, due to the
simultaneous presence of different types of signals and networks, and the con-
tinuous topology changes of the network composed by the devices moving in the
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area of interest. Simple devices such as RFID tags broadcast messages for others
to use, devices paired with other devices use bluetooth or WiFi as communica-
tion medium, people equipped with smartphones, laptops, VoIP devices, PDAs,
smartwatches, well-being devices etc., move from place to place within a com-
mon macro-area. As an example of IoT environment we can think of a university
campus where thousand of people with several mobile connected devices contin-
uously change their position. Another well-fitting example is a vehicular network
(VANET) that, although more homogeneous in the type of devices, assumes dif-
ferent shapes and different sizes according to the hour and day of the week.
In such environments, the traditional security monitoring must be enhanced by
security tools (i) capable of listening to different types of signals, (ii) capable
of working in conjunction with other security resources to cover all possible sig-
nals, and (iii) smartly deployed in the network area in order to monitor as many
devices as possible despite continuous changes of the network topology. In this
paper we focus on the third aspect, and propose a method for intelligently plac-
ing security monitors, such that a certain level of security is ensured even when
the system of interest assumes shapes and sizes that are uncommon.

2.1 Threat Model

In such complex IoT ecosystem, different entities have different capabilities and
potential to cause security incidents. While our defensive approach is indepen-
dent from the actual attacks, we assume that the attacker may perform attacks
at different layers, and can take any of the steps commonly used to carry out
attacks: capturing and reprogramming devices, adding malicious entities to the
network to overhear data communications, inject false data and control traffic,
intercept and drop data packets, introduce interference, claim multiple identi-
ties, exfiltrate data, security credentials or encryption keys, compromise other
IoT devices in the network with the help of a compromised device. Also attacks
aimed at Internet services are carried through IoT devices. Recent news have in
fact reported the use of IoT devices for botnet attacks [10].

2.2 Defender Side

The goal of the defender is to passively monitor all wireless communications the
devices moving in the area of interest do. To this end, (s)he needs to choose a set
of security resources to monitor traffic and presence of devices, and decide where
to deploy them in order to minimize the number of non-monitored devices. There
are different kinds of security services the defender may have to use. Intrusion
detection systems (IDS) [20,27] as well as attack prevention systems (APS) [29]
can be installed in the network area to, respectively, detect ongoing attacks, and
prevent future ones; recovery systems [34] can be installed in order to address
security problems reported by IDSs and APSs; physical tools, like directional
antennas and highly sensitive transceivers can be adopted for enabling secu-
rity resources collecting data for the services to widen their action range [24].
There are several characteristics of IoT that can be leveraged to design a security
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resource well fit for IoT. While heterogeneous, most IoT devices communicate
and operate on standard mediums and protocols, such as IEEE 802.15.4 [14],
WiFi or Bluetooth for mediums, and ZigBee [39] or 6LoWPAN [13] for protocols.
Therefore, as long as a device communicates by using any of these mediums and
protocols, effective techniques such as promiscuous overhearing and watchdog-
based mechanisms [12,21] can be deployed (see e.g. [20]). Notice that a security
resource may embed one or more of these services, or may just collect data to
be sent to security services located in remote locations. We assume that differ-
ent kinds of security resources act independently and hence, are independently
deployed.

The geographical distribution and the number of connected devices in the
area of interest are key parameters for the task of computing the best placement
of security resources. Such distributions can be learned during a training period
long enough to be a representative sample of the monitored eco-system. Follow-
ing the two examples of IoT environments described above, in a campus area,
most students follow patterns that repeat every day, and can be learned in a
few months of an academic year: during the morning and the afternoon they are
located at the classrooms; at lunch/dinner time they move to the dining areas;
during the night they stay in the dorms or other in-campus accommodations.
Such patterns can be learned by analyzing the network traces produced by the
interaction between users’ devices, or between access points and the devices. In a
VANET, where cars move according to the hour and day of the week, such pat-
terns can be learned from data collected by road side units (RSUs). Commuting
patterns are also predictable by stochastic processes that capture local mobil-
ity decisions. Such processes help analytically derive commuting and mobility
fluxes that require as input only information on the population distribution.
The resulting model predicts mobility patterns in good agreement with mobility
and transport patterns observed in a wide range of phenomena, from long-term
migration patterns to communication volume between different regions [33].

In the next sections we show that for a security manager, the problem of
computing the best allocation plan of security monitors for a changing IoT envi-
ronment can be interpreted as the problem an investor faces when choosing an
investment that maximizes the return, considering the continuous changes that
affect the market.

3 Shortfall

In this section we briefly introduce the concept of shortfall, clarify the moti-
vations that have lead us to adopt it in our formalization, and show how we
manipulate it in order to obtain a more appropriate solution to our situation.

3.1 Definition

Shortfall is a risk measure used in economics which has conceptual, computa-
tional and practical advantages over other commonly used risk measures [3]. The
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shortfall, or more precisely, the shortfall at level α, measures how large losses,
below the expected return, can be expected if the return of the investment drops
below its α-quantile. Given all the possible market trends, we can compute the
set of all possible returns of our investment. The shortfall at level α is the dif-
ference between the expected return and the average of the returns of the worst
α% of cases. Given an investment x and a value α ∈ (0, 1), the shortfall sα(x) is
defined as follows:

sα(x) = E[R] − E[R|R ≤ qα(R)] (1)

where E[R] is the expected return of the investment, and qα(X) is the α-quantile
of a random variable X:

qα(X) = inf{x|P (X ≤ x) ≥ α} (2)

According to Levy and Kroll [18], for an investment x chosen to minimize
sα(x) for a fixed α and a given target mean μt, there is no other investment
with the same mean which would be preferred to x, because less profitable in
the worst α% of cases. Thus, one is naturally led to minimize the quantity sα(x)
for some α ∈ (0, 1) as follows:

min sα(x)
subject to E[R] = μt

(3)

3.2 From the Minimum Shortfall to the Best Choice

The solution we obtain by solving Problem3 depends on the target mean μt we
choose. In fact, given a target mean, we obtain the best investment (i.e., the
one with minimum shortfall) among those with the same expected value, but
we do not know whether there exists a better investment for different values of
μt. In other words, there might exist a dominating investment, i.e., of a higher
mean and a smaller shortfall, or alternatively, a non-dominated investment, i.e.,
of a higher (resp. lower) mean and a greater (resp. smaller) shortfall, which may
be preferred by the investor. A possible solution is that of solving Problem3
with different μt, and finally select the investment that best meets our needs.
However, this solution is not efficient because it might compute some dominated
investment, i.e., which would not be preferred to any other because of a lower
expected value and a greater shortfall than those of the other ones. Consequently
the time needed to compute such dominated solutions would be wasted. As
alternative, we propose to adapt Problem3 in such a way that it computes
only non dominated solutions. This is possible by turning Problem3 into a bi-
objective optimization problem. First of all, we start considering the following
equivalent problem:

max Eα[R]
subject to E[R] = μt

(4)

where Eα[R] = E[R|R ≤ qα(R)] is the mean of the worst α% of cases, namely,
the subtrahend in Eq. 1. Problem 4 is equivalent to Problem3 because for a target
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mean μt, minimizing E[R] − Eα[R] is equivalent to maximizing Eα[R]. Since we
want to compute a set of non dominated investments based on their E[R] and
Eα[R] values, we place the expected value as an objective of the optimization
problem, and we impose two inequality constraints on the values of E[R] and
Eα[R], in order to restrict the computation only to the cases we are interested
in. The resulting problem is as follows:

max E[R], Eα[R]
subject to E[R] ≥ μt

Eα[R] ≥ μα

(5)

Problem 5 is a less restricted version of Problem 3, where we split the two
terms of the shortfall, E[R] and Eα[R], and optimize them separately. The output
is a Pareto frontier PF [19] whose points are non dominated investments x with
values of E[R] and Eα[R] below the desired thresholds. Formally, PF is defined
as follows:

PF = {(E[R], Eα[R])|�(E′[R], E′
α[R]) ∈ PF such that

(E[R] ≥ E′[R] ∧ Eα[R] ≥ E′
α[R]) ∧ (E[R] > E′[R] ∨ Eα[R] > E′

α[R])}

An investor can thus conduct a cost-benefit analysis on the solutions of the
Pareto frontier, and finally choose the one that best fits his/her requirements.
In the next sections we show that the shortfall is well suited for describing the
risk associated with an allocation plan, such that a certain level of security is
ensured for every variation in the topology of the monitored environment.

4 Problem Definition

4.1 Preliminaries

We define an IoT environment as a set of n geographic areas Rk, k = 1, . . . , n,
that we call regions. We divide each region in locations, i.e., space units where
IoT devices or security resources could reside.

Definition 1 (region). A region R is a tuple 〈LR, PR〉, where:
– LR is the set of locations of R;
– PR is the probability distribution over a discrete random variable X that takes

integer values in the interval [0,∞). PR(X = x) is the probability that there
are x devices in R.

Definition 2 (security resource). A security resource sr is a tuple 〈c, r, Psr〉,
where:

– c is the cost;
– r (from radius) is the maximum action range;
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– Psr is the probability distribution over a discrete random variable Y that takes
values in the interval [0, r]. Psr(Y = y) is the probability that sr is able to
monitor a device located at a distance y.

Furthermore, we define R =
⋃n

k=1 Rk as the set of all regions, and L = {loc :
loc ∈ R}, as the set of all locations in R. In the rest of the paper we will use the
notation sr.c to denote the cost c of a security resource sr.

Security resources have an associated probability distribution, that describes
how likely a device at a certain distance is seen by a resource. This choice is driven
by the fact that the typical assumptions about all radios having circular range
and perfect coverage in that range is far from real [17]. More realistic models
take into account antenna height and orientation, terrain and obstacles, surface
reflection and absorption, and so forth. It is often difficult in reality to estimate
whether or not one has a functioning radio link between nodes, because signals
fluctuate greatly due to mobility and fading as well as interference. Several signal
attenuation models have thus been proposed [9,25], and there are a few that can
be used in concrete implementations of our model. For example, the Okumura
model, the Hata model for urban areas, the Hata model for open areas, are
models for outdoor attenuation; instead, the ITU model and the Log-distance
path loss model are models for indoor attenuation. One of these models, or a
combination of them, can be adopted for modeling the attenuation of a device
according to its radio characteristics.

4.2 From Economics to the IoT Domain

The problem we face is that of computing the optimal security resource allo-
cation plan for IoT scenarios characterized by a high degree of mobility. This
problem can be reduced to Problem 5 if we consider an allocation plan along
with its cost as an investment, and all the possible configurations a set of IoT
devices may assume in the area of interest as all the possible market trends. A
security manager (the investor) knows that the number of devices moving within
a region Rk follows a certain probability distribution PRk

, and that the resource
allocation plan to choose must be able to provide a good security level not only
in the average cases of PRk

, but also in the rare ones. In fact, rare device con-
figurations may result in high losses if not addressed by an adequate security
infrastructure. We use E[R] and Eα[R] as evaluation metrics of an allocation
plan for an IoT environment, where the multitude of device configurations is
wide because mobility. The optimal plan is the one that minimizes the expected
number of IoT devices not reached by any security resource. We call this quan-
tity the risk associated with the allocation plan (AP ), denoted by riskAP . We
adopt the risk as a negative return of an allocation plan, such that the smaller
the risk is, the more effective the plan. Being the risk a negative return, we need
to adapt the definition of α-quantile given in Eq. 2 as follows:

qα(risk) = inf{x|P (risk ≥ x) ≥ α} (6)
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Given a set of regions R (i.e., an IoT environment), and a fixed security
budget b, we define an allocation plan for R as the set

AP = {(sri, locj)|
∑

i

sri.c ≤ b, locj ∈ L} (7)

Given the set of all possible device configurations, we can compute the set of
all possible returns of an AP in terms of risk, and thus compute E[riskAP ] and
Eα[riskAP ]. The adaptation of Problem5 to our application domain is as follows:

max
AP∈AP

− E[riskAP ],−Eα[riskAP ]

subject to
E[riskAP ] ≤ μt

Eα[riskAP ] ≤ μα
∑

sr∈AP

sr.c ≤ b

(8)

where AP is the set of all possible allocation plans. The minus sign before the
two objectives means that we are actually minimizing the two measures, being
the risk a negative return. For the same reason, μt and μα are upper bounds for
E[riskAP ] and Eα[riskAP ], respectively, and not lower bounds as in Problem5.
Note that without the constraint on the maximum budget, Problem8 becomes
meaningless because it would compute a unique allocation plan possibly with an
unreasonable number of resources, providing risk 0 for any device configuration,
which is surely the most effective solution, but also unlikely the most efficient
because it would be very expensive in terms of cost.

Once a security manager has obtained the set of solutions to Problem 8,
(s)he can choose the allocation plan that best fits his/her security requirements.
However, there may be cases for which there is no solution, i.e., solving Problem8
outputs an empty set. This can happen for two reason:

1. no allocation plan exists able to satisfy the constraints, because the security
budget is too small to provide a value of E[riskAP ] and Eα[riskAP ] below
the desired thresholds;

2. the α-quantile is too small to admit Eα[riskAP ] ≤ μα.

In case (1), the security manager can try to increase the security budget
until at least one solution is returned, or alternatively can turn Problem8 in a
three-objective optimization problem by placing the cost as a further objective
as follows:

max
AP∈AP

− E[riskAP ],−Eα[riskAP ],−costAP

subject to
E[riskAP ] ≤ μt

Eα[riskAP ] ≤ μα

minCost ≤ costAP ≤ maxCost

(9)
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where costAP =
∑

sr∈AP sr.c. This way, the security manager can have a com-
prehensive view of cost-benefit, by determining the minimum cost required to
ensure a certain security level. However, this problem takes more time to solve
than Problem 8, proportionally to the quantity maxCost − minCost.

In case (2), the security manager may decide to increase μα, or to tolerate a
higher risk by having a larger quantile. In fact, α can be intended as a “measure
of the risk tolerance”: by increasing α, the value of qα(risk) decreases, and
Problem 8 computes Eα[risk] over a larger set of cases, which means that cases
with high risk are more tolerated. On the contrary, when α decreases, qα(risk)
tends to the maximum value of risk, thus restricting the cases over which Eα[risk]
is computed, meaning that we tolerate fewer cases with high risk.

5 Evaluation Algorithm

To solve Problem 8 an algorithm should enumerate all possible allocation plans
AP, and evaluate each AP ∈ AP over all possible configurations the IoT devices
can take within the geographic area of interest R. It easy to see that such an
algorithm would take an unreasonable amount of time to solve the problem.
In fact, for each region Rk ∈ R, the number of possible configurations is the
cardinality of the power set of LRk

, and the size of AP is upper-bounded by
the number of all subsets of L of cardinality at most s, where s is the max-
imum number of security resources allowed by the security budget. This lead
us to look for approximations in place of an exact solution. A standard tool
for approximation is the use of genetic algorithms. There exist several genetic
algorithms for computing a Pareto frontier, one of the most commonly used is
NSGA-II [8], an evolutionary genetic algorithm able to find an approximation of
the Pareto frontier for multi-objective optimization problems. The main differ-
ence between NSGA-II and other evolutionary genetic algorithms is the selection
phase: NSGA-II has no unique fitness function but one for each objective. Dur-
ing the selection phase, the selected points are only the non dominated ones.
When some constraints exist the selection phase will remove all points that do
not satisfy the constraints.

In Problem 8 there are two objectives −E[riskAP ] and −Eα[riskAP ]. To com-
pute their fitness at each iteration, the NSGA-II algorithm needs to evaluate the
current AP over the set of all possible device configurations. An AP is imple-
mented as an individual of the population of the genetic algorithm, where each
gene is the id of the location where a security resource has been placed. As stated
before, for each region Rk the set of different configurations Ck is too big to be
employed in the evaluation process without incurring in scalability problems. In
its place we generate a subset of Ck with a Monte Carlo method [28], whose
elements are generated according to the probability distribution PRk

associated
with the region Rk. More precisely, for a given region Rk, a device configura-
tion is a set of locations chosen randomly, with cardinality equal to an integer
randomly generated from PRk

. Algorithms 1 and 2 illustrate the fitness function
NSGA-II used for evaluating an allocation plan. Algorithm1 takes as input an
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Algorithm 1
1: procedure ComputeFitness(AP, n)

2:
−−→
riskAP = MonteCarlo(AP, n);

3: qα = α-quantile of
−−→
riskAP ;

4: E[riskAP ] = 0;
5: Eα[riskAP ] = 0;
6: count = 0;

7: for r ∈ −−→
riskAP do

8: E[riskAP ]+ = r;
9: if r ≥ qα then
10: Eα[riskAP ]+ = r;
11: count + +;
12: end if
13: end for
14: E[riskAP ] = E[riskAP ]/

−−→
riskAP .length;

15: Eα[riskAP ] = Eα[riskAP ]/count;
16: return E[riskAP ], Eα[riskAP ];
17: end procedure

Algorithm 2
1: procedure MonteCarlo(AP, n)

2:
−−→
riskAP = [ ];

3: while n > 0 do
4: devicesLocations = ∅;
5: for Rk ∈ R do
6: numberOfDevices = Pk.nextInt();
7: while numberOfDevices > 0 do
8: loc = a location ∈ Rk chosen randomly;
9: devicesLocations.add(loc);
10: numberOfDevices − −;
11: end while
12: end for
13: risk = ComputeRisk(AP, devicesLocations);

14: add risk to
−−→
riskAP ;

15: n − −;
16: end while
17: return

−−→
riskAP ;

18: end procedure

allocation plan AP and an integer n. In Line 2, the MonteCarlo procedure
returns a vector of length n with the risks associated with AP evaluated over
n different device configurations. In Line 3, qα is the value of the α-quantile of
the vector

−−→
riskAP . In Algorithm 2, the MonteCarlo procedure produces n dif-

ferent device configurations over which it evaluates AP . The number of devices
for each region Rk is chosen randomly according to the probability distribution
PRk

(Line 6). In Line 13, the procedure ComputeRisk computes the number of
devices not monitored by any security resource sr ∈ AP for each configuration,
according to Psr (the probability that sr is able to monitor a device located at
a certain distance). The exact positions where to place the sensors are identified
by each single gene of the individual corresponding to the chosen Pareto point.

6 Results Analysis

In this section we show the steps a security manager has to follow for computing
the allocation plan that best fits his/her security requirements, according to
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his/her security budget. To this end, we report results related to the simulation
of an area of 2000 m2 and consisting of three regions divided in locations of 1 m2.
The details are shown in the following figure:

R1
(20x20)

R2
(20x40)

R3
(40x20)

•
•
•
•

Gamma(α, β) is the Gamma probability distribution, adopted for simulating
the devices distribution over each region.

Suppose the security manager has at his/her disposal a security budget of 30
monetary units, and only one type of security resource, based on the watchdog
mechanism, with action range of 8 space units, and unitary cost. The security
level (s)he wants to achieve is at most 30 unmonitored devices in no more than
10% of cases. This is formally translated as:

– ∀ security resource sr, sr = 〈1, 8, LDPL〉;
– α = 0.1;
– b = 30;
– μt = ∞, μα = 30.

where LDPL is the Log-distance path loss model [9], adopted as the signal
attenuation model for the security resources. In order to compute the set of plans
that satisfy his/her security constraints, the security manager solves Problem8
with an NSGA-II algorithm, and set the Monte Carlo simulation with n = 100K
(see the MonteCarlo procedure shown in Algorithm 2) such that each plan is
evaluated over a set of 100 K different device configurations. Figure 1 shows the
Pareto frontier (left), and the risk distribution of its plans (right). Looking at
the Pareto frontier the security manager would choose the AP having the best
combination of E[risk] and Eα[risk]. AP 30.1 would be a better plan than
AP 30.2 and AP 30.3 because E[risk] is almost the same in the three cases and
Eα[risk] is 25% lower. Looking at the risk distributions of Fig. 1 (right), (s)he
can also base his/her decision on additional information and conduct a more in-
depth analysis. Over 100 K different device configurations, each plan provides a
minimum risk of 0 and a maximum risk of 45. AP 30.2 is the plan that provides
more cases with risk 0, thus a lower probability of an attack to happen in the
network area. AP 30.1, although it provides the lowest number of cases with
risk in the range bounded by the α-quantile, it also provides the lowest number
of cases with risk 0, thus the highest probability to have an attack.2 The trade-
off between E[risk], Eα[risk], and the probability of having an attack, is at
2 The probability to have an attack is computed as the ratio between the number of

cases with risk > 0 and the total number of cases.
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the basis of the reasoning a security manager may want to follow to choose a
plan. In this situation, a security manager interested in minimizing the cases
with risk > 0 would choose AP 30.2, since AP 30.3 provides similar values of
E[risk] and Eα[risk] but fewer cases with risk = 0.
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Fig. 1. Pareto frontier (left), and the risk distribution of its allocation plans (right).
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Fig. 2. The relation between cost, E[risk], Eα[risk], and the probability to have an
attack, of plans computed with α = 0.1, μt = ∞, μα = 30, minCost = 15 and
maxCost = 132.

Now suppose that the security manager wants to know how much to rise
the budget to achieve higher security performances. In this case (s)he can solve
Problem 9 and plot the values of E[risk] and Eα[risk] along with the attack
probability as shown in Fig. 2. It can be noticed that, although E[risk] and
Eα[risk] decrease of two orders of magnitude from cost = 15 to cost = 40, the
probability of having an attack remains around 1, which means that there are
very few cases (possibly none) with risk = 0. This way, the security manager
would know (s)he needs a security budget greater than 40 for ensuring a higher
level of security.

7 Case Study

In this section we show how we applied our method to a real case scenario, and
demonstrate its validity by comparing it with other heuristics.
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7.1 The Dartmouth College Data

In [16] Kotz et al. analyze an extensive network trace from a mature 802.11
WLAN, including more than 550 Access Points (AcP) and 7000 users over sev-
enteen weeks in the Dartmouth College area. This work reports several statistics
about the movement of people equipped with various IoT devices within the
campus area. All these data plus some additional data collected covering more
than 160 weeks over the same population have been made publicly available.3

We used this dataset for testing our method on a simulation of a real IoT envi-
ronment, intended as a set of regions (the area covered by each AcP), and with
real device distributions. Those were computed as follows. Each location data
entry is associated with the MAC address of a mobile device that generated the
data point. By grouping the devices that were connected at the same hour of
the day in the same AcP, we counted how many devices were observed in each
hour over the entire period in each AcP. We also added up the number of dif-
ferent devices observed during a day (a period of 24 h) in each AcP. In this way
we could compute the device distribution for each region/AcP of the campus
area. Other experimental settings are as follows: we divided each region/AcP in
locations of 1 m2, for a total of 183279 m2; we adopted watchdog-like devices as
security resources with an action range of 15 m and unitary cost; we adopted
LDPL [9] as the signal attenuation model for the security resources; we set
α = 0.1; we used the data of the first 3 months as training set for computing
the Pareto frontier. Finally, we tested the plan of the Pareto frontier with the
lowest E[risk] on the data relative to the remaining 21 months.

7.2 Evaluation Methodology

In order to evaluate our method, we compare the allocation plans obtained by
running Problem8 on the IoT environment described above, with those obtained
by using other heuristics that follow different approaches for solving the place-
ment problem. We implemented four heuristics: (1) square lattice, (2) triangular
lattice, (3) max coverage, and (4) greedy.

Methods (1) and (2) are placements typically used by system engineers to
model the structure of a set of base stations (BSs) in cellular networks [4]. We
have chosen those models because the BSs placement problem is similar to the
problem of placing security monitors in an IoT environment, since both mobile
phones and IoT devices are mobile, while BSs and security monitors are not.
Method (3) is implemented as a single-objective optimization problem solved
by an NSGA-II algorithm with the objective of maximizing the number of loca-
tions that fall under the action range of security resources, given a fixed budget.
Method (4) is an algorithm that computes the placement in a greedy manner,
i.e., given a fixed budget b, at each iteration it chooses the security resource
which maximizes the number of covered locations without exceeding b. We ran
experiments with different security budgets on the network area built, and with

3 http://crawdad.org/dartmouth/campus/20090909.

http://crawdad.org/dartmouth/campus/20090909
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Fig. 3. Values of E[risk] (top-left), Eα[risk] (top-right), and attack probability (bot-
tom), computed for different values of cost, with five different heuristics.

the device distributions computed from the Dartmouth College dataset.4 The
results are reported in Fig. 3. It can be noticed that our method computes allo-
cation plans with E[risk], Eα[risk] and an attack probability lower than those
provided by the other methods. Furthermore, we recall that evolutionary algo-
rithms compute solutions that are an approximation of the optimal one. The
results of Fig. 3 were obtained by running the NSGA-II algorithm with 50 gener-
ations, thus one can obtain better plans by just rising the number of generations,
or also by adjusting other parameters like the mutation method, mutation prob-
ability, and algorithm seed.

8 Related Work

We are not the first to use shortfall to characterize risk in a security context.
Molloy et al. [23] adapt shortfall to take security decisions (such as access-control
decisions or spam filtering decisions) under uncertainty when the benefit of doing
so outweighs the need to absolutely guarantee that these decisions are correct.
Molloy et al. have also put forward a more general vision on economic models

4 Method (4) was run with budgets not greater than 1298, i.e., the cheapest budget for
covering all locations; running such a greedy algorithm with a budget greater than
1298 is meaningless because the objective of covering as much locations as possible
would be already reached.
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for security [22]. We also would like to mention the risk-aware security solutions
by Chen et Crampton incorporating the notion of risk into the RBAC model
[5]. The problem of computing the best placement of network devices for mobile
scenarios has been mostly addressed in the area of cellular networks. In such
networks, the optimal placement of base stations (BSs) is crucial for the correct
functioning of the communication system. The similarity with our scenarios is
in the presence of mobile devices that have to be covered by the action range of
static entities. However, the roaming problem, that has to be taken into account
in the computation of the optimal BS placement, makes those solutions not suit-
able for the IoT scenario. We refer the reader to [11] for a more comprehensive
discussion on this topic. The problem of finding efficient security solutions in
the domain of computer networks with the help of the Pareto analysis has been
extensively investigated In [31] the Pareto analysis has been used to compute the
best combination between cost of patching vulnerabilities and cost of deactivat-
ing products within an enterprise system. Chang and Zhuang propose an app-
roach based on a node clustering algorithm, with effective tax-based sub-carrier
allocation, tailored for wireless mesh networks with QoS support [6]. Here, the
Pareto analysis is used for the optimal resource management. Signal attenuation
models have also been widely investigated. Shen et al. propose an indoor wireless
propagation model in WiFi radio-over-fiber network architecture for received sig-
nal strength (RSS) based localization in the IoT [32]. The proposed model adds
attenuation terms of obstacles in each sub-space by dividing the room into several
sub-spaces according to the obstacles’ distribution. Alwajeeh et al. [2] propose
an intelligent method to associate known models with spatial zones according to
the electromagnetic interactions. Past work on IoT security focuses on protection
mechanisms against specific attacks [1,35,38], investigates ISO/OSI layer-related
security problems [15], or proposes architectures for intrusion detection, attack
prevention, or recovery systems [27,29]. Raza et al. [26] propose an IPsec exten-
sion of 6LoWPAN, and show that IPsec is a feasible option for securing the IoT
in terms of packet size, energy consumption, memory usage, and processing time.
Chigan et al. [7] propose a resource-aware self-adaptive network security provi-
sioning scheme for the resource constraint Mobile Ad-hoc Networks (MANET),
in order to avoid security provisioning Denial of Service (SPDoS) attack. While
we model efficiency and effectiveness of a security solution as cost and risk, Chi-
gan et al. model them as two indexes, performance index (PI) and security index
(SI), respectively. SI quantitatively reflects the security contribution of a secure
protocol to a MANET system, while PI quantitatively reflects network perfor-
mance perspectives of a secure protocol. The problem of finding the optimal
security resource allocation plan for IoT networks has already been investigated
by Rullo et al. [30]. However, such approach only works for static networks for
the topology changes due to the occasional (dis)appearance of devices.

9 Conclusion

In this paper we built upon the concept of security resources specialized for
the IoT. These security resources monitor traffic generated by devices possibly
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using different protocols and wireless networks. Our proposed framework takes
into consideration the possibility that the security resources are not able to
monitor all the devices at all times. Our framework provides different security
resource deployment plans based on cost and risk. We measure the risk associ-
ated with an allocation plan as the expected number of devices left uncovered.
Considering the cost of the plan as an investment, and the expected risk as the
expected return of the investment, we were able to borrow the concept of short-
fall from economics, that looks at the worst possible outcomes of an investment
to make better decisions from investments with similar expected returns. Hence,
our framework produces resource allocation plans that are the outcomes of bi-
objective optimization of expected risks and expected worst risk scenarios. We
have developed a reference implementation of the framework and ran simulations
that incorporate mobility patterns from real data. The reference implementation
uses standard genetic algorithms to find approximate solutions to the optimiza-
tion problem. In our experimental setting we employed just one type of security
resource for simplicity, but with some modeling effort, NSGA-II algorithm can
be tuned to work with individuals of different types, such that a wider range of
security scenarios can be addressed.
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