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Abstract. Generally, the integer hull of a polyhedral set is the convex
hull of the integer points of the set. In most of the cases, for example
when the set is bounded, the integer hull is a polyhedral set, as well.
The integer hull can be determined in an iterative way by Chvátal cuts.
Weighted (or chamfer) distances are popular digital distances used in
various grids. They are based on the weights assigned to steps to var-
ious neighborhood. In the triangular grid there are three usually used
neighborhood, consequently, chamfer distances based on three weights
are defined. A digital disk (or a chamfer ball) of a grid is the set of the
elements which are not on a longer distance from the origin than a given
finite bound, radius. These disks are well known and well characterized
on the square grid (with even larger neighborhood than the usual 3×3),
and recently they become a topic of a current research on the triangular
grid. The shapes of the disks in the latter case have a great variability. In
this paper, the inequalities satisfied by the elements of a disk are analyzed
if their Chvátal rank is 1. The most popular coordinate system of the
triangular grid uses three coordinates. Individual bounds are described
completely. It also gives the complete description of some disks. Further
inequalities having Chvátal rank 1 are also discussed.

Keywords: Weighted distances · Chamfer balls · Non-traditional grids ·
Integer programming · Optimization

1 Introduction

A grid consists of several tiles/pixels. A step is moving from one pixel to another,
neighbor one. Each step has a positive length depending on the two pixels and
their relative positions. The distance of two pixels of the grid is measured by the
length of the minimal path between them. A disk of a grid is a set of pixels such
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that their distance from a fixed pixel, say P is not greater than a given value.
In most of the cases P is considered to be the origin of grid.

The shape of a disk can be defined as follows. Assume that the pixels of the
grid are symmetric and have a center point. Then the shape of the disk is the
shape of the convex hull of the center points of the pixels which are the elements
of the grid. It is well known that the shape of the disk is always an octagon
on the square grid based on the usual two neighborhood [1,2]. There is a wide
variety of shapes of the disks on the triangular grid [8,12]. On Fig. 1 we show an
example.

The pixels of a grid are identified by integer coordinates depending on the
type of the grid, e.g., each pixel has its 2 or 3 coordinates which uniquely identify
the pixels, in the square and the triangular grids, respectively. These coordinates
can be considered as the coordinates of the center point of the pixel. The disk
is determined by some inequalities and equations. One inequality restricts the
total distance. There are grids where the coordinates must also satisfy some
conditions. For example, the sum of the coordinates can be either 0 or 1 in the
case of the triangular grid. Finally, the path from the origin to the pixel must
be described as well. These constraints are satisfied by many values including
even non-integer ones. The problem which is the main topic of this paper is,
how can be these constraint used to determine the convex hull of the integer
points satisfying the constraints. It is a general problem in integer programming
(optimization).

2 The Triangular Grid

The triangular grid is a complete, non-overlapping coverage of the plane by
regular triangles [9,10]. Each pixel of the grid can be addressed by an integer
coordinate triplet having zero or one sum. These two types of vectors differenti-
ate the two types of the orientations of the pixels of the grid. Zero sum vectors
address the even pixels (they have shape � in this paper), while one sum triplets
address the odd pixels (their shape is �). As Fig. 1 shows, the coordinate axes
have angle 120◦ pairwise. The set of pixels where one of the coordinate values is
fixed, is called a lane and it is orthogonal to the axis with fixed value. For exam-
ple, the pixels of the top of the Fig. 1 belong to the lane y = −4. This symmetric
coordinate system captures well the well-known neighborhood relations [3] of the
grid (Fig. 1, right). Formally, the points (i.e., pixels) p = (p(1), p(2), p(3)) and
q = (q(1), q(2), q(3)) of the triangular grid are

– m-neighbors (m = 1, 2, 3), if
(i) |p(i) − q(i)| ≤ 1, for i = 1, 2, 3, and
(ii) |p(1) − q(1)| + |p(2) − q(2)| + |p(3) − q(3)| ≤ m.

– strict m-neighbors, if there is an equality in (ii) for the value of m.

Let p = (p(1), p(2), p(3)) and q = (q(1), q(2), q(3)) be two points of the trian-
gular grid. A finite sequence of points of the form p = p0, p1, . . . , pm = q, where
pi−1, pi are 3-neighbor points for 1 ≤ i ≤ m, is called a path from p to q. The term
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Fig. 1. A part of the triangular grid with the symmetric coordinate system, an example
to (the convex hull of) a disk and a pixel (X) with its various neighbors (right left
corner).

k-step will be used to abbreviate the sentence ‘step to a strict k-neighbor point’
(k ∈ {1, 2, 3}).

There are three types of steps in the problem which are called according to
their length 1-step, 2-step, and 3-step. We use the notation given in Table 1 for
various possible k-steps.

Table 1. 1-steps, 2-steps, and 3-steps on the triangular grid.

1-steps 2-steps 3-steps

u1 u2 u3 u4 u5 u6 v1 v2 v3 v4 v5 v6 w1 w2 w3 w4 w5 w6

1 0 0 −1 0 0 1 1 0 −1 −1 0 1 1 −1 −1 −1 1

0 1 0 0 −1 0 −1 0 1 1 0 −1 1 −1 1 −1 1 −1

0 0 1 0 0 −1 0 −1 −1 0 1 1 −1 1 1 1 −1 −1

In this paper without loss of generality, we can deal with shortest paths from
the origin (0, 0, 0) to point (x, y, z).

Chamfer distances on the triangular grid were investigated in [11] based on
various weights for the 3 types of steps on the grid.
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3 Chamfer Distances

Using the 3 types of neighbors there could be various paths from a point p to a
point q in the triangular grid. Let the weights for the various steps be fixed as
a, b, c for 1-, 2-, and 3-steps, respectively, with the condition c ≥ b ≥ a > 0. Then,
the sum of the weights of the steps of a path is considered as a weighted path.
The chamfer distance (or, in another term, the weighted distance) of two points
is the weight of the weighted shortest path between them, i.e., the minimal value
among weights of the paths between the points: d((x1, y1, z1), (x2, y2, z2); a, b, c).
In [11] it is proven, that this distance function satisfies the metric conditions: it
is positive definite, symmetric and the triangle inequality holds.

Let the chamfer ball, disk(r) be the set of pixels (x, y, z) for which the
weighted distance between the origin and (x, y, z) is at most r, formally,

disk(r) = {(x, y, z) | d((0, 0, 0), (x, y, z); a, b, c) ≤ r}.

Chamfer distances are discussed for some other grid in [13]. They are con-
nected to the Frobenius problem of three variables [4,13].

4 Integer Hull and Chvátal Cuts

Let m and n be two positive integers, A an m×n matrix and b an m-dimensional
vector. The set P = {x | Ax ≤ b} is a polyhedron in the n-dimensional space.
The integer hull of P is the convex hull of its integer points, i.e. the set int(P ) =
conv(P ∩ Zn), where Zn is the lattice of n-dimensional integer vectors.

The set int(P ) is not necessarily a polyhedral set [5]. However, it is a poly-
hedral set in many cases including the case when P is bounded or A and b have
rational elements [7]. It means that the disks are always polygons.

The set int(P ) can be determined by an iterative procedure. The key tool of
the algorithm is the Chvátal cut. Assume that λ ∈ (

R
≥0

)m is an m-dimensional
vector such that the product λTA is an integer vector. Then all integer vector x
of P must satisfy the inequality

λTAx ≤ ⌊
λT b

⌋
, (1)

where the usual floor function �·	 is used. If λT b 
= ⌊
λT b

⌋
then (1) is not an alge-

braic consequence of the original inequalities defining P . This inequality is the
Chvátal cut which can be added to other inequalities without cutting any integer
point from P . Further details of the method can be obtained from [14]. What is
important here is that for there are finitely many significantly different Chvátal
cuts of every inequality system. One iteration is to generate all of them. When
the inequality system is enlarged by the generated inequalities, the procedure
can be repeated. The integer hull is obtained after finitely many iterations.

The Chvátal rank of an inequality is the number of the iteration in which
it was generated. The rank of the inequalities defining P is 0. The rank of the
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inequalities generated by rank 0 inequalities is 1, etc. In this paper, only inequal-
ities having rank 1 are investigated. In one iteration the number of Chvátal cuts
could be even exponential on the number of original equations (Chap. 23 in
[14]), therefore their analysis gives already becomes very time consuming and
also gives some nice results. The Chvátal cuts are analyzed systematically only
in few papers. [6] discusses the Chvátal cuts of the knapsack polytope of rank 1.

5 Linear Programming Model

There are several methods to describe a chamfer disk. A new approach is dis-
cussed in this paper. The polygon of a disk for a given radius r consists of
the feasible solutions of an integer programming problem. It means that the
coordinate vectors must satisfy certain linear inequalities and must have integer
components. The size of the model, i.e. number of rows and columns, is fixed.
What is changing is only the right-hand side. The theory of linear program-
ming gives a complete description of the potential optimal solutions. The form
of the disks can be one of the elements of a finite set according to our empirical
observation. Thus it seems possible to give a complete structural description of
the disks by uncovering the integer hull of the feasible sets of the related LP
problems. The structural description eliminate the necessity of any algorithm.

A 1-step changes one coordinate by 1 unit. A 2-step changes two coordinates
into the opposite direction by 1 unit. Finally, a 3-step changes all coordinates by
1 unit, however the direction of the three changes are not the same. Thus, the
matrix of the steps is specified in Table 1. Let ui, vi and wi (for i = 1, . . . , 6) are
the numbers of various steps. The disk constraint is given in the following form:

au1 + · · · + au6 + bv1 + · · · + bv6 + cw1 + · · · + cw6 ≤ r,

where c ≥ b ≥ a > 0. It should be note here that the triangular grid is not a
lattice, therefore the steps of a path are usually not free to permute. However,
when a multiset of steps is specified corresponding to a path connecting the
origin to another pixel, then because of the constraint on the sum of coordinate
values, there exists always a path on the grid which built up by those steps if
the sum of the coordinate changes is equal to 0 or 1.

Now, we are ready to continue to show other constraints. All step variables
are non-negative:

u1, . . . , u6, v1, . . . , v6, w1, . . . , w6 ≥ 0.

If a point (x, y, z)T is reached from the origin by the steps, then the step numbers
satisfy the equation system

u1 − u4 + v1 + v2 − v4 − v5 + w1 + w2 − w3 − w4 − w5 + w6 = x,

u2 − u5 − v1 + v3 + v4 − v6 + w1 − w2 + w3 − w4 + w5 − w6 = y,

u3 − u6 − v2 − v3 + v5 + v6 − w1 + w2 + w3 + w4 − w5 − w6 = z.
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The sum of the coordinates x, y, and z are between 0 and 1:

x + y + z ≤ 1,

x + y + z ≥ 0.

The polyhedral set is defined by the system of constraints shown in Table 2,
where the index of the (in)equality is used in further analysis as is indicated
there. Using the same index set, the multipliers of the inequalities of the original
constraint set are denoted by λ0, . . . , λ23, i.e., they are the elements of vector λ.

The facet defining inequalities concern to the coordinates of the points only,
i.e. to the variables x, y, and z. It is assumed that the facet-defining inequality
of the disk is given in the form

ex + fy + gz ≤ h (2)

with e, f, g, h ∈ Z. The rank of the defining inequalities is 0 by defini-
tion. If (2) is not among the defining inequalities of the disk polytope, then
its Chvátal rank is 1 only if multipliers λ0, . . . , λ23 can be chosen such that
λ0, . . . , λ18, λ22, λ23 are nonnegative, and the coefficients on the left-hand side of
the generated inequality are e, f, g, 0, ..., 0, while the right-hand side is less than
h+1. If there are several options that can be employed to generate the left-hand
side, then the preferred choice is that which gives the minimal right-hand side
result. This observation leads to the following linear programming model:

Table 2. The inequalities defining the disk polytope, RHS stands for Right-Hand Side.

0 au1 + · · · +au6 +bv1 + · · · +bv6 +cw1 + · · · +cw6 ≤ r
1 −u1 ≤ 0

6 −u6 ≤ 0
7 −v1 ≤ 0

12 −u6 ≤ 0
13 −w1 ≤ 0

18 −w6 ≤ 0
19 −x +u1 · · · +v1 · · · +w1 · · · +w6 = 0
20 −y · · · −v1 · · · −v6 +w1 · · · −w6 = 0
21 −z · · · −u6 · · · +v6 −w1 · · · −w6 = 0
22 x +y +z ≤ 1
23 −x −y −z ≤ 0
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min rλ0 + λ22

−λ19 + λ22 − λ23 = e (3)
−λ20 + λ22 − λ23 = f (4)
−λ21 + λ22 − λ23 = g (5)

aλ0 − λ1 + λ19 = 0 (6)
...

aλ0 − λ6 − λ21 = 0 (7)
bλ0 − λ7 + λ19 − λ20 = 0 (8)

...
bλ0 − λ12 − λ20 + λ21 = 0 (9)

cλ0 − λ13 + λ19 + λ20 − λ21 = 0 (10)
...

cλ0 − λ18 + λ19 − λ20 − λ21 = 0 (11)
λ0, . . . λ18, λ22, λ23 ≥ 0. (12)

6 Construction of Chvátal Cuts

In general, a cut (1) is not necessarily facet defining cut as even stronger cuts
might be generated in farther iterations. In this section, some cuts of rank 1 are
generated.

The next lemma goes independently of the fact that we are using the trian-
gular grid, that is, we do not take into account about the constraints i = 22, 23,
we set their weights λ22 = λ23 = 0.

Lemma 1. Chvátal rank of (2) is 1 if

r · max
{

max
i∈{e,f,g}

{ |i|
a

}
; max
i,j∈{e,f,g}

{ |i − j|
b

}
;M3

}
< h + 1,

where M3 = max
i,j,k∈{e,f,g}

{
|i−j−k|

c ; |i+j−k|
c

}
.

Proof. If λ22 = λ23 = 0, then we must minimize λ0 for the best RHS.
In this case from (3), (4), and (5) we get, that λ19 = −e, λ20 = −f , and

λ21 = −g.
The minimal value of λ0 for the Eqs. (6) and (7) is

max{|e|, |f |, |g|}
a

= max
i∈{e,f,g}

{ |i|
a

}
≤ λ0,

because λi’s are nonnegative for i = 1, . . . , 6.
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Similarly, the minimal value of λ0 for the Eqs. (8) and (9) is

max{|e − f |, |e − g|, |f − g|}
b

= max
i,j∈{e,f,g}

{ |i − j|
b

}
≤ λ0,

because λi’s are nonnegative for i = 7, . . . , 12.
Finally, the minimal value of λ0 for the Eqs. (10) and (11) is

max{|e + f − g|, |e − f + g|, | − e + f + g|}
c

= M3 ≤ λ0,

because λi’s are nonnegative for i = 13, . . . , 18. ��
Corollary 1. If 2a ≤ b, 3a ≤ c and

r · max
i∈{e,f,g}

{ |i|
a

}
≤ h + 1,

then the Chvátal rank of (2) is 1.

Theorem 1. Chvátal rank of the inequality x ≤ k is 1 if and only if

r + a

2a
< k + 1 if 2a ≤ b and 3a ≤ c,

r + b − a

b
< k + 1 if b ≤ 2a and 2b ≤ a + c,

2r + c − a

c + a
< k + 1 if c ≤ 3a and a + c ≤ 2b.

Proof. In this case, let e = 1, f = g = 0 in (2). We need to minimize rλ0 + λ22,
where (3)–(12) hold. Only (3)–(5) contain λ23 and always in the form λ22 − λ23

not counting (12). It means that because of minimizing λ22 we need to choose
λ23 = 0, because λ22 is nonnegative. Let us denote λ22 = s. Thus from (3)
we get, that λ19 = s − 1 (it may be negative). From (4) and (5) we get, that
λ20 = λ21 = s.

Then the minimal value for λ0 satisfies (6) and (7) is the following:

max{s,−s, s − 1, 1 − s}
a

= max
{

s

a
,
1 − s

a

}
≤ λ0. (13)

The minimal value for λ0 satisfies (8)–(9) is

max{s − s, s − (s − 1), (s − 1) − s}
b

=
1
b

≤ λ0. (14)

Finally, the minimal value for λ0 satisfies (10)–(11) is

max{s − s − (s − 1), s − s + (s − 1),−s − s + (s − 1), s + s − (s − 1)}
c

=

=
s + 1

c
≤ λ0. (15)
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Then from (13)–(15) we get

max
{

s

a
,
1 − s

a
,
1
b
,
s + 1

c

}
≤ λ0.

It means that to minimize rλ0 + s we need to minimize the following in s:

max
{

rs

a
+ s,

r(1 − s)
a

+ s,
r

b
+ s,

r(s + 1)
c

+ s

}
.

There are four functions of s in the above maximum, let us denote them by
f1(s), . . . , f4(s).

If r < a, then our disk contains only the origin. We can assume that a ≤ r.
In this case f2(s) is decreasing, but other three functions are increasing. If s = 0,
then the value of the second function is greater than the others: f2(0) = r

a ≥
fi(0), where i = 1, 3, 4, because we assumed that a ≤ b ≤ c.

The minimal value of the maximum of the above functions is obtained when
the decreasing one (f2(s)) has the same value as one of the increasing functions
(we say that the decreasing function and one of the increasing functions are
intersecting each other).

Case 1. The intersection of f1(s) and f2(s) is s = 1
2 . In this case the value of

the functions is

f1

(
1
2

)
= f2

(
1
2

)
=

r + a

2a
.

It is maximal for all fi in s = 1
2 if f1(s) = f2(s) ≥ f3(s), thus

r

2a
+

1
2

≥ r

b
+

1
2
,

and this holds if 2a ≤ b. f1(s) = f2(s) ≥ f4(s) means that

r

2a
+

1
2

≥
3
2r

c
+

1
2
,

and this holds if 3a ≤ c.

Case 2. The intersection of f2(s) and f3(s) is s = b−a
b from 1−s

a = 1
b . In this

case the value of the functions is

f2

(
b − a

b

)
= f3

(
b − a

b

)
=

r + b − a

b
.

It is maximal for all fi in s = b−a
b if f2(s) = f3(s) ≥ f1(s), thus

r

b
+

b − a

b
≥ r(b − a)

ba
+

b − a

b
,

and this holds if b ≤ 2a. f2(s) = f3(s) ≥ f4(s) means that

r

b
+

b − a

b
≥ r(2b − a)

bc
+

b − a

b
,

and this holds if 2b ≤ a + c.
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Case 3. The intersection of f2(s) and f4(s) is s = c−a
c+a from 1−s

a = s+1
c . In this

case the value of the functions is

f2

(
c − a

c + a

)
= f4

(
c − a

c + a

)
=

2r + c − a

c + a
.

It is maximal for all fi in s = c−a
c+a if f2(s) = f4(s) ≥ f1(s), thus

2r

c + a
+

c − a

c + a
≥ r(c − a)

a(c + a)
+

c − a

c + a
,

and this holds if c ≤ 3a. f2(s) = f4(s) ≥ f3(s) means that

2r

c + a
+

c − a

c + a
≥ r

b
+

c − a

c + a
,

and this holds if a + c ≤ 2b. ��
The conditions of the above three cases contain all possibilities. If 2a ≤ b

and 3a ≤ c, then this is Case 1. If b ≤ 2a and 3a ≤ c, then 2b ≤ 4a ≤ a + c,
thus this subcase is part of Case 2. If 2a ≤ b and c ≤ 3a, then c + a ≤ 4a ≤ 2b,
thus this subcase is part of Case 3. If b ≤ 2a and c ≤ 3a, then a + c ≤ 2b or
2b ≤ a + c is possible, thus one part of this subcase belongs to Case 2, another
part of this subcase belongs to Case 3. Further we will refer to these cases as we
have described them here.

Theorem 2. Chvátal rank of the inequality −x ≤ l is 1 if and only if

r

2a
< l + 1 if 2a ≤ b and 3a ≤ c,

r

b
< l + 1 if b ≤ 2a and 2b ≤ a + c,

2r

c + a
< l + 1 if c ≤ 3a and a + c ≤ 2b.

The proof follows the same idea as the previous one with e = −1, f = g = 0
in (2).

7 Facet-Defining Inequalities

Theorem 3. The above mentioned inequalities x ≤ k and −x ≤ l are facet-
defining in Case 1 and in Case 2.

Proof. Case 2a ≤ b and 3a ≤ c. This case belongs to Case 1 of the above two
Theorems. It is in [11] that the distance function between (0, 0, 0) and (x, y, z)
is d(a, b, c) = a(|x| + |y| + |z|). If we want to create the point of the disk, which
has minimal or maximal value in x, we need to solve the following problem:

min(or max)x
d(a, b, c) ≤ r (16)



104 G. Kovács et al.

x + y + z ≤ 1
−x − y − z ≤ 0

x, y, z ∈ Z

If x+ y + z = 0, then the maximal value of |x| can be equal to |x|+|y|+|z|
2 . In this

case 2|x| = |x| + |y| + |z| ≤ r
a and it means that −x ≤ ⌊

r
2a

⌋
is a facet-defining

equation.
If x+ y + z = 1, then the maximal value of x can be equal to |x|+|y|+|z|+1

2 . In
this case 2x − 1 = |x| + |y| + |z| ≤ r

a and x ≤ ⌊
r+a
2a

⌋
is a facet-defining equation.

Case b ≤ 2a and 3a ≤ c. In this case 2b ≤ a + c, and this case belongs to
Case 2 of the above two Theorems. The distance function between (0, 0, 0) and
(x, y, z) is in [11]:

d(a, b, c) =

{
b |x|+|y|+|z|

2 , if x + y + z = 0;
a + b |x|+|y|+|z|−1

2 , if x + y + z = 1.

If x + y + z = 0, then from (16) and from the maximal value of |x| we get
that 2|x| = |x| + |y| + |z| ≤ 2r

b and it means that −x ≤ ⌊
r
b

⌋
is a facet-defining

equation.
If x+ y + z = 1, then from (16) and from the maximal value of x we get that

2x − 1 = |x| + |y| + |z| ≤ 2r−2a+b
b and x ≤ ⌊

r+b−a
b

⌋
is a facet-defining equation.

Case b ≤ 2a, c ≤ 3a and a + b ≤ c. In this case 2b ≤ a + c, and this case
belongs to Case 2. In this case function d is the same as in the previous case,
i.e., our statements hold.

Case b ≤ 2a, c ≤ 3a, c ≤ a + b and 2b ≤ a + c. This case belongs to Case
2, too. If x + y + z = 0, then function d is the same as in the previous case.
If x + y + z = 1 and we want to maximize the value of |x|, then x is positive
and y and z are negative. In this case [11] uses the same distance function as
in the previous case. There is a third distance function in [11] in the case of
x + y + z = 1 for the subcase a negative and two positive coordinates, but in
this subcase the value of |x| is not maximal.

Case b ≤ 2a, c ≤ 3a, c < a+ b and a+ c ≤ 2b and Case 2a ≤ b and c ≤ 3a.
These cases belong to Case 3. ��
The result of the theorem can give at most 6 of the sides of the chamfer disk,

that is, actually, the embedded hexagon of the disk.

Example. The inequalities provided by the theorem can be both facet defining
and non-facet defining in Case 3. If a = 4, b = 7, c = 8 and r = 30 (see Fig. 1),
then this case belongs to Case 3.

(a) In this case the Chvátal rank of the inequality of −x ≤ l is 1 if and
only if

⌊
60
12

⌋
= 5 ≤ l. Let v(i) be the sorted coordinate values of (x, y, z) in a

non-increasing way by their absolute values, i.e., |v(3)| ≤ |v(2)| ≤ |v(1)|. The
distance function between (0, 0, 0) and (x, y, z) is in [11]:

d(a, b, c) = |v(1)| b
2

+ |v(2)| b
2

+ |v(3)|(a + c − 3
2
b), (17)
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if x+y+z = 0. In this case a+c− 3
2b ≤ b

2 , thus the value of d(a, b, c) is minimal for
a given x if |v(3)| is close to |v(2)|, i.e., if x is even, then |v(2)| = |v(3)| = |x|

2 ; and
if x is odd, then |v(2)| = |v(3)| + 1 = |x|+1

2 . For example if (x, y, z) = (−5, 3, 2),
then v(1) = −5, v(2) = 3, v(3) = 2, and in this case d(4, 7, 8) = 31, thus there
is no point with x = −5 for this distance function to satisfy d(.) ≤ r.

If x + y + z = 1, then the distance function between (0, 0, 0) and (x, y, z) is
different from (17). If x + y + z = 1 and x = −5, then by decreasing one of the
positive coordinates by 1, the new point has the same x value and the distance
of the new point from (0, 0, 0) is less than the distance of the original one, thus
there is no point with x = −5 for the distance functions of case x + y + z = 1
to satisfy d(.) ≤ r. It means that the disk of the value r = 30 has no point with
x = −5, i.e., −x ≤ 5 is not facet-defining.

(b) The Chvátal rank of the inequality of x ≤ 5 is 1. If (x, y, z) = (5,−1,−3),
then d(4, 7, 8) = 30 based on [11], thus x ≤ 5 is a facet-defining equation.

(c) (5,−1,−3) and (4, 1,−4) are points of the disk, the inequality x − z ≤ 8
holds for these pixels of the disk. The Chvátal rank of this inequality is 1 if h = 8
in Lemma 1, thus x − z ≤ 8 is a facet-defining equation with Chvátal rank of 1.

The disk of Fig. 1 has 12 facet-defining equation: there are three 1-ranked
inequalities similar to x ≤ 5; six 1-ranked inequalities similar to x − z ≤ 8; and
three not 1-ranked inequalities similar to −x ≤ 4.

A further analysis of 1-ranked conditions is planned. We believe that we will
find connection between the chamfer radius of the disk and the Eucledian radius
by using the theory of 1-ranked conditions.
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