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1 Edutus College, Tatabánya, Hungary
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Abstract. Recently chamfer distances have been developed not only on
the usual integer grids, but also on some non traditional grids including
grids which are not lattices. In this paper the trihexagonal grid is con-
sidered which is a kind of mix of the hexagonal and triangular grids: its
pixels are hexagons and two shaped (oriented) triangles. Three types of
‘natural’ neighborhood relations are considered on the grid, consequently
three weights are used to describe the chamfer distances. Formulae to
compute the minimal weights of a connecting path, i.e., the distance
of any two pixels, are provided to various cases depending on the rela-
tive ratio of the weights. Some properties of these distances, including
metricity are also analysed.

1 Introduction

Digital geometry is an important theoretical part of digital image processing.
Discrete, digital spaces have different properties than the Euclidean space, e.g.,
neighborhood of points play important role. Consequently, digital (path based)
distance functions have various advantages, see, e.g., [4]. Various digital distance
functions are developed since the 1960’s, where the two basic digital distances
based on the two usual neighborhood on the square grid were investigated [16].
Various grids have various properties and various advantages and disadvantages
in applications. E.g., the square grid is easy to use, it has hardware and soft-
ware support, other grids have more symmetries, may provide better topological
properties. Digital geometry and distance functions are developed for various
traditional and non traditional grids, both in 2D and in higher dimensions. To
move some of the results from a point lattice to other point lattice may not be
trivial. In case of at least one of the grids is not a point lattice, we need to find
newer and newer approaches, the translation of the results cannot go automati-
cally. Even some results seem to be similar, the details could be very different.
A nice symmetric coordinate frame for the hexagonal grid was presented in [3],
while the simplest digital distances are investigated in [7] for that grid. The tri-
angular grid was also described by symmetric coordinate system with integer
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triplets, see, e.g., [9,11]. The hexagonal and triangular grids can be seen as one
and two parallel oblique planes of the cubic grid [10], and with three such planes
another ‘triangular grid’ can be obtained [12]. This grid is called trihexagonal
grid in this paper since it is mixing the properties of the hexagonal and triangular
grids (see Fig. 1). Each node has the same rank and each node is surrounded by
the same set of regular polygons in the same order. By its symmetric properties
this grid is denoted by T(6, 3, 6, 3) in [15], where 4 is the nodal rank and 6 or
3 is the number of edges of the i-th polygon.

Chamfer (or weighted) distances are providing a relatively good approxima-
tion of the Euclidean distance with good algorithmic properties [1]. The concept
was also investigated on some non-traditional 2D grids including the triangular
grid [13], Khalimsky grid [5,6]; and various 3D grids [17,18]. In this paper cham-
fer distances on the 2D trihexagonal grid are investigated; our main motivation
is to show the basic properties.

2 Description of Trihexagonal Tiling (6, 3, 6, 3)

Figure 1 shows a usual representation of the trihexagonal tiling. The grid is
T(6, 3, 6, 3) if dual notation is used, see, e.g., [15]. In this representation hexagons
represent the points for which 6-neighborhood is used and triangles the points
for which 3-neighborhood is used.

Each pixel of the trihexagonal grid (6, 3, 6, 3) is a hexagon or a triangle, we
also call it as a point of the grid. A hexagon has 6 neighbors with common sides
(6 triangles). A triangle has 3 neighbors with common sides (3 hexagons).

Similarly to the hexagonal grid or to the triangular grid, each pixel of the
trihexagonal grid (6, 3, 6, 3) can also be described by a unique coordinate-triplet.

There is a triangle having coordinate triplet (0, 0, 0), and the directions of
the axes can be seen on the Fig. 1. At every time when we step from a triangle
to a hexagon (or from a hexagon to a triangle) crossing their common side, the
step is done parallel to one of the axes. If the step is in the direction of an axis,
then the respective coordinate value is increased by 1, while in case the step is in
opposite direction to an axis, the respective coordinate value is decreased by 1.

In this way every point gets a unique coordinate triplet with integer values.
However the three values are not independent (we are in a two dimensional space,
i.e., plane). Their sum is either 0, 1 or 2. There are two orientations of the used
triangles: there are triangles of shape � and there are triangles of shape �.
The sum of the coordinate values that address a triangle is 0 or 2 depending
the orientation (shape) of the triangle. The sum of the coordinate values of a
hexagon is 1.

There are two types of (commonly used) neighborhood on this grid. Two pix-
els are neighbors if they share a side. Two pixels are semi-neighbors if they share
at least a point on their boundaries (e.g., a corner point). Using the coordinate
triplets one can give the neighborhood relations in the following formal form.
The hexagon p(p(1), p(2), p(3)) and the triangle q(q(1), q(2), q(3)) are neighbors
if |p(1) − q(1)| + |p(2) − q(2)| + |p(3) − q(3)| = 1. (See also Fig. 1.)
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Fig. 1. Coordinate axes and coordinate values assigned to cells of a segment of the
trihexagonal grid. The yellow hexagon and the orange triangles are neighbors (α), the
pink hexagons are semi-neighbors (β), the blue triangles are semi-neighbors (γ). (Color
figure online)

There are no triangles with common side, but every triangle p has 3 semi-
neighbor triangle, for example q, for which |p(1) − q(1)| + |p(2) − q(2)| + |p(3) −
q(3)| = 2.

There are no hexagons with common side, but every hexagon p has 6 semi-
neighbor hexagon, for example q, for which |p(1) − q(1)| + |p(2) − q(2)| + |p(3) −
q(3)| = 2.

3 Definition of Weighted Distances

Let α, β, γ ∈ R
+ be positive real weights. The simplest weighted distances allow

to step to a neighbor (from a triangle to a hexagon and vice versa) by changing
only one coordinate value by ±1 with weight α. Let the weight of a step from
a hexagon to a semi-neighbor hexagon be β. This step changes two coordinates,
one by +1, and another one by −1. Let the weight of a step from a triangle to a
semi-neighbor triangle be γ. This step changes two coordinates, both by +1, or
both by −1. (See also Fig. 1.)

We can define the weighted distance of any two points (hexagons or triangles)
of the grid. Let p and q be two points of the grid. A finite point sequence of points
of the form p = p0, p1, . . . , pm = q, where pi−1, pi are neighbors or semi-neighbors
for 1 ≤ i ≤ m, is called a path from p to q. A path can be seen as consecutive
steps to neighbors or semi-neighbors. Then the cost of the path is the sum of
the weights of its steps.
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Finally, let the weighted distance d(p, q;α, β, γ) of p and q by the weights
α, β, γ be the cost of the minimal (basic) weighted paths between p and q.

Usually, there can be several shortest paths from a point to another. The
order of steps can be varied, e.g., if a shortest path from (0, 0, 1) to (2,−1, 0)
contains two β steps containing the point (1, 0, 0), then the path having two β
steps through (1,−1, 1) is also a shortest path. However, since we are not on
a lattice, we are not free to use any order of the steps. One need to take care
about the following conditions:

– α steps are allowed on any point, and a point of the opposite type is reached
by the step (where hexagon and triangle are the types).

– β step can only be used from a hexagon (the sum of coordinates is equal to
1), and it goes to a hexagon.

– γ steps are valid only from a triangle (the sum of the coordinates is equal to
0, or 2), and another triangle is reached (but the sum of the coordinates of
the new triangle is different from the original one: the triangles have opposite
orientation).

A technical definition is used through the paper. The difference wp,q =
(w(1), w(2), w(3)) of two points p and q is defined by w(i) = q(i) − p(i), where
i ∈ {1, 2, 3}.

4 Minimal Weighted Paths

There are various paths with various sums of weights that can be found between
any two points. When the weights α, β and γ are known the optimal search (the
Dijkstra algorithm) can be used. However depending on the actual ratios and
values of the weights α, β, γ, one can compute a minimum weighted paths in
a more direct way. Using a combinatorial approach, we give methods for these
computations for each possible case.

We use the natural condition 0 ≤ α ≤ β, γ for the used weight values. We
know that with a neighbor step (by weight α) only 1 of the coordinates changes
by ±1; with a semi-neighbor step (by weight β or γ) exactly 2 of the coordinates
change by 1 and/or −1, respectively. Therefore it is important to measure the rel-
ative weight of a step, that is the cost of the change of a coordinate value by ±1.
These relative weights give the separation of the possible cases.

4.1 Case 2α ≤ β and 2α ≤ γ

Lemma 1. If 2α ≤ β and 2α ≤ γ, then the length of the minimal path between
the points p and q is

d(p, q;α, β, γ) = α(|w(1)| + |w(2)| + |w(3)|). (1)

Proof. In this case the use of β steps and γ steps is not efficient (their usage
do not lead to shorter paths than we have without them). A minimal path can
be constructed only by α steps. In every step the absolute value of a coordinate
difference is decreasing by 1 implying the formula. ��
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For example the distance of the triangle (0, 0, 0) and the hexagon (1, −1, 1)
is 3α.

4.2 Case γ ≤ 2α ≤ β

Lemma 2. If α ≤ γ ≤ 2α ≤ β, then the length of the minimal path between the
points p and q is

d(p, q;α, β, γ) = γ · min{|w(i)|} + α ·
(

3∑
i=1

|w(i)| − 2 · min{|w(i)|}
)

, (2)

but if wp,q contains one 0 and two 1 values, or one 0 and two −1 values, then

d(p, q;α, β, γ) = γ. (3)

Proof. The value of the sum of coordinate differences
3∑

i=1

w(i) is equal to 0, ±1

or ±2. (Moreover it is ±2 only if the two points are different shaped triangles.)
Clearly, in this case β steps cannot appear (when 2α ≤ β) in any shortest

path or substituting them by two α steps a path with same weight is obtained,
we deal with paths containing only α and γ steps. It follows from Lemma 1 there
is always a path between p and q consisting of α steps only and their number is
|w(1)| + |w(2)| + |w(3)|. Obviously, a path with this property has the minimal
length among all paths using only α steps as each such step changes the absolute
values of differences of the coordinates by 1. If there are two coordinates where
the difference has the same sign, then it is possible to make a γ step at the
beginning.

If min{|w(i)|} > 0, then the signs of two differences (from three) are the same,
and one of them has the smallest absolute value, because the sum of differences
is between −2 and 2. It means that we are able to use γ steps min{|w(i)|} times
instead of twice many α steps, but no more. The path can be constructed that
between two γ steps come two α steps (for example between two (1, 1, 0) steps
come two (0, 0,−1) steps).

If min{|w(i)|} = 0 and the sign of the other two differences are different,
then the use of a γ step does not decrease the sum of the absolute values of the
coordinate differences, i.e. the use of γ step is not efficient (there is a shortest
path without it).

If min{|w(i)|} = 0, then the signs of the other two differences are the same
only if both values are equal to 1 or both values are equal to −1, for example
(1, 1, 0). In this case the distance is γ. ��

For example the distance of the triangle (0, 0, 0) and the hexagon (1,−1, 1) is
γ +α, the distance of the triangles (0, 0, 0) and (2, 0,−2) is 4α, but the distance
of the triangles (0, 0, 0) and (1, 0, 1) is γ with the given conditions on the weights.
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4.3 Case β ≤ 2α ≤ γ

The use of γ steps instead of α steps is not efficient, but one β step can be better
than two α steps.

Lemma 3. If β ≤ 2α ≤ γ, then the length of the minimal path between the
hexagons p and q is

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)|
2

. (4)

Proof. If p and q are hexagons, then the sum of the coordinate differences is 0,
and every β step is a 0-sum step. In this case a minimal path can be constructed
only by β steps. In every step the sum of the absolute values of the coordinate
differences is decreasing by 2, and this is better than the use of two α steps. ��

For example the distance of the hexagons (0, 0, 1) and (2, −1, 0) is 2β.
If every point of a path is a hexagon, then it is called a hexagonal path in

the following. The next lemmas can be proven in similar manner as Lemma 3.

Lemma 4. If β ≤ 2α ≤ γ, and p and q are a triangle and a hexagon, then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 1

2
+ α. (5)

Lemma 5. If β ≤ 2α ≤ γ, and p and q are triangles, then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 2

2
+ 2α. (6)

For example the distance of the triangle (0, 0, 0) and the hexagon (1,−1, 1)
is β + α, and the distance of the triangles (0, 0, 0) and (2, 0,−2) is β + 2α.

4.4 Case β ≤ γ ≤ 2α

Lemma 6. If β ≤ γ ≤ 2α, then the length of the minimal path between p
and q is given in (4), (5) and (6), but if p and q are adjacent triangles, then
d(p, q;α, β, γ) = γ.

Proof. In every β step and γ step the sum of the absolute values of the coordinate
differences is decreasing by 2. But β ≤ γ means that the use of γ steps is not
efficient if one of the points is a hexagon. Then this case is the same as the
previous case.

But if p and q are triangles and in the minimal path of the above case the
α steps are consecutive steps, then it is feasible and efficient to change them
with a γ step. The α steps are consecutive only if there are no β steps, and the
triangles are semi-neighbors. ��

For example the distance of the triangles (0, 0, 0) and (2, 0,−2) is β + 2α,
but the distance of the triangles (0, 0, 0) and (1, 0, 1) is γ.
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4.5 Case γ ≤ β ≤ 2α

Subcase p and q are Hexagons

Lemma 7. If α ≤ γ ≤ β ≤ 2α and p, q are hexagons, then the minimal path
contains at least one γ step if and only if wp,q has two coordinates with the same
sign and γ + 2α ≤ 2β.

Proof. Of course we cannot use a γ step instead of a β step, or two γ steps
instead of two β steps. But we can use a γ step and two α steps instead of two
appropriate β steps.

If p and q are hexagons, then the sum of coordinate differences is equal to 0.
In this case min{|w(i)} = 0 if and only if the sign of the other two differences
are different. Then the use of a γ step does not decrease the sum of the absolute
values of the coordinate differences, thus the use of γ step is not efficient. The
minimal path is the hexagonal path between the two hexagons, which uses only
β steps. min{|w(i)} > 0 if and only if wpq has two coordinates with the same
sign. The hexagonal path is minimal only if 2β < γ +2α, when the use of γ step
is not efficient. But if 2β ≥ γ + 2α, then the minimal path uses γ step: we can
begin the minimal path with α, γ, α steps, and the sum of the absolute value of
the coordinate differences is decreased by 4. ��
Lemma 8. If α ≤ γ ≤ β ≤ 2α and p, q are hexagons, then

d(p, q;α, β, γ) = β ·
∑3

i=1 |w(i)|
2

(7)

if 2β ≤ γ + 2α, and

d(p, q;α, β, γ) = γ · min{|w(i)|} + 2α · min{|w(i)|} + β ·

3∑

i=1

|w(i)| − 4min{|w(i)|}
2

(8)

if γ + 2α ≤ 2β.

Proof. If p and q are hexagons, then the sum of the coordinate differences is 0.
If min{|w(i)|} = 0, then the signs of the other two differences are different.

It means that the use of γ steps is not efficient.
But if min{|w(i)|} > 0, then wp,q has two coordinates with the same sign, for

example positive coordinates: the first and the second one. There exists a β-path
between the two hexagons, which first 2min{|w(i)|} steps are the alternate β
steps (1, 0,−1) and (0, 1,−1). Changing two appropriate β steps to one γ step
and two α-steps may be efficient min{|w(i)|} times if γ + 2α ≤ 2β.

Of course 4min{|w(i)|} ≤
3∑

i=1

|w(i)| holds, because of
3∑

i=1

w(i) = 0. ��

For example the distance of the hexagons (0, 0, 1) and (2,−1, 0) is 2β or
2α + γ.
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Subcase p and q are a Hexagon and a Triangle. If p and q are a hexagon
and a triangle, then there exists the above mentioned minimal path between
the hexagon and another hexagon, which is the closest hexagon neighbor of the
triangle, and there is a final α step between the closest hexagon and the triangle.
If the final step of the path between the two hexagons is a β step, then it can
be efficient to change the final β and α steps to an α step and a γ step. This
way we can increase the number of γ steps by 1. For example we can change the
steps (0, 1,−1) and (1, 0, 0) to (0, 0,−1) and (1, 1, 0). When are we able to do
this substitution?

In this case the sum of the coordinate differences is ±1.

Lemma 9. If α ≤ γ ≤ β ≤ 2α, p and q are a hexagon and a triangle, and wp,q

contains only one coordinate with the sign of
3∑

i=1

w(i), then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 1

2
+ α (9)

if 2β ≤ γ + 2α, and

d(p, q;α, β, γ) = γ · min{|w(i)|}

+ α · (2min{|w(i)|} + 1) + β ·

3∑
i=1

|w(i)| − 4min{|w(i)|} − 1

2
(10)

if γ + 2α ≤ 2β.

Proof. Let us assume, that
3∑

i=1

w(i) = 1 and p is a hexagon and q is a triangle.

(The proof of the case −1, or the case of a triangle and a hexagon are similar.)
In this case wp,q contains only one positive coordinate, for example the first
one, then the final α step of the above mentioned path (based on the closest
neighbor hexagon of the triangle) is (1, 0, 0). (For example if the starting hexagon
is (1, 0, 0) and the triangle is (7,−3,−2), then the closest neighbor hexagon of
the triangle is (6,−3,−2) and not (7,−4,−2) or (7,−3,−3), because the sum of
the absolute value of the coordinate differences are here 10, 12 and 12.)

The use of a γ step, which first coordinate is +1 is not efficient, because
this γ step does not decrease the sum of the absolute values of the coordinate
differences. Thus the use of the above mentioned substitution is not efficient, i.e.
the number of γ steps is equal to the number of γ steps of the path based on
the closest neighbor hexagon (in the previous lemma).

If this path uses an α step, then it’s coordinates are (1, 0, 0). These are the
same as the coordinates of the final α step. Thus we are not able to increase the
number of β steps. ��



90 G. Kovács et al.

For example the distance of the triangle (0, 0, 0) and the hexagon (3,−1,−1)
is 2β + α or 3α + γ.

In a similar manner one can also prove the following lemma.

Lemma 10. If α ≤ γ ≤ β ≤ 2α, p and q are a hexagon and a triangle, and

wp,q contains two coordinates with the sign of
3∑

i=1

w(i), then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 3

2
+ α + γ (11)

if 2β ≤ γ + 2α, and

d(p, q;α, β, γ) = γ · min{|w(i)|}

+ α · (2min{|w(i)|} − 1) + β ·

3∑
i=1

|w(i)| − 4min{|w(i)|} + 1

2
(12)

if γ + 2α ≤ 2β.

For example the distance of the triangle (0, 0, 0) and the hexagon (2, 1,−2)
is β + α + γ in both cases.

Subcase p and q are Triangles. If p and q are triangles, then there exists
the above mentioned minimal path between the closest hexagon neighbors of the
triangles, and there are starting and final α steps between the closest hexagons
and the triangles. This case is similar to the previous one, but sometimes we are
able to do the above mentioned changes (at the end of the path) two times (at
the beginning, too).

Lemma 11. If α ≤ γ ≤ β ≤ 2α, p and q are triangles,
3∑

i=1

w(i) 	= 0, and wp,q

contains only one coordinate with the sign of
3∑

i=1

w(i), then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 2

2
+ 2α (13)

if 2β ≤ γ + 2α, and

d(p, q;α, β, γ) = γ · min{|w(i)|}

+ α · (2min{|w(i)|} + 2) + β ·

3∑
i=1

|w(i)| − 4min{|w(i)|} − 2

2
(14)

if γ + 2α ≤ 2β.
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The proof of this lemma is similar to the proof of Lemma 9.
For example the distance of the triangles (0, 0, 0) and (3,−1, 0) is 2α + β in

both cases.

Lemma 12. If α ≤ γ ≤ β ≤ 2α, p and q are triangles,
3∑

i=1

w(i) 	= 0 and wp,q

contains two coordinates with the sign of
3∑

i=1

w(i), then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 6

2
+ 2α + 2γ (15)

if 2β ≤ γ + 2α, and

d(p, q;α, β, γ) = γ · min{|w(i)|}

+ α · (2min{|w(i)|} − 2) + β ·

3∑
i=1

|w(i)| − 4min{|w(i)|} + 2

2
(16)

if γ + 2α ≤ 2β. But if moreover
3∑

i=1

|w(i)| = 2, then d(p, q;α, β, γ) = γ, and if

3∑
i=1

|w(i)| = 4, then d(p, q;α, β, γ) = γ + 2α.

The proof of this lemma is similar to the proof of Lemma 10.
For example the distance of the triangles (0, 0, 0) and (2, 2,−2) is 2α + 2γ in

both cases.

Lemma 13. If α ≤ γ ≤ β ≤ 2α, p and q are triangles, and
3∑

i=1

w(i) = 0, then

d(p, q;α, β, γ) = β ·

3∑
i=1

|w(i)| − 2

2
+ 2α (17)

if 2β ≤ γ + 2α or min{|w(i)|} = 0 and

d(p, q;α, β, γ) = γ · min{|w(i)|}

+ α · min{|w(i)|} + β ·

3∑
i=1

|w(i)| − 4min{|w(i)|}
2

(18)

if γ + 2α ≤ 2β and min{|w(i)|} > 0.

The proof of this lemma is similar to the proof of Lemma 10.
For example the distance of the triangles (0, 0, 0) and (0, 2,−2) is 2α + β.
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5 Properties of Distances

Minimal weighted paths can be obviously computed by Dijkstra algorithm [2].
However, based on the regular structure of the grid and by the help of an appro-
priate coordinate system direct formulae are provided to compute them. There
are various cases depending on the relation of the used weights; a summary of
the results is shown in Table 1.

Table 1. Value of d(p, q;α, β, γ) depending on the cases of respective relations of the
weights

Between

Cases Two hexagons A hexagon and a triangle Two triangles

4.1: 2α ≤ β, γ α
∑ |w(i)|

4.2: γ ≤ 2α ≤ β γ min{|w(i)|} + α (
∑ |w(i)| − 2min{|w(i)|}) Subcases

4.3, 4.4: β ≤ γ, 2α β
∑ |w(i)|

2
β
∑ |w(i)|−1

2
+ α Subcases

4.5: γ ≤ β ≤ 2α Subcases Subcases Subcases

For the sake of completeness, we recall the definition of metricity for digital
distances. A distance function d(·, ·) is a metric if the three properties, the posi-
tive definiteness, the symmetry and the triangular inequality, are fulfilled for any
points p, q, r of a space, that is, in this paper the trihexagonal grid (6, 3, 6, 3).
There are some non-metrical digital distances, e.g., distances based on neigh-
borhood sequences [9], weight sequences [14]. However, in some applications it
is important to use metric distances, therefore, it is important to note that, as
usual at weighted distances, for any values of α, β, γ ∈ R

+, the distance function
d(·, ·;α, β, γ) is a metric.

One can also prove the following about the translation invariance of our
distance functions.

Theorem 1. Let t = (x, y, z) be a grid vector, i.e., the difference of the coordi-
nates of two points of the grid. Then, the distance d(p, q;α, β, γ) = d(p + t, q +
t;α, β, γ) for all pairs of points p, q of the grid and for any α, β, γ ∈ R

+ if and
only if t is an integer triplet with 0-sum.

We can conclude that we have done the first steps to include the trihexagonal
grid in digital geometry, namely we have studied chamfer distances. Digital or
path-based distance functions are well known and widely used. However, the
properties of these functions depend highly on the underlying grid: while chamfer
polygons on the square grid are well known any relatively easy to describe, it is
not the case on the triangular grid (based on the three classical neighborhood,
e.g., 63-gons can also be obtained [8]). Future works and possible applications
include cases when, e.g., γ < α, distance transforms, and also studies about the
digital disks (chamfer polygons) and their interesting phenomena: conditions for
concavities, holes and islands (somewhat similarly to [6]).
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