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Abstract. In this paper we define a new measure for shape descriptor.
The measure is based on the concept of convexity by quadrant, called
Q-convexity. Mostly studied in Discrete Tomography, this convexity gen-
eralizes hv-convexity to any two or more directions, and presents inter-
esting connections with “total” convexity. The new measure generalizes
that proposed by Balázs and Brunetti (A measure of Q-convexity, LNCS
9647 (2016) 219–230), and therefore it has the same desirable features:
(1) its values range intrinsically from 0 to 1; (2) its values equal 1 if and
only if the binary image is Q-convex; (3) its efficient computation can
be easily implemented; (4) it is invariant under translation, reflection,
and rotation by 90◦. We test the new measure for assessing sensitivity
using a set of synthetic polygons with rotation and translation of intru-
sions/protrusions and global skew, and for a ranking task using a variety
of shapes. Based on the geometrical properties of Q-convexity, we also
provide a characterization of any binary image by the matrix of its “gen-
eralized salient points”, and we design a linear-time algorithm for the
construction of the binary image from its associated matrix.

Keywords: Shape descriptor · Convexity measure · Q-convexity ·
Salient point

1 Introduction

Shape descriptors are widely used in image processing and computer vision for
object detection, classification, and recognition [8,12]. One class of descriptors
captures single geometrical or topological characteristics of shapes, like moments
[7], orientation and elongation [15], circularity [10], just to mention a few. Among
them, probably the most often studied descriptor is the measure of convexity.
Depending on whether the interior or the boundary of the shape is investigated
in order to determine the degree of convexity, these measures can be grouped
into area-based [2,12,13] and boundary-based [14] categories.
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In [1] we proposed a convexity measure which uses both boundary and area
information, thus falls between the two above mentioned classes. It is based
on the concept of Q-convexity [4,5], mostly studied in Discrete Tomography
[9] for its good properties (it generalizes so-called hv-convexity to any two or
more directions, and has interesting connections with “total” convexity). The
notion of salient points of a Q-convex image has been introduced in [6] as the
analogue of extremal points of a convex set. They have similar features, and in
particular a Q-convex image is characterized by its salient points. Salient points
can be generalized for any binary image, and they have been studied to model
the “complexity” of a binary image which led to the convexity measure of [1,3].

The novel idea of this paper is to consider generalized salient points to have
different weights – depending on “how” far they are from the boundary – when
calculating the convexity measure. In this way we provide a flexible extension
of the measure of [1]. For this purpose we introduce the matrix of generalized
salient points of a binary image (shortly, GS matrix) and study its properties.
We provide a linear-time algorithm for the construction of the binary image from
its GS matrix and also describe how the measure can also be computed in linear
time.

The structure of the paper is the following. In Sect. 2 we present the basic
concepts and give the definition of the new measure of Q-convexity. In Sect. 3
we introduce the matrix of generalized salient points (GS matrix, for short) and
describe its properties. We also design a linear-time algorithm for the construc-
tion of the binary image from its GS matrix. The aim of Sect. 4 is to briefly show
how the introduced measure can be efficiently computed, in linear time in the
size of the image. In Sect. 5 we present experimental results. Finally, Sect. 6 is
for the conclusion.

2 New Q-convexity Measure

Any binary image F is a m × n binary matrix, and it can be represented by
a set of black, foreground pixels denoted by F , and white, background pixels
(unit squares) (see Fig. 1 left). Equivalently, foreground pixels can be regarded
as points of Z2 contained in a lattice grid G (rectangle of size m × n) up to a
translation so that any binary image can be viewed as a subset of G, also called
lattice set (see Fig. 1 right). Throughout the paper, we will consider images dif-
ferent from the emptyset and use both representations as interchangeable, since
notation for the latter one is more suitable to describe geometrical properties
(even if the order of the points in the lattice and the order of the items in a
matrix are different). For our convenience when not confusing, we use F for
both the image and its representations, and we denote by Fc the complement
of F , i.e., the image obtained as the complement of its pixel values reversing
foreground and background pixels. In the lattice representation, Fc corresponds
to G\F .
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Fig. 1. A binary image represented as black and white pixels (left), and by a lattice
set (right).

2.1 Background

Let us introduce the main definitions concerning Q-convexity [4,6]. In order to
simplify our explanation, let us consider the horizontal and vertical directions,
and denote the coordinate of any point M of the grid G by (xM , yM ). Then, M
and the directions determine the following four quadrants:

Z0(M) = {N ∈ G : 0 ≤ xN ≤ xM , 0 ≤ yN ≤ yM}
Z1(M) = {N ∈ G : xM ≤ xN < m, 0 ≤ yN ≤ yM}
Z2(M) = {N ∈ G : xM ≤ xN < m, yM ≤ yN < n}
Z3(M) = {N ∈ G : 0 ≤ xN ≤ xM , yM ≤ yN < n}.

Definition 1. A lattice set F is Q-convex if Zp(M)∩F �= ∅ for all p = 0, . . . , 3
implies M ∈ F .

If Zp(M) ∩ F = ∅, we say that Zp(M) is a background quadrant. Thus, in other
words, a binary image is Q-convex if there exists at least a background quadrant
Zp(M) for every pixel M in the background of F . Figure 2 illustrates the above
concepts.

Z M0( ) Z M1( )

Z M2( )Z M3( )

M

Z M0( ) Z M1( )

Z M2( )Z M3( )

M

Fig. 2. Illustration of the concept of Q-convexity. A Q-convex (left) and a non-Q-
convex (right) lattice set. Note that the image on the left is the Q-convex hull of the
image on the right.
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The Q-convex hull of F can be defined as follows:

Definition 2. The Q-convex hull Q(F ) of a lattice set F is the set of points
M ∈ G such that Zp(M) ∩ F �= ∅ for all p = 0, . . . , 3.

By Definitions 1 and 2, if F is Q-convex then F = Q(F ). Differently, if F is
not Q-convex, then Q(F )\F �= ∅ (see Fig. 2, again, where for the lattice set F
on the right, Q(F )\F = {M}).

We define a new measure in between region- and boundary-based measures
exploiting some geometrical properties of the “shape”.

Definition 3. Let F be a lattice set. A point M ∈ F is a salient point of F if
M /∈ Q(F\{M}).

Denote the set of salient points of F by S(F ). Of course S(F ) = ∅ if and only
if F = ∅. In particular, Daurat proved in [6] that the salient points of F are the
salient points of the Q-convex hull Q(F ) of F , i.e. S(F ) = S(Q(F )). This means
that if F is Q-convex, its salient points completely characterize F . If it is not,
there are other points belonging to the Q-convex hull of F but not in F that
“track” the non-Q-convexity of F . These points are called generalized salient
points (abbreviated by g.s.p.). The set of generalized salient points Sg(F ) of F
is obtained by iterating the definition of salient points on the sets obtained each
time by discarding the points of the set from its Q-convex hull, i.e., using the
set notation:

Definition 4. If F is a lattice set, then the set of its generalized salient
points (g.s.p.) Sg(F ) is defined by Sg(F ) =

⋃
i S(Fi), where F1 = F , Fi =

Q(Fi−1)\Fi−1.

With the obvious meaning we may denote the binary images related to Q(F ),
S(F ), and Fi by Q(F), S(F), and Fi, respectively. Figure 3 illustrates the defin-
ition in the lattice representation. We notice that Fi is contained in Fc

i−1 (more
precisely, in Q(Fi−1)\Fi−1), and if i is even, Fi is contained in Fc

1 , else if i is odd
Fi is contained in F1. In the pixel-representation, this corresponds to say that
foreground and background pixels in Fi correspond to white and black pixels
for i even, and to black and white pixels for i odd, respectively. In this view,

Fig. 3. Generalized salient points are in black. Leftmost: F1. Centre-left: F2. Centre-
right: F3. Rightmost: F4.
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the Q-convex hull of the foreground pixels of Fi−1 contains the Q-convex hull of
the foreground pixels of Fi. Moreover if F and F ′ are two binary images, then
Sg(F) is different from Sg(F ′) (see Theorem 9 of [6]).

Let k be the index such that Fk+1 = ∅. By definition, S(F) = S(F1) ⊆
Sg(F) = S(F1) ∪ S(F2) ∪ . . . ∪ S(Fk) and the equality holds when F is Q-
convex. Moreover, the points of Sg(F) are chosen among the points of subsets
of Q(F), thus Sg(F) ⊆ Q(F).

2.2 The Generalized Shape Descriptor

In [1], we defined a shape measure in terms of proportion between salient points
and generalized salient points. Denoting the cardinality of an arbitrary set P of
points by |P|, here we generalize the measure as follows:

Definition 5. For a given binary image F , its Q-convexity measure Ψ(ci)(F) is
defined by

Ψ(ci)(F) =
|S(F)|

∑
i ci|S(Fi)| ,

where S(F) and S(Fi) are as in Definition 4, c1 = 1, and each ci is a non-
negative real number.

Notice that c1 = 1 must hold in order to get value 1 for Q-convex sets.
Note also that the measure is purely qualitative because is independent from
the size of the image. It coincides with the measure in [1] if ci = 1, for all i, and,
more generally, if the g.s.p. are many with respect to salient points, then F is
far to be Q-convex. Besides, the dependence on successive |S(Fi)| depends on
the choice of ci: if ci is a decreasing function, then the measure scores heavily
g.s.p. in the boundary with respect to the g.s.p. in the interior, and vice-versa in
case of an increasing function. This approach provides, in fact, a family of shape
descriptors (by setting the weights differently). Each member of the family could
complement other ones, thus, giving a finely tuneable tool for solving pattern
recognition issues, as different weightings can capture different aspects of the
shapes (see the ranking examples in Sect. 5).

Since S(F) ⊆ Sg(F) ⊆ Q(F), the Q-convexity measure satisfies the following
properties:

– the Q-convexity measure ranges from 0 to 1;
– the Q-convexity measure equals 1 if and only if F is Q-convex.

In particular, S(F) = Sg(F), and hence Ψ(ci)(F) = 1, (for instance when F is
a full rectangle as the rightmost image in Fig. 6) if and only if F is Q-convex.
If Sg(F) = Q(F) (for instance if F is a chessboard), Ψ(ci)(F) decreases with
the inverse of the size of Q(F) in the case where ci = 1 for all i. So, if we
consider the sequence of images starting from the full rectangle and ending with
the chessboard, and having intermediate images obtained by deleting each time
one suitable pixel iteratively row by row, they have measure values decreasing
from 1 to 4

mn (circa 6 · 10−5 for m = n = 256).
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Moreover, since S(F), S(Fi) and Q(F) are invariant under translation,
reflection, and rotation by 90◦ for the horizontal and vertical directions, the
measure is also invariant.

3 The GS Matrix

Let F be a m×n binary image, and Sg(F) = S(F1)∪S(F2)∪. . .∪S(Fk). Consider
the matrix representation of F = (fij). We may associate F to the m×n integer
matrix B of its generalized salient points defined as follows: bij = h, if and only if
fij is a g.s.p. of Fh; bij = 0 otherwise. Informally, items 0 < h(≤ k) of the integer
matrix B correspond to g.s.p in S(Fh); items 0 do not correspond to any g.s.p.
of F . For example, the rightmost matrix in Fig. 4 is the GS matrix associated
to the leftmost binary matrix (which corresponds to F in Fig. 3). We call B, the
GS matrix associated to F , where GS stands for “generalized salient”. The GS
matrix is well-defined since by Definition 4, we have that ∩iS(Fi) = ∅.

Theorem 1. Any two binary images are equal if and only if their GS matrices
are equal.

Proof. The following construction permits to determine the binary image by
its GS matrix: For all item i in the GS matrix considered in decreasing order
(of i), compute the Q-convex hull of the pixels corresponding to the items i and
fill the corresponding pixels not already considered with the foreground w.r.t. i.

It is easy to see that the construction is correct. Let k be the maximum
value in the GS matrix; then, Fk+1 = ∅, and Fk is Q-convex. Therefore, the
Q-convex hull of its g.s.p. is Fk, and so the first step i = k of the construction
determines Fk = Q(S(Fk)). In the second step i = k − 1, the construction
determines Fk−1: it computes the Q-convex hull of the pixels corresponding to
the items k − 1 in the GS matrix, i.e. Q(S(Fk−1)) = Q(Fk−1), and fills the
corresponding pixels not already considered with the foreground w.r.t. k −1, i.e.
Q(Fk−1)\Fk. By definition, Fk = Q(Fk−1)\Fk−1, and since Q(Fk−1) = Fk−1∪Fk

and Fk−1 ∩ Fk = ∅, we have Fk−1 = Q(Fk−1)\Fk. By proceeding in this way, in
the last step i = 1, the construction determines F = F1 since F1 = Q(F1)\F2.
Finally, since two different binary images have different GS matrices, there is a
one-to-one correspondence between images and matrices. 	


In order to design an efficient algorithm based on the constructive proof of the
theorem, we extend the definition of Q-convex hull as follows: The Q-convex hull
Q(Fi) of the lattice set Fi is the set of points M ∈ G such that Zp(M) ∩ Fi �= ∅
for all p = 0, . . . , 3.

Therefore, pixel M belongs to the Q-convex hull of Fi if there is an item i in
the GS matrix associated to Fi in each zone of M . Since the Q-convex hull of
the foreground pixels of Fi contains the Q-convex hull of the foreground pixels
of Fi+1, pixel M belongs to Q(Fi)\Q(Fi+1), if i is the minimum among the
maximum items in the GS matrix in each zone in M . This ensures that every
item is considered once. Let Zt = (ztij) such that ztij = h iff h is the maximum
item in the submatrix Zt(bij), for t = 0, 1, 2, 3.
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1: procedure (B) � Construct the binary image F from its GS matrix B
2: for each bij = 0 do
3: find the maximum item of B in Z0(bij) and store in z0

ij of matrix Z0

4: end for
5: for each bij = 0 do
6: find the maximum item of B in Z1(bij) and store in z1

ij of matrix Z1

7: end for
8: for each bij = 0 do
9: find the maximum item of B in Z2(bij) and store in z2

ij of matrix Z2

10: end for
11: for each bij = 0 do
12: find the maximum item of B in Z3(bij) and store in z3

ij of matrix Z3

13: end for
14: for each bij = 0 do
15: h ← min(z0

ij , z
1
ij , z

2
ij , z

3
ij)

16: if h is odd then fij ← 1
17: elsefij ← 0
18: end if
19: end for
20: for each bij �= 0 do
21: if bij is odd then fij ← 1
22: elsefij ← 0
23: end if
24: end for
25: end procedure

Starting from the GS matrix B in input, Algorithm 1 constructs F by using
Z0, Z1, Z2 and Z3. For example:

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 2 1 0
0 0 3 3 0 0
1 0 0 0 0 1
0 0 0 0 3 2
2 3 0 4 0 1
1 0 0 0 0 0
0 0 0 4 0 0
0 0 0 3 0 0
0 6 1 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 2 4
2 3 0 0 4 4
0 2 3 4 4 0
2 3 3 4 0 0
0 0 3 0 4 0
0 1 1 4 4 4
0 0 1 0 4 0
0 0 1 0 3 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 2
4 4 0 0 4 4
0 4 4 4 3 0
4 4 4 4 0 0
0 0 4 0 1 0
0 4 4 4 1 0
0 0 4 0 1 0
0 0 3 0 1 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
3 3 0 0 1 0
0 3 3 3 1 0
3 3 3 3 0 0
0 0 4 0 3 0
0 4 4 4 3 2
0 0 4 0 3 0
0 0 4 0 3 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z3=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 2
0 1 0 0 3 3
0 1 3 3 3 0
1 1 3 3 0 0
0 0 3 0 4 0
0 3 3 4 4 4
0 0 3 0 4 0
0 0 3 0 4 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If we consider for instance b22 = 0, since min{z022 = 3, z122 = 4, z222 = 3, z322 =
3} = 3, then f22 is in Q(F3) and so f22 = 1. Note that Algorithm 1 reconstructs
F of Fig. 4. The correctedness of the algorithm derives by previous discussion.

Theorem 2. Algorithm 1 computes the binary image from its GS matrix in
linear time.

Proof. Let B = (bij) be the GS matrix in input, and F = (fij) be the binary
matrix representation of the image associated to B. Initially, fij = 0, for all i, j.
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The computation of the maximum in any zone for each item bij = 0 (statements
2–4) can be done in linear time in the size of the image. Indeed consider zone
Z0: for bij , by definition, Z0(bij) = Z0(bi−1j) ∪ Z0(bij−1). Therefore the maxi-
mum in Z0(bij) can be computed by previous computations for Z0(bi−1j) and
Z0(bij−1), and stored in a matrix Z0. (Analogous, relations hold for Z1, Z2, Z3.)
For any item bij , the minimum among four corresponding values stored in the
four matrices Z0, Z1, Z2, Z3 (statement 15), and the determination of the parity
of the minimum cost O(1) (statements 16–18, 21–23). Hence, the complexity of
the algorithm is linear in the size of matrix B. 	


4 Computation of Ψ

The GS matrix and the shape measure Ψ(c1,...,ck) can be computed in linear
time in the size of the binary image by the algorithm designed in [3] for the
determination of generalized salient pixels.

Here we briefly describe the algorithm. The basic idea is that salient points
and generalized salient points of a binary image F can be determined by implicit
computation of the Q(F). Indeed, the authors in [3] proved that Q(F) is the
complement of the union of maximal background quadrants. At each step i, the
algorithm finds the foreground (generalized) salient pixels of Fi by computing the
maximal background quadrants of Fi. Pixels in the background quadrants are
discarded and the remaining complemented image is considered in the next step
being the Q-convex hull of Fi (recall that Fi+1 = Q(Fi)\Fi). During the com-
putation of generalized salient points, the algorithm constructs the GS matrix
B = (bij). Indeed, bij = h, if fij is a g.s.p. in Fh and the algorithm finds it
at step h (and bij = 0 for any item which is not a g.s.p.). Therefore, B is the
matrix of the steps at which every g.s.p. is found. Figure 4 shows an example of
the execution of the algorithm and the corresponding GS matrix.

0 1 0 0 1 0
0 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 0
0 1 1 0 1 1
1 1 1 0 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 0 1 0

0 1 0 0 1 0
0 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 0
0 1 1 0 1 1
1 1 1 0 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 0 1 0

0 1 0 0 1 0
0 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 0
0 1 1 0 1 1
1 1 1 0 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 0 1 0

0 1 0 0 1 0
0 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 0
0 1 1 0 1 1
1 1 1 0 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 0 1 0 1 0

0 1 2 2 1 0
0 0 3 3 0 0
1 0 0 0 0 1
0 0 0 0 3 2
2 3 0 4 0 1
1 0 0 0 0 0
0 0 0 4 0 0
0 0 0 3 0 0
0 0 1 2 1 0

k =1 k =2 k =3 k =4 GS

Fig. 4. Illustrative example of the algorithm for finding g.s.p. of image F (first matrix).
In each step (first four matrices, from left to right) the identified g.s.p. are drawn bold
and pixels of the background quadrants are grey. The positions inside the polygon
constitute the Q-convex hull of the g.s.p. Q(S(Fi))\S(Fi) and will be investigated in
the successive step. The rightmost matrix is the GS matrix of F .
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5 Experiments

Depending on the choice of ci we obtain shape measures that score differently
pixels closer to the boundary and those internal. In [3] we considered the case
where ci = 1 for all i, thus weighting all the g.s.p. in the same way. Here we
investigate two pairs of opposite choices:

– ci = i, and ci = i2 for i = 1, . . . , k
– ci = 1/i, and ci = (1/i)2 for i = 1, . . . , k.

In the first experiment, we used the set of synthetic polygons in [11] to study the
behavior of the measures in case of rotation, translation of intrusions/protrusions
and global skew. In Fig. 5 are illustrated the results. We observe that Ψ(ci=i) and
Ψ(ci=i2) assign values lower than those assigned by Ψ(ci=1), whereas Ψ(ci=1/i) and
Ψ(ci=1/i2) assign values greater than those assigned by Ψ(ci=1). In this experi-
ment, all the measures rank the images in the same order except Ψci=i2 (which
exchanges first with second image). Let us notice that measures are invariant
under translation of intrusions and protrusions (see fourth and fifth shapes, for
example), but are sensitive to rotations of angles different from 90◦ (see second
shape).

Ψ(ci=1) 0.0175 0.0322 0.0645 0.0645 0.0645 0.0895 0.0895 0.1071 0.8638

Ψ(ci=i) 0.0079 0.0099 0.0211 0.0211 0.0211 0.0250 0.0250 0.0394 0.7245

Ψ(ci=i2) 0.0033 0.0029 0.0057 0.0057 0.0057 0.0064 0.0064 0.0137 0.5119

Ψ(ci=1/i) 0.0368 0.0899 0.1576 0.1576 0.1576 0.2163 0.2163 0.2571 0.9361

Ψ(ci=1/i2) 0.0737 0.2152 0.3091 0.3091 0.3091 0.3980 0.3980 0.4954 0.9703

Fig. 5. Synthetic shapes ranked into ascending order by shape measures. Values are
rounded to four digits.

In the second experiment, we considered a variety of shapes, and we ranked
them by each measure. In Fig. 6 the ranking in ascending order and the values
for measure Ψ(ci=1) are illustrated, whereas in Fig. 7 we report on the results for
Ψ(ci=i), Ψ(ci=i2), Ψ(ci=1/i), and Ψ(ci=1/i2). Note that all the measures correctly
assign value 1 to the “L” and rectangular shapes. Moreover, by definition, Ψ(ci=i)

and Ψ(ci=i2) assign lower values to shapes with the majority of g.s.p in the interior
(thus, to images with many narrows but deep intrusions) than to shapes with the
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majority of g.s.p in the boundary, whereas Ψ(ci=1/i) and Ψ(ci=1/i2) behave on the
contrary. This is shown for example by the eagle and spiral images (fourth and
eighth in Fig. 6, respectively). Indeed the spiral shape has most of its g.s.p. in the
boundary so that it is in position four and two in the ranking for Ψ(ci=1/i) and
Ψ(ci=1/i2), respectively, whereas it is in position nine in the ranking for Ψ(ci=i)

and Ψ(ci=i2) in Fig. 7. The contrary happens for the eagle shape, where most of
its g.s.p. are in the interior. This is in accordance of our expectations and shows
that different weightings can be appropriate for different classification tasks.

In both experiments we used the images with original size (in both dimensions
varying between 100 and 555 pixels), even if we illustrate them rescaled for better
presentation quality. We also investigated scale invariance. This time we omitted
the two fully convex images as their convexities are naturally scale-invariant.
Taking the vectorized versions of the remaining 12 original images we digitized
them on different scales (32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512).
Then, for each image we computed the convexity values and compared them to
the convexity of the original sized image. Formally, we measured the normalized
difference

ΔΨ =
|Ψ(Fo) − Ψ(Fr)|

Ψ(Fo)
,

where Ψ(Fo) and Ψ(Fr) is the convexity of the original sized and the rescaled
image, respectively. Table 1 shows the average of the measured convexity differ-
ences over the 12 pair of images. Of course, in lower resolutions the small details
of the shapes disappear, therefore the shown difference values are higher. As
expected, Ψ(ci=i) and Ψ(ci=i2) are fairly intolerant to rescaling which has a high
impact on the narrow and deep intrusions. On the other hand, the values for
Ψ(ci=1/i) and Ψ(ci=1/i2) in Table 1 are small (less than 0.1), from which we can
deduce a reasonable scale-invariance of these convexity measures.

Table 1. Average difference of the convexity value of the original and rescaled images.

Size Δψ(ci=i) Δψ(ci=i2) Δψ(ci=1/i) Δψ(ci=1/i2)

32 × 32 8.9945 73.4749 0.0950 0.0601

64 × 64 2.2382 10.1241 0.0866 0.0674

128 × 128 0.7901 2.3950 0.0756 0.0459

256 × 256 0.1936 0.4378 0.0541 0.0227

512 × 512 0.1853 0.3452 0.0806 0.0312

0.0335 0.0353 0.0571 0.1171 0.1924 0.2040 0.2531 0.2766 0.3267 0.3366 0.5392 0.6516 1.0000 1.0000

Fig. 6. Shapes ranked into ascending order by Ψ(ci=1). Values are rounded to four
digits.



A New Shape Descriptor Based on a Q-convexity Measure 277

0.0010 0.0011 0.0060 0.0081 0.0157 0.0205 0.0546 0.0600 0.1046 0.1492 0.3452 0.3602 1.0000 1.0000

0.0000 0.0000 0.0003 0.0004 0.0007 0.0011 0.0048 0.0098 0.0304 0.0533 0.1146 0.2104 1.0000 1.0000

0.2927 0.3453 0.3529 0.5236 0.5746 0.5754 0.5821 0.6043 0.6819 0.7061 0.7118 0.8491 1.0000 1.0000

0.6390 0.7380 0.7543 0.7553 0.7705 0.8160 0.8303 0.8329 0.8818 0.8923 0.9113 0.9357 1.0000 1.0000

Fig. 7. Shapes ranked into ascending order by Ψ(ci=i), Ψ(ci=i2), Ψ(ci=1/i), and Ψ(ci=1/i2)

measures, from top to bottom, respectively. Values are rounded to four digits.

6 Further Work

In this paper we presented a flexible extended version of the measure of Q-
convexity defined in [1]. By introducing the matrix of generalized salient points
we can give different weights for different groups of g.s.p. when calculating the
degree of convexity.

Choosing the proper weightings depends, of course, always on the classifica-
tion/recognition/image precessing problem and whether we are more interested
in differentiating the images based on their boundaries or on their interiors. To
find the proper weights, either trial-and-fail or more sophisticated methods, such
as stochastic search or machine learning constructions can be used. This issue
can be investigated in more detail in a further paper as well as the performance
of the measures in real-life pattern recognition applications.
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