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Abstract. Operator Discretization Library (ODL) is an open-source
Python library for prototyping reconstruction methods for inverse prob-
lems, and ASTRA is a high-performance Matlab/Python toolbox for
large-scale tomographic reconstruction. The paper demonstrates the fea-
sibility of combining ODL with ASTRA to prototype complex recon-
struction methods for discrete tomography. As a case in point, we con-
sider the total-variation regularized discrete algebraic reconstruction tech-
nique (TVR-DART). TVR-DART assumes that the object to be imaged
consists of a limited number of distinct materials. The ODL/ASTRA
implementation of this algorithm makes use of standardized building
blocks, that can be combined in a plug-and-play manner. Thus, this imple-
mentation of TVR-DART can easily be adapted to account for application
specific aspects, such as various noise statistics that come with different
imaging modalities.

1 Introduction

Inverse problems refer to the task of reconstructing parameters characterizing
the system under investigation from indirect observations. Such problems arise
in several areas of science and engineering, and in particular for tomographic
imaging. The idea here is to expose the object to penetrating waves or particles
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from different directions. The measured transmission (or emission) data is then
used as input to a reconstruction scheme that computes an estimate of the
interior structure of the object.

Computed tomography (CT) has a wide range of applications, e.g., X-ray CT
[9] in medical imaging and electron tomography (ET) [8,10] in biology and mate-
rial science. A key element is to model the interaction between the object and the
wave/particle probe with sufficient accuracy. The resulting inverse problems are
often ill-posed, for example in the sense that small errors in data get amplified.
Hence, one must stabilize the reconstruction (regularization) by exploiting a pri-
ori knowledge of the unknown interior structure. Discrete tomography considers
a specific type of prior knowledge, where it is assumed that the unknown object
consists of a small number of different materials, each corresponding to a char-
acteristic, approximately constant grey level in the reconstruction. A variety of
reconstruction algorithms have been proposed for discrete tomography problems
including primal-dual subgradient algorithms [12], network flow algorithms [3],
statistical methods [2,7] and algebraic methods [4,17].

At first sight it may seem that most aspects of a reconstruction method are
problem-specific. This is fortunately not the case. In fact, the general theory
developed during the last three decades provides a number of generic frame-
works that are adaptable to specific ill-posed inverse problems. When properly
adapted, the methods derived from the general framework compare favorably
with application-specific approaches. Furthermore, using general mathematical
tools to address specific problems also provides new insights that may go unno-
ticed if one uses an entirely problem-specific approach. An example is sparsity
promoting regularization, which is a general framework that outperforms, or
matches, many application-specific state-of-the-art approaches for inverse prob-
lems where data are highly noisy or under-sampled.

Despite the above, most concrete implementations of reconstruction methods
are tied to a specific application in the sense that minor mathematical modifi-
cations lead to a large amount of low level implementations and modifications,
which require substantial dedicated algorithmic and programming efforts. Oper-
ator Discretization Library (ODL) [1] and ASTRA toolbox [14] are two open-
source software libraries developed to assist fast prototyping of reconstruction
algorithms. When used together, a user may implement a generic reconstruc-
tion method and use it on different tomographic real-world problems without
having to re-implement all necessary parts from the bottom up. This becomes
especially useful for complex reconstruction methods.This paper demonstrates
the capabilities of ODL and ASTRA on a recently proposed discrete tomography
algorithm, total variation regularized discrete algebraic reconstruction technique
(TVR-DART).

2 Inverse Problems and Tomography

Mathematically, an inverse problem in imaging can be stated as the problem of
reconstructing an image f ∈ X representing the object under study from data
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g ∈ Y where
g = A(f) + “noise”. (1)

Here, A : X → Y (forward operator) models how an image gives rise to data
in the absence of noise. Moreover, X is a suitable Hilbert space of real valued
functions supported on a fixed domain Ω ⊂ R

n whose elements represent atten-
uation of emission values. Likewise, Y is a Hilbert space of real-valued functions
that represent data and that are defined on some manifold M (data manifold).

In tomographic imaging, data can often be modeled as line integrals of the
function f that describes the object along a line, i.e., data is a real-valued func-
tion on some set of lines M in R

n. We can now introduce coordinates on this
data manifold. A line in R

n can be described by a directional vector in the unit
sphere Sn−1 and a point that it passes through. This provides coordinates on
M where a line is given by (ω, x) ∈ Sn−1 × R

n with x ∈ ω⊥. Here, ω⊥ ⊂ R
n is

the unique plane through the origin with ω ∈ Sn−1 as its normal vector. The
corresponding forward operator A is the ray transform, which is expressible in
the aforementioned coordinates as

A(f)(ω, x) :=
∫ ∞

−∞
f(x + tω)dt for f ∈ X. (2)

Tomographic data can then be seen as values of A(f)(ω, x) for a sampling of
ω ∈ Sn−1 (angular sampling) and x ∈ ω⊥ (detector sampling). With slight abuse
of terminology, one refers to these data as the “projection” of f along the line
given by (ω, x).

3 Overview of ODL and ASTRA

Many reconstruction schemes can be formulated in a generic, yet adaptable, man-
ner by stating them in an abstract coordinate-free setting using the language of
functional analysis. The adaptability stems from “parametrizing” the scheme in
terms of the forward operator, the data noise model, and the type of a priori infor-
mation that one seeks to exploit. These can be further broken down into more
generic components, each representing a well-defined generally applicable mathe-
matical structure or operation. Another advantage that comes with a generic for-
mulation is that it makes the reconstruction scheme more transparent.

These considerations form a natural blueprint for a modular software library
for inverse problems where the forward operator, data noise model, and prior
model are treated as independent exchangeable components. ODL is such a
software library whose design principles are modularity, abstraction, and com-
partmentalization [1] that is freely available at http://github.com/odlgroup/odl.
To realize these design principles, ODL separates which mathematical object or
operation one seeks to represent from how it is implemented using concrete
computational routines. Mathematical objects and operations are represented
by abstract classes with abstract methods and specific implementations are rep-
resented by concrete subclasses. Hence, these abstract classes form a domain

http://github.com/odlgroup/odl
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specific language for functional analysis and corresponding subclasses couple to
relevant numerical libraries. In this way one can express abstraction in a way
that allows combining generic and application-specific code. The generic part,
such as an optimization method, can be formulated in a coordinate-free manner
using abstract classes and methods, whereas application-specific parts, such as
evaluating the forward operator, are contained in specific subclasses. Hence, one
can express reconstruction schemes using a clean near-mathematical syntax and
involved implementation specific details are hidden in concrete subclasses.

A key part of ODL is the notion of an operator between two vector spaces.
ODL offers operator calculus for constructing operators from existing ones, typ-
ically using composition. Furthermore, an operator may also have a number of
additional associated operators, like its (Fréchet) derivative, inverse, and adjoint.
Whenever possible, such associated operators are automatically generated when
an operator is defined using the operator calculus in ODL, e.g., derivative oper-
ators are formed using the chain rule. This is a very powerful part of ODL that
reduces the risk for errors and simplifies testing.

Another important part of ODL is its usage of external software libraries
for performing specific tasks. When working with tomographic inverse prob-
lems, one such task is computing the 2D/3D ray transform and its adjoint. For
this ODL employs the ASTRA toolbox [11,13,14], which is a high-performance,
GPU accelerated toolbox for tomographic reconstruction freely available from
http://www.astra-toolbox.com. The toolbox supports many different data man-
ifolds arising in tomography, including for example circular cone beam, laminog-
raphy, tomosynthesis, and electron tomography, see [13] for details. It also pro-
vides both Matlab and Python interfaces, that expose the core tomographic
operations. The latter is used for seamless integration between ODL and ASTRA
in the sense that forward and backprojection routines in ASTRA are available as
operators in ODL. Likewise, the tomographic data acquisition model in ASTRA
is fully reflected by the corresponding data model in ODL. This open up for
using ASTRA routines from ODL without unnecessary data copying between
GPU and CPU.

The reconstruction methods available in ASTRA are mostly iterative meth-
ods. In ODL, on the other hand, one can easily formulate a variational recon-
struction algorithm. In this work we will consider ODL/ASTRA to formulate a
variational reconstruction algorithm and solve the corresponding optimization
problem.

4 Discrete Algebraic Reconstruction

A large class of reconstruction methods for ill-posed inverse problems can be
formulated as solving an optimization problem:

min
f∈X

[
L

(
A(f), g

)
+ λ R(f)

]
. (3)

Here, R : X → R+ is the regularization term that accounts for the a priori
knowledge by penalizing unfeasible solution candidates, L : Y × Y → R+ is the

http://www.astra-toolbox.com
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data-fit term that quantifies how well two points in the data space agree with
each other, and λ > 0 is the regularization parameter that weights the a priori
knowledge against the need to minimize the data-fit term.

Discrete tomography (DT) is a class of tomographic reconstruction meth-
ods that are based on the assumption that the unknown object f consists of
a few distinct materials, each producing a (almost) constant gray value in the
reconstruction. The total variation regularized discrete algebraic reconstruction
technique (TVR-DART) is a recent approach that is adapted towards discrete
tomography [16,17], which has proven to be more robust than the original DART
algorithm [4]. In particular, using the TVR-DART method allows one to signif-
icantly improve reconstruction quality and to drastically reduce the number of
required projection images and/or exposure to the sample. The idea in TVR-
DART is that the image to be recovered is step-function like with a transition
between regions that is not necessarily sharp. This is typically the case when
one images specimens consisting of only a few different material compositions
where each material has a distinct gray value in the corresponding image.

TVR-DART aims to capture such a priori information by combining princi-
ples from discrete tomography and compressive sensing. The original formulation
in [16,17] uses L2-norm as the data-fit term, which comes from the assumption
that noise in data is additive Gaussian. This is however not always the case, e.g.,
in HAADF-STEM tomography [8] the noise in data is predominantly Poisson
distributed, especially under very low exposure (electron dose) [10].

In the following, we will first formulate TVR-DART in an abstract manner
using the language of functional analysis. Next, this abstract version is imple-
mented in ODL/ASTRA using the operator calculus in ODL. Thereby, we can
encapsulate all application-specific parts and use high-level ODL solvers that
usually expect an operator as argument. In this way, the same problem can be
solved with different methods by simply calling different solvers. When a new
solver or application-specific code is needed, it needs to be written only once
at one place, and can be tested separately. At the lower level of ODL, efficient
forward and backward projections are performed using GPU accelerated code
provided by the ASTRA toolbox.

In summary, we offer a generic, yet adaptable, version of TVR-DART with
a plug-and-play structure that allows one to change the forward operator and
the noise model. We demonstrate this flexibility by switching the data-fit term
to one that better matches data with Poisson noise, which is more appropriate
for tomographic data under low dose conditions.

5 ODL Implementation of TVR-DART

Bearing in mind the functional analytic viewpoint in ODL, our starting point is
to formulate the TVR-DART scheme in an abstract setting (Sect. 5.1, Eq. (7)).
In the following four sections (Sects. 5.2, 5.3, 5.4 and 5.5) we show how the
abstract TVR-DART scheme is implemented using the ODL operator calculus
with ASTRA as computational backend for computing projections and corre-
sponding backprojections. In order to emphasis the important points, and due
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to space limitations, we have left out some of the code indicated with “[...]”.
The full source code is available at http://github.com/aringh/TVR-DART. We
conclude by showing some reconstructions. Note however that the goal of the
paper is not to evaluate TVR-DART, for that see [17]. It is to show the flexibility
in using ODL/ASTRA as a prototyping tool. Here TVR-DART merely severs
as an example of a complex reconstruction method.

5.1 Abstract Formulation

The key assumption in TVR-DART is that the image we seek consists of n gray-
scale levels that are separated by a narrow, but smooth, transition layer. Thus,
we introduce a (parametrized) segmentation operator T : X × Θ → X that acts
as a kind of segmentation map. It is here given as

T (f, θ)(x) =
n−1∑
i=1

(ρi − ρi−1)uki

(
f(x) − τi

)
for x ∈ Ω and θ ∈ Θ. (4)

The parameter space Θ := (R×R×R)n defines the transition characteristics of
the n layers (the background ρ0 is often set to 0). Concretely, θ = (θ1, . . . , θn) ∈
Θ with θi := (ρi, τi,Ki) where ρi is the gray-scale level of the i:th level, τi is the
mid-point gray-scale value, ki := Ki/(ρi − ρi−1) is the sharpness of the smooth
gray-scale transition, and u : R → [0, 1] is the logistic function that models the
transition itself

uk(s) :=
1

1 + e−2ks
for s ∈ R. (5)

The TVR-DART algorithm for solving (1) is now defined as a method that yields
a minimizer to

min
f∈X, θ∈Θ

[
L

(
[A ◦ T ](f, θ), g

)
+ λ[S ◦ T ](f, θ)

]
. (6)

In the above, L : Y × Y → R+ is an appropriate data-fit term and S : X →
R+ is the regularization. The variant considered in [17] uses a data-fit term
L( ·, g) = ‖ · − g‖22 and a regularizing functional TVε = [Hε ◦∇], where Hε is
the Huber norm and ∇ is the spatial gradient operator. The Huber norm is a
smooth surrogate functional for the L1-norm, and Hε ◦∇ is thus a smoothed
version of TV. Hence, (6) becomes

min
f∈X,θ∈Θ

[∥∥[A ◦ T ](f, θ) − g
∥∥2

2
+ λ[Hε ◦∇ ◦ T ](f, θ)

]
. (7)

Gradient based methods can be used to solve (7) since its objective functional is
smooth. In [17] one such solution method was presented, based on an alternating
optimization over f and θ. We take a similar approach here, and to this end define
the two operator T θ : X → X, defined by T θ(f) = T (f, θ), and T f : Θ → X,
defined T f (θ) = T (f, θ), where θ and f are seen as fix parameters, respectively.
In the current implementation we view the sharpness parameter as fixed, but
optimize over gray-scale value and mid-point.

http://github.com/aringh/TVR-DART
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5.2 Defining the Inverse Problem

We begin by defining the reconstruction space X = L2(Ω) assuming digitization
by uniform sampling in Ω with 320 × 320 pixels:

X = odl . un i f o rm d i s c r ( min pt=[−200 , −200] ,
max pt=[200 , 200 ] , shape =[320 , 320 ] )

Next is to define the forward operator as the ray transform A : X → Y in (2).

M angle part = odl . un i f o rm pa r t i t i on (0 , np . pi , 18 , nodes on bdry=
True )

M detector part = odl . un i f o rm pa r t i t i on (−200 , 200 , 500)

M = odl . tomo . Paral le l2dGeometry ( M angle part , M detector part )

A = odl . tomo . RayTransform (X, M, impl= ’ as t ra cuda ’ )

Note that there is no need to explicitly specify the range Y of the ray trans-
form A, which are functions defined on M (data manifold). Y is given indirectly
by the geometry-object, which defines M through M angle part for the angu-
lar sampling of the lines and M detector part for the detector sampling. This
information is typically provided by the experimental setup.

5.3 Defining the Objective Functional

To define the objective functional in (7), we begin by setting up the soft seg-
mentation operator T θ : X → X (see Sect. 5.5 for its implementation):

T theta = SoftSegmentat ionOperator (X, base va lue , th re sho lds ,

values , sharpness )

The regularization term R : X → X in (7), when optimizing over f , is given
by Rθ := Hε ◦∇ ◦ T θ, which can be implemented using the operator calculus in
ODL:

grad i en t = odl . Gradient (X)
grad i en t = odl . PointwiseNorm ( grad i en t . range ) ∗ grad i en t
H = HuberNorm(X, 0 .0001)
R theta = H ∗ grad i en t ∗ T theta

In the above, PointwiseNorm is used to define the isotropic TV-like term and a
description of how to implement the Huber norm is given in Sect. 5.5. Next the
data-fit term in (7) as a function f �→

∥∥[A ◦ T θ](f) − g
∥∥2

2
is implemented as

l2 norm = odl . s o l v e r s . L2NormSquared (A. range )
l2 norm = l2 norm . t r an s l a t ed ( data )
d a t a f i t t h e t a = l2 norm ∗ A ∗ T theta

The l2 norm.translated(data) command shifts the origin of the L2-norm
functional, i.e., it changes the functional ‖ · ‖22 into ‖ ·−g‖22. Hence, the complete
objective functional in (7), when optimizing over f , can be assembled as
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ob j th ea t = d a t a f i t t h e t a + reg param ∗ R theta

The implementation for optimizing over θ is analogous.

5.4 Solving the Optimization Problem

Since the objective functional in (7), both when seen as a functional over f and
over θ, is smooth we can use a smooth solver such as limited-memory BFGS [6,
Sect. 13.5] with backtracking line-search [6, Sect. 11.5] in the alternating opti-
mization. A BFGS solver and backtracking line-search is built into ODL, and
the alternating optimization can thus be implemented as follows.

reco = fbp
theta = t h e t a i n i t
f o r i in range (10) :

[ . . . ]
l i n e s e a r c h = odl . s o l v e r s . Backtrack ingLineSearch ( ob j th e t a )
odl . s o l v e r s . bfgs method ( f=obj theta , x=reco , l i n e s e a r c h=

l i n e s e a r ch , maxiter=10, t o l=1e−8, num store=10)
[ . . . ]
l i n e s e a r c h = odl . s o l v e r s . Backtrack ingLineSearch ( o b j f )
od l . s o l v e r s . bfgs method ( f=ob j f , x=theta , l i n e s e a r c h=

l i n e s e a r ch , maxiter=2, t o l=1e−8, num store=2)

The command x=reco specifies the initial iterate for the BFGS solver, and in
the first outer iteration is taken as a reconstruction fbp obtained from standard
filtered backprojection (FBP) using a Hann filter. Example reconstructions using
this algorithm are shown later in Fig. 1.

5.5 Implementing the Huber Norm and Soft Segmentation
Operator

The Huber norm and soft segmentation operator are not part of ODL and need to
be added. They are implemented as an ODL Functional and Operator object,
respectively.

Starting with the Huber norm, its mathematical definition is

Hε(f) =
∫

Ω

fε(x)dx where fε(x) =

⎧⎨
⎩

|f(x)| − ε

2
if |f(x)| ≥ ε

f(x)2

2ε
if |f(x)| < ε.

In the ODL implementation below we uses q part to denote the quadratic region,
i.e., where |f(x)| < ε.
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c l a s s HuberNorm( Funct iona l ) :
[ . . . ]
de f c a l l ( s e l f , f ) :
””” Evaluat ing the f un c t i o n a l . ”””

q part = f . ufuncs . abso lu t e ( ) . a sar ray ( ) < s e l f . e p s i l o n

q part = np . f l o a t 3 2 ( q part )
f e p s = ( ( f ∗ q part ) ∗∗2 / ( 2 . 0 ∗ s e l f . e p s i l o n ) +

( f . ufuncs . abso lu t e ( ) − s e l f . e p s i l o n / 2 . 0 ) ∗
(1−q part ) )

# This l i n e takes the inner product with the one−f unc t i on .
r e turn f e p s . inne r ( s e l f . domain . one ( ) )

Since we use a smooth solver, we also need to provide the gradient associated
with the Huber norm, which is an element ∇Hε(f) ∈ X that satisfies

H′
ε(f)(h) = 〈∇Hε(f), h〉X .

In the above, the bounded linear operator H′
ε(f) : X → R is the Fréchet deriv-

ative of Hε at f . For the Huber norm, the gradient at f ∈ X is

∇Hε(f)(x) =
∂

∂f
fε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if f(x) ≥ ε

−1 if f(x) ≤ −ε
f(x)

ε
if |f(x)| < ε.

The above is implemented in ODL as a property of the Huber norm functional:

@property
de f g rad i en t ( s e l f ) :

””” Gradient operator o f the f un c t i o n a l . ”””
func = s e l f
c l a s s HuberNormGradient ( Operator ) :
[ . . . ]

de f c a l l ( s e l f , f ) :
q par t = f . ufuncs . abso lu t e ( ) . a sar ray ( ) < func . e p s i l o n
q part = np . f l o a t 3 2 ( q part )
f e p s d i f f = ( ( f ∗ q part ) / ( func . e p s i l o n ) +

f . ufuncs . s i gn ( ) ∗ (1−q part ) )
re turn f e p s d i f f

r e turn HuberNormGradient ( )

The soft segmentation operator T θ : X → X, implicitly defined in (4), can
be implemented in a similar way. Below we compute the Fréchet derivative with
respect to f (since this operator is not a functional, it does not have a gradient)
that can be implemented in ODL as a property. In ODL the derivative of T θ

with respect to the function, at f ∈ X, is itself a linear operator T ′
θ(f) : X → X

given by

T ′
θ(f)(h)(x) =

n−1∑
i=1

h(x)(ρi − ρi−1)u′
ki

(
f(x) − τi

)
for h ∈ X,
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where u′
k is the derivative of the logistic function (5)

u′
k(t) =

2ke−2kt

(1 + e−2kt)2
.

The operator T f : Θ → X is implemented analogously, where the Fréchet deriv-
ative of T f with respect to θ can be derived similarly.

5.6 Extension to Handle Data with Poisson Noise

It is well-known that minimizing the Kullback-Leibler (KL) divergence of count
data is equivalent to maximum likelihood estimation when the noise in data
g is Poisson distributed [5]. The original notion of KL divergence comes from
information theory, and is thus defined for probability measures. The one used
in inverse problems is the generalization below to nonnegative functions:

DKL(g |h) =

⎧⎨
⎩

∫
Ω

(
g(y) log

(
g(y)
h(y)

)
+ h(y) − g(y)

)
dy g(y) ≥ 0, h(y) > 0

+∞ else.
(8)

Noise in low count data is often better modeled using a Poisson distribution
rather than an additive Gaussian distribution, and many electron tomography
applications are low count data [10]. Hence, using (8) as data-fit term in (6), i.e.,

L([A ◦ T θ](f), g) = DKL

(
g | [A ◦ T θ](f)

)
,

is of interest to applications where the TVR-DART algorithm will be used. Since
the KL divergence is already available as a functional in ODL, in order to use
KL instead of L2 we only need to change the data-fit functional:

k l = odl . s o l v e r s . Ku l lbackLe ib l e r (A. range , p r i o r=data )
d a t a f i t t h e t a = k l ∗ A ∗ T theta

5.7 Reconstructions

The resulting reconstructions from running the TVR-DART is summarized in
Fig. 1, which compares TVR-DART and TV reconstructions, both approaches
using L2-norm and the KL as data-fit term, the former more suitable for data
with additive Gaussian noise and the latter more suitable for data with Poisson
noise. Tomographic data used for the tests is simulated using both Gaussian
and Poisson noise, and for both TV and TVR-DART we have used an FBP
reconstruction as an initial starting iterate. In Fig. 1 we also give some figure of
merits for the reconstructions, namely Relative Mean Error (RME) (see, e.g.,
[17, p. 460]) and Structural Similarity index (SSIM) [15].
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6 Conclusions

We have shown how TVR-DART can be implemented in ODL/ASTRA, and
utilizing the modularity and flexibility of ODL we extended the algorithm by
changing the data-fit functional L in (6). In the same way, it is straightforward to
change to forward operator A in (6) in order to use the algorithm in other imag-
ing modalities. As an example, the ODL implementation of TVR-DART can be
applied to magnetic resonance imaging by merely changing the forward opera-
tor A to the Fourier transform instead of the ray transform. To conclude, the
combination of ODL and ASTRA allows users to specify advanced tomographic
reconstruction methods using a high-level mathematical description that facili-
tates rapid prototyping.
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