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Abstract. Positron Emission Tomography (PET) with pharmacoki-
netic (PK) modelling is a quantitative molecular imaging technique, how-
ever the long data acquisition time is prohibitive in clinical practice. An
approach has been proposed to incorporate blood flow information from
Arterial Spin Labelling (ASL) Magnetic Resonance Imaging (MRI) into
PET PK modelling to reduce the acquisition time. This requires the con-
version of cerebral blood flow (CBF) maps, measured by ASL, into the
relative tracer delivery parameter (R1) used in the PET PK model. This
was performed regionally using linear regression between population R1

and ASL values. In this paper we propose a novel technique to synthesise
R1 maps from ASL data using a database with both R1 and CBF maps.
The local similarity between the candidate ASL image and those in the
database is used to weight the propagation of R1 values to obtain the
optimal patient specific R1 map. Structural MRI data is also included
to provide information within common regions of artefact in ASL data.
This methodology is compared to the linear regression technique using
leave one out analysis on 32 subjects. The proposed method significantly
improves regional R1 estimation (p < 0.001), reducing the error in the
pharmacokinetic modelling. Furthermore, it allows this technique to be
extended to a voxel level, increasing the clinical utility of the images.
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1 Introduction

Positron Emission Tomography (PET) is a powerful molecular imaging technique
which can be used to quantify the density of a target of interest in vivo, using a
targeted radiotracer. However, full quantification requires a long, dynamic image
acquisition to cover the delivery, binding and washout of the tracer, to facilitate
PK modelling and the extraction of parameters of interest. Since an acquisition
time of 60 min or more is not clinically feasible, instead a single static 10 min
acquisition is performed and the standardised uptake value ratio (SUVR) is cal-
culated to estimate the relative uptake of the tracer. However, since this estimate
is derived from a single time point, variations in blood flow, which influence the
delivery and washout of the tracer, cannot be accounted for. Consequently SUVR
measures become biased, confounding results in longitudinal studies where, in
conditions such as Alzheimer’s Disease (AD), there will be both changes in blood
flow and the abundance of the biological target [1].

A framework to perform PK modelling on 30 min of PET data by incorpo-
rating blood flow information from simultaneously acquired MRI was proposed
in [2]. This approach halves the acquisition time by assuming that the relation-
ship between cerebral blood flow (CBF) measured using arterial spin labelling
(ASL) MRI and the PET tracer delivery parameter R1 can be approximated
using a global linear regression derived from regional average values. However,
image artefacts, limitations in image acquisition and assumptions in the ASL
model used to calculate CBF mean that the errors within the CBF estimates
vary across the brain. This will alter the relationship between ASL-CBF and
PET tracer delivery [3]. Furthermore, due to low SNR and the resulting noise in
the CBF estimates, performing linear regression for each region is non-trivial.

In this paper we propose to synthesise PET tracer delivery R1 maps from
ASL-CBF maps and structural T1 data using information propagation from a
database of subjects with ASL-CBF, T1 and PET-R1 data. Local similarity
between the unseen candidate data and the database is used to propagate data-
base PET-R1 information into the candidate subject space. The use of a local
similarity metric ensures that small-scale variation can be accounted for, whilst
the use of a multi-modal database ensures that the method is robust to arte-
facts and uncertainties in the CBF estimation. This allows the technique to be
extended to voxel-wise analysis which is required to detect local changes which
differentiate between forms of disease and allow early diagnosis.

The methodology was evaluated in 32 subjects participating in a study of age-
ing/preclinical AD where the tracer target was amyloid-β, as quantified by the
binding potential (BPND). Our approach gives a significantly improved estima-
tion of R1 on both regional and voxel-wise scales compared to [2]. This translates
into significantly lower errors in BPND estimates, such that amyloid burden can
be accurately quantified using a single 30 min PET/MRI acquisition.
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2 Methods

2.1 MRI-PET Database Construction and R1 Synthesis

For each of the N subjects forming the database, the MRI data (including struc-
tural T1 and ASL-CBF) are affinely registered into PET-R1 space. The input
database thus consists of ASL-CBF and T1 data, and the output database con-
tains the corresponding subject PET-R1 maps, as shown in Fig. 1. For R1-map
synthesis, the multi-contrast approach from [4] is used. The ASL-T1 pairs in the
input database are registered to the candidate data using an affine registration to
initialise the non-rigid registration [5]. The convolution based local normalised
cross correlation (LNCC) is then calculated between each registered ASL-T1
pair in the database and the candidate ASL-T1 pair. This local similarity metric
is then summed across the 2 channels, and is used to weight the contribution of
each propagated R1-map from the output database to the synthetic R1-map [6].

Fig. 1. (a) Multi-channel registration transforms input database images into the can-
didate subject space. The local similarity between the images is calculated, (b) and
is used to weight the propagation of R1 information from the output database into
candidate space. (c) The synthesised R1 map is combined with dynamic PET data and
PK modelling is used to derive the target density map.

2.2 PET Quantification Using the SRTM

The simplified reference tissue model (SRTM) [7] is used to quantify the PET
data, using the linearised formulation as in (1), where a set of basis functions
for CR(t)⊗e−θt are pre-calculated over a physiologically plausible range of θ [8].
The tracer-target interaction is modelled using one tissue compartment where
the tracer concentration in the reference region CR(t) is the input function,
and the target tissue concentration is CT (t). The model contains 3 parameters,
R1 (the rate of delivery in the target tissue relative to reference tissue), k2 (the
transfer rate constant from target tissue to blood), and the parameter of interest
BPND (the binding potential which is related to target density and consequently
amyloid-β burden). The parameters are estimated using curve fitting to CR(t)
and CT (t) measured from t = 0 at tracer injection over a sufficient duration.

CT (t) = R1CR(t) + φCR(t) ⊗ e−θt

where φ = k2 − R1k2/(1 + BPND), θ = k2/(1 + BPND)
(1)
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Cerebellar grey matter is used as the reference region for CR(t) as it is assumed
to be devoid of amyloid-β [9]. BPND, R1 and k2 were calculated from dynamic
PET data acquired from t = 0 to t = 60 (0:60) min as the gold standard.

2.3 CBF Estimation from ASL MRI

Cerebral blood flow (CBF) maps were estimated from pseudo-continuous ASL
(PCASL) data and saturation recovery images at 3 recovery times (1, 2, 4 s) [10].
The proton density, S0, was estimated by fitting the saturation recovery images
for [T1, S0]. The parameter values used were 0.9 ml/g for the plasma/tissue par-
tition coefficient, 1650 ms for the blood T1, and 0.85 for labelling efficiency.

2.4 SRTM with Incomplete PET Scan and CBF

Population-Based Extrapolation of Reference Input CR(t). To calculate
the convolution term in (1), CR(t) for t ∈ [0, te], where t = 0 at injection and
t = te at the end of the acquisition, is required. When the PET acquisition time
is reduced to t ∈ [ts, te], CR(t) for t ∈ [0, ts] must be estimated. This is performed
as in [2], where a set of subjects with CR(t) for t ∈ [0, te] are used to generate
a mean population CR(t), which is then scaled to the available CR(t) t ∈ [ts, te]
to estimate a subject specific CR(t) for t ∈ [0, te].

SRTM with CBF-Derived R1 and Extrapolated CR(t). (1) is re-written
CT (t) − R1CR(t) = φCR(t) ⊗ e−θt, to group the measured terms (CT (t), CR(t)
for t ∈ [ts, te]) with the CBF-derived R1. Basis functions were generated using
a range of θ values and the extrapolated CR for t ∈ [0, te], and φ is estimated
using a least squares fit of the data. The combination of φ and θ which minimise
the least squares error in the fit are then used to calculate BPND and k2.

3 Experiments and Results

Data. Imaging data were collected from 32 cognitively normal subjects partic-
ipating in Insight 46, a neuroimaging sub-study of the MRC National Survey of
Health and Development, who underwent simultaneous PET and multi-modal
MRI on a Siemens Biograph mMR 3T PET/MRI scanner [11]. List mode PET
data were acquired for 60 min following intravenous injection of [18F]florbetapir,
an amyloid-β targeting radiotracer. Structural 3D T1- and T2-weighted MR
images were used to estimate the attenuation map [4]. Dynamic PET data were
binned into 15 s × 4, 30 s × 8, 60 s × 9, 180 s× 2, 300 s × 8 time frames, and recon-
structed into 2 × 2 × 2 mm voxels using in-house software with corrections for
dead-time, attenuation, scatter, randoms and normalisation [12]. PCASL ASL
data were acquired using a 3D GRASE readout at 3.75 × 3.75 × 4 mm and
reconstructed to 1.88 × 1.88 × 4 mm resolution voxels. 10 control-label pairs
were acquired with a pulse duration and post labelling delay of 1800 ms. For
regional analysis and reference region delineation, T1 data were parcellated [6]
and propagated into PET space.



PET Quantification Using MRI-Based Pharmacokinetic Parameter Synthesis 741

Validation. Leave one out analysis was used such that N − 1 subjects were
used in the database, for linear regression between ASL-CBF and PET-R1, and
for extrapolation of the reference region CR. The comparison of methods was
performed for both R1 and BPND estimation using the mean absolute error
(MAE = 1/v

∑
v |Iest

v − IGS
v | where I is intensity, v is the number of voxels

or regions, GS is the gold standard and est is the estimated value). Statistical
tests on MAE were performed using the paired Wilcoxon signed rank test. For
SUVR estimation, 50:60 min of PET data were normalised by the mean reference
region intensity, as this time window gave the lowest error compared to the gold
standard. For PK modelling using reduced acquisition time, 30:60 min of PET
data were used. PK modelling using 30:60 min of data and the gold standard
‘true’ R1 was calculated as the ideal case where R1 is estimated exactly.

3.1 Regional Analysis of R1 and BPND Estimation

Regional analysis was performed by averaging across 17 regions: 6 cortical grey
matter regions, accumbens, amygdala, brainstem, caudate, cerebral white mat-
ter, hippocampus, pallidum, putamen, thalamus, cerebellar white matter and
cerebellar grey (reference region), with right and left hemispheres combined.

Fig. 2. Regional errors in R1 and BPND, outliers excluded for visualisation.

R1 Estimation Accuracy. Figure 2 left shows the errors in the R1 estima-
tion compared to the gold standard, demonstrating that the proposed synthesis
method gives improved estimates over those obtained using linear regression on
the ASL values directly. For the proposed synthesised R1 the MAE is signifi-
cantly reduced (p < 0.001), from 0.08668 using the ASL regression method to
0.06326 using the synthesised R1. This reflects the flexibility of the synthesis
method to account for regional differences in the relationship between CBF and
R1.

Binding Potential (BPND) Estimation Accuracy. The errors in the esti-
mation of BPND using fixed R1 values and 30 min of PET data are shown in
Fig. 2 right. This illustrates the known positive bias in the SUVR compared to
the gold standard and the reduction in errors when PK modelling is used. For
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the fit using the proposed synthesised R1 map, the error is reduced compared to
linear regression on the ASL values. This is not reflected in the MAE where the
proposed method and the ASL regression method achieve an MAE of 0.07495
and 0.07501 respectively. However, the distributions are statistically significantly
different (p = 0.02). Both R1 estimation techniques perform significantly better
than SUVR (p < 0.001), and produce similar errors to those obtained using the
gold standard R1 (MAE = 0.06145).

3.2 Voxel-Wise Analysis of R1 and BPND Estimation

Voxel-wise analysis was performed on all voxels contained within the subject
brain mask. MAE was calculated for each subject then averaged across subjects.

R1 Estimation Accuracy. Figure 3 left shows the reduction in R1 estimate
error using R1 synthesis compared to the ASL regression technique. This is
reflected in the significantly reduced MAE, which is 0.21175 for ASL regression
as opposed to 0.15979 for R1 synthesis (p < 0.001). Figure 3 right shows that
the synthesised R1 maps are better able to capture local differences in tracer
delivery than those generated using ASL regression. This is due to the shallow
slope obtained from the linear regression which reduces the range of the ASL-
CBF maps.

Fig. 3. Voxel-wise R1: Left- errors (outliers not shown), Right- example maps

Binding Potential (BPND) Estimation Accuracy. Figure 4 left shows the
mean error in BPND estimates compared to the gold standard and as for the
regional analysis, SUVR shows a positive bias. The ASL regression technique
also has a small positive bias which is not present for the synthesised and true
R1 values. Again, the MAE is significantly lower for the synthesised R1 compared
to the ASL-regression method. The mean errors using the synthesised R1 and
gold standard R1 appear similarly distributed, however the MAE is significantly
lower when using the gold standard, where MAE = 0.1593 compared to 0.17687
for synthesised R1 (p < 0.001). Figure 4 right demonstrates that the proposed
method is a good approximation of the BPND using the gold standard R1,
however all of the PK modelling techniques using 30 min of data show corruption
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due to the noise in the PET data on a voxel level which is enhanced when halving
the acquisition time.

Fig. 4. Voxel-wise BPND results: Left- Errors in BPND (outliers excluded for display)
Right- Example BPND maps overlaid on T1 images for visualisation

4 Discussion and Conclusion

In this paper we present a novel methodology to synthesise PET tracer deliv-
ery, R1, maps from a database of ASL-CBF and T1 images to significantly
improve the quantification of PET data using a clinically feasible acquisition
time. The results were compared to a technique proposed in [2], where R1 values
were derived directly from the ASL data by linear regression of a population of
subjects with ASL-CBF and R1 maps. For regional analysis, the proposed syn-
thesised R1 estimation performed significantly better than the ASL regression
method, and the performance in the estimation of BPND following PK mod-
elling on 30:60 min of PET data was also significantly better. The analysis was
further extended to a voxel level where the higher accuracy and resolution of the
synthesised R1 map led to a significant improvement in BPND estimation.

This work demonstrates that BPND quantification is possible on a voxel
level for a 30 min PET/MR acquisition. However, fitting noisy voxel-wise data is
susceptible to errors which are increased for reduced acquisition times. In future
work we will apply the SRTM with a spatial constraint to improve the stability
of voxel-wise fitting [13]. Furthermore, we will consider that the images within
the database are imperfect, i.e. the ASL-CBF maps are susceptible to artefacts,
and the R1 maps are voxel-wise fits to noise corrupted data. This information
may be used to modify the similarity estimation between the candidate and the
database to increase robustness in the presence of artefacts.
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